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1. Introduction

One of the main results of the AdS/CFT correspondence is that individual string states

are mapped to local gauge-invariant operators in a dual field theory [1]–[3]. But even in

the most well understood case of N = 4 Super Yang-Mills (SYM) this mapping is only

known for a small subset of the operators. The difficulty in making this mapping explicit

is two-fold: i) String quantization on an AdS5 × S5background is still unsolved. ii) The

spectrum of gauge invariant operators is somewhat difficult to compute.

Previously, it was known that the chiral primaries in the gauge theory are dual to the

string states that survive the supergravity limit. More recently it was realized how to go

beyond the chiral primaries by considering operators with large R-charges, J [4]. On the

string side this corresponds to semiclassical states with large angular momentum on the S 5.

For such states, the AdS5 × S5geometry essentially reduces via a Penrose limit to a plane

wave geometry [5]–[7]. String theory on the plane wave background is solvable [8, 9] and

an identification can be made between the string states and the gauge invariant operators.

The string quantization on the plane wave is simple enough, at least in the light-cone

gauge, where all string states are generated by an infinite set of creation operators similar

to those in flat space [8, 9].

Amazingly, the operators dual to each of the eigenstates of the light-cone string hamil-

tonian can be identified. These (BMN) operators are [4]:

|0; J〉 ⇐⇒ trZJ ,

ai0
† |0; J〉 ⇐⇒ trΦiZ

J ,

ain
†aj−n

† |0; J〉 ⇐⇒
∑

l

e 2πiln/J trΦiZ
lΦjZ

J−l ,
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and so on. Here, Φi, i = 1, . . . , 6 are the six scalar fields of N = 4SYM in the adjoint

representation of SU(N), and Z = Φ1 + iΦ2. The BMN operators have charge J under

the generator of the R symmetry group, which rotates Φ1 into Φ2. On the string side, J is

essentially the length of the string on the light-cone. The chain of Zs can be regarded as a

field-theory realization of the string, which emerges as a compound of J constituents, much

in the spirit of the string-bit models [10]. String excitations are represented by impurities

inserted in the chain [4].

String theory makes a prediction for the anomalous dimensions of the BMN operators

at any value of the Yang-Mills coupling in the large-N limit, by equating the mass of a

string state with the full dimension of an operator [4]. This prediction can be verified

by explicit perturbative calculations [4, 11, 12]. Furthermore, one can incorporate stringy

corrections in the effective string coupling J 2/N and compare the results of the string

calculations with the gauge theory computations [13]–[35].

Inverting the logic we can say that by resolving the mixing of operators with two or

more impurities, order by order in perturbation theory, one can reconstruct the string

spectrum by computing the anomalous dimensions of operators. We will follow this logic

in an attempt to better understand the operator/string correpondence for a wider class

of string states, including those states that are outside of the semiclassical regime [36].

These states would correspond to operators made of scalar fields and with high engineering

dimension but in low representations of SO(6).

In this paper we will consider mixing of generic scalar operators trΦi1 . . .ΦiL to one-

loop order in SYM perturbation theory. The problem appears difficult, not only because the

number of operators grows rapidly with L (roughly as 6L), but also because the operators

mix in a way which at first sight seems hopelessly entangled. However, we are able to

make progress in solving this problem by establishing an equivalence of the mixing matrix

with the hamiltonian of a certain integrable spin chain. This equivalence will allow us to

use powerful techniques of the algebraic Bethe ansatz [37]–[40] to diagonalize the mixing

matrix. In particular, we will find that the problem of finding the one-loop anomalous

dimensions comes down to solving a set of Bethe equations.

Among the results contained in this paper, we are able to reproduce easily recent

results [41] for the one loop anomalous dimensions of BMN operators with two impurities.

We then extend these results to a large class of BMN operators with more than two

impurities. We are able to identify BMN states with the corresponding Bethe states, where

among other things, we show that a “bound state” containing M Bethe roots extending

into the complex plane corresponds to having string states with M identical oscillators.

We also give a recipe for finding 1/J corrections to the anomalous dimensions including

the explicit results for the first order corrections. These corrections are important since

they correspond to curvature corrections away from the plane-wave background in the full

AdS5 × S5 [42]–[44].

We then go beyond the BMN limit in two explicit examples. The first example corre-

sponds to an SO(6) singlet made up of L scalar fields. In the large L limit this can be solved

explicitly [45], and in fact corresponds to the operator made up only of scalars that has

the largest anomalous dimension for bare dimension L. We find the anomalous dimension

– 2 –



J
H
E
P
0
3
(
2
0
0
3
)
0
1
3

and demonstrate that it is linear in L. We also argue that the string level behaves roughly

as L2, so the full dimension of the operator is proportional to the square-root of the level,

a result that follows from AdS string theory in strong coupling for generic operators [2].

The second example is the direct analog of the Heisenberg anti-ferromagnet, where we also

find the anomalous dimension and show that it is linear in L. We also show how to put in

“holes” on these states and explicitly compute the changes in the anomalous dimensions

coming from the holes. The holes can be either SO(6) vectors or one of the SO(6) spinors.

Integrable structures have previously appeared in string theory for generalizations of

the plane-wave background [46]–[48]. It is not clear if there is a relation between this

integrability and the integrability discussed in this paper. But it might indicate that the

integrability encountered here is not accidental but is a manifestation of some general

principle yet to be found. We should also mention that integrable spin chains arise in

perturbative analysis of Regge scattering in large-N QCD and Bethe ansatz techniques

were extensively applied there [49]–[53].

In section 1 we derive the one loop mixing matrix for all scalar operators. In section 2

we use this matrix to compute the anomalous dimensions for a few simple examples. In

section 3 we give a brief review of Reshetikhin’s proof of integrability for the SO(6) vector

chain and his solution for the eigenvalues of the transfer matrix in terms of Bethe roots,

along with the Bethe equations the roots must satisfy. In section 4 we use the results from

the previous section to compute the anomalous dimensions for two impurities to all orders in

1/J and for many impurities to first order in 1/J . In section 5 we describe solutions to the

Bethe equations [45] which correspond to operators outside the BMN limit. We compute

the anomalous dimensions for these operators and for nearby operators. In section 6 we

give our conclusions.

2. Anomalous dimensions from the spin system

We will study one-loop renormalization for all scalar operators without derivatives:

O[ψ] = ψi1...iL trΦi1 . . .ΦiL . (2.1)

Many interesting operators in N=4 SYM, notably chiral primary and BMN operators,

belong to this class. In general, the scalar operators (2.1) mix under renormalization.

There is a distinguished basis, in which operators are multiplicatively renormalizable. It

is important that up to possible degeneracies, rotations to this basis will diagonalize the

two-point correlation functions. As far as one-loop renormalization is concerned, the scalar

operators will mix only among themselves. Mixing with other operators should occur at

higher orders in perturbation theory.

Renormalized operators in general are linear combinations of bare operators. If we

choose the particular operator basis,

OA
ren = ZA

BOB , (2.2)

then we can find the renormalization factor by requiring finitness of the correlation function
〈
Z
1/2
Φ Φj1(x1) · · ·Z

1/2
Φ ΦjL(xL) OA

ren(x)
〉
. (2.3)
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Here, ZΦ is the wave-function renormalization factor, that is multiplication by ZΦ makes

the two-point correlator 〈ΦiΦj〉 finite. All renormalization factors depend on the UV

cutoff Λ and on the ’t Hooft coupling in the large-N limit. By standard arguments, the

renormalization factor determines the matrix of anomalous dimensions through

Γ =
dZ

d lnΛ
· Z−1 . (2.4)

Eigenvectors of Γ correspond to operators which are multiplicatively renormalizable. The

corresponding eigenvalues determine the anomalous dimensions of these operators. Thus,

〈On(x)On(y)〉 =
const.

|x− y|2(L+γn)
(2.5)

for the operator that corresponds to an eigenvector of Γ with an eigenvalue γn.

How should one characterize the Hilbert space1 of scalar operators of bare dimension

L? Let us forget for a moment the cyclicity of the trace. Then in the natural basis (2.1)

each operator is associated with an SO(6) tensor with L indices. Such tensors form a

6L-dimensional linear space H = V1 ⊗ . . .⊗ VL, where Vl = R6 is associated with an SO(6)

index in the lth position in ψi1...il...iL . The anomalous dimensions are thus eigenvalues

of a 6L × 6L matrix. It will prove extremely useful to regard H as a Hilbert space of a

spin system. That is, let us consider a one-dimensional lattice with L sites whose ends

are identified and let each lattice site host a six-dimensional real vector. The space of

states for such a spin system is isomorphic to H. The matrix of anomalous dimensions

is a hermitean operator in H and can be regarded as a hamiltonian of the spin system.

Recalling that wave functions which differ by a cyclic permutation of indices correspond

to the same operator, we should impose the constraint that physical states have zero total

momentum:

U |ψ〉 = |ψ〉 , (2.6)

where U is the translation operator

U a1 ⊗ · · · ⊗ aL−1 ⊗ aL = aL ⊗ a1 ⊗ · · · ⊗ aL−1 . (2.7)

In the strict large-N limit, all operators (2.1) are independent and there are no other

constraints.

With the spin system interpretation in mind, let us compute the matrix of anomalous

dimensions at one loop. The renormalization of BMN operators with two impurities was

extensively discussed, so the essential pieces of the calculation for the anomalous dimensions

are present throughout the literature (e.g. [4, 13, 11, 15]). We will therefore skip many

details and give only salient features of the derivation, generalizing to arbitrary scalar

operators. We use the standard Feynman rules which follow from the euclidean SYM

action:

S =
1

g2

∫
d4x tr

{
1

2
F 2µν + (DµΦi)

2 − 1

2
[Φi,Φj ]

2 + fermions

}
, (2.8)

and we will work in the Feynman gauge, in which the scalar and the gauge boson propa-

gators are equal, up to Lorentz and SO(6) structures.

1We shall call it a Hilbert space, even though it is finite-dimensional.
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a b c

Figure 1: One-loop diagrams.

There are three types of planar one-loop diagrams that contribute to the correlation

function (2.3) (figure 1). We depict the operator O[ψ] by a horizontal bar with scalar

propagators ending on each of the scalar fields (i.e. lattice sites) in the operator (2.1).

Only lattice sites affected by loop corrections are shown in the figure. Since the gauge

boson exchange is flavor-blind, the Z factor associated with diagram (a) is diagonal in

SO(6) indices:

Z
(a)...jljl+1...

...ilil+1...
= I − λ

16π2
lnΛ δjlil δ

jl+1

il+1
.

The SO(6) structure of the Z factor arising from diagram (b) can be easily inferred from

the structure of the quartic scalar vertex:

−

i

i

j

j

j

j

i

i

.

Thus we find that

Z
(b)...jljl+1...
...ilil+1...

= I − λ

16π2
lnΛ

(
2δ

jl+1

il
δjlil+1

− δjlil δ
jl+1

il+1
− δilil+1

δjljl+1

)
.

The one-loop self-energy correction in diagram (c) leads to the wave-function renormal-

ization. The corresponding renormalization factor was computed in Feynman gauge [54]

and is given by

ZΦ = 1 +
λ

4π2
lnΛ .

One half of the self-energy corrections in the correlation function (2.3) are cancelled by

wave-function renormalization of the external legs. The remaining divergence should be

cancelled by renormalization of the operator. The corresponding Z factor is proportional

to the unit matrix, and can be written as

Z
(c)...jljl+1...
...ilil+1...

= I +
λ

8π2
lnΛ δjlil δ

jl+1

il+1
.

Adding all the pieces together, we find that the contribution from each link of the lattice is

Z
...jljl+1...
...ilil+1...

= I +
λ

16π2
lnΛ

(
δilil+1

δjljl+1 + 2δjlil δ
jl+1

il+1
− 2δ

jl+1

il
δjlil+1

)
. (2.9)

The total Z factor is the product over all links of the expression in (2.9).
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The matrix of anomalous dimensions can be expressed in terms of two elemtary oper-

ators which act on each link: the trace operator,

K
jljl+1

ilil+1
= δilil+1

δjljl+1 , (2.10)

and the permutation operator:

P
jljl+1

ilil+1
= δ

jl+1

il
δjlil+1

. (2.11)

These operators act in the tensor product R6 ⊗ R6 as

K a⊗ b = (a · b)
∑

i

êi ⊗ êi ,

P a⊗ b = b⊗ a , (2.12)

where êi are a set of orthogonal unit vectors in R6. The matrix of anomalous dimensions is

Γ =
λ

16π2

L∑

l=1

(Kl,l+1 + 2− 2Pl,l+1) , (2.13)

where the subscripts indicate that the operators act in the tensor product of nearest-

neighbor spins Vl ⊗ Vl+1. By introducing the spin operators

Mab
ij = δai δ

b
j − δaj δbi (2.14)

for each lattice site, we can rewrite the hamiltonian in the form in which spin-spin inter-

actions are manifest:

Γ =
λ

16π2

L∑

l=1

[
Mab

l M
ab
l+1 −

1

16

(
Mab

l M
ab
l+1

)2
+

9

4

]
. (2.15)

The result in (2.13) for the matrix of anomalous dimensions in the form of a hamiltonian

of a spin system is the main result of this section.

Examples

The hamiltonian in (2.13) posesses some remarkable properties. We will see in the next

section that it belongs to a unique series of integrable spin chains with SO(n) symmetry. For

an arbitrary SO(n) spin chain, integrability requires that the ratio of coefficients between

the permutation operator and the trace operator is −(n/2−1). For SO(6), this ratio is −2,
precisely matching the ratio in (2.13)! Integrability allows one to use powerful techniques of

the Bethe ansatz to diagonalize the hamiltonian and compute its eigenvalues. The review

of the Bethe ansatz for the SO(6) spin chain is given in the next section.

Since the Bethe ansatz utilizes rather sophisticated algebraic constructions, we would

first like to demonstrate the formalism by rederiving known results for some of the simpler

operators before invoking the Bethe ansatz machinery.
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The simplest and most important scalar operators in N=4 SYM are chiral primaries,

operators which are symmetric and traceless in all SO(6) indices. Chiral primaries are an-

nihilated by the trace operator K in (2.10) and are eigenstates of the permutation operator

with an eigenvalue one. Therefore,

Γ |CPO〉 = 0 , (2.16)

which reflects the fact that scaling dimensions of chiral primaries are protected by super-

symmetry and should not receive quantum corrections.

Another interesting operator is the Konishi scalar,

KO = trΦiΦi . (2.17)

It is also invariant under permutations, but now the trace operator acts non-trivially:

K |KO〉 = 6 |KO〉. The Konishi operator corresponds to the lattice with two sites. Each

link between the lattice sites gives an equal contribution to the anomalous dimension, so

Γ |KO〉 = 3λ

4π2
|KO〉 , (2.18)

in agreement with the calculation of [55].

Consider now BMN operators with two impurities:

Oij =
J∑

l=0

ψl trΦiZ
lΦjZ

J−l (i 6= j , i, j = 3, . . . , 6) . (2.19)

The spin-chain hamiltonian acts on such operators as a lattice Schrödinger operator with

δ′ potential:

(Γψ)l = −
λ

4π2

[
ψl+1 + ψl−1 − 2ψl +

1

2
(δl0 − δlJ) (ψ0 − ψJ)

]
. (2.20)

The exact (multiplicatively renormalizable at any J) BMN operators with two impurities

were recently found by Biesert [41]. His operators correspond to taking

ψSl = cos

[
(2l + 1)nπ

J + 1

]
(2.21)

for states which are symmetric under interchange of i and j, and

ψAl = sin

[
2(l + 1)πn

J + 2

]
(2.22)

for antisymmetric states. It is straightforward to check that the above states are eigen-

functions of Γ with eigenvalues

γSn =
λ

π2
sin2

(
πn

J + 1

)
(2.23)

and

γAn =
λ

π2
sin2

(
πn

J + 2

)
. (2.24)
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As explained in [41], symmetric and antisymmetric operators with the same J belong to

different supermultiplets and for that reason their anomalous dimensions are different.

Finally, there are singlet BMN operators of the form:

O =

J∑

l=0

φl

6∑

i=3

trΦiZ
lΦiZ

J−l − χ tr Z̄ZJ+1 . (2.25)

The matrix of anomalous dimensions acts on these operators as

(Γφ)l = −
λ

4π2

[
φl+1 + φl−1 − 2φl −

1

2
(δl0 + δlJ) (φ0 + φJ − χ)

]

Γχ = − λ

4π2
(φ0 + φJ − χ) . (2.26)

This is a Schrödinger operator with a self-consistent source and a repulsive δ-function

potential. Note that the source and the potential come from the trace term in the spin-

chain hamiltonian. Operators constructed in [41] correspond to the wave functions

φl = cos

[
(2l + 3)πn

J + 3

]
,

χ = 2 cos

(
πn

J + 3

)
. (2.27)

It is easy to check that they are eigenfunctions of the hamiltonian with eigenvalues

γn =
λ

π2
sin2

(
πn

J + 3

)
, (2.28)

in agreement with the anomalous dimensions computed in [41].

3. A short review of the Bethe ansatz equations

In this section we review the Yang-Baxter equation, the construction of commuting opera-

tors and the Bethe-ansatz for an SO(n) chain where all sites in the chain transform in the

vector representation.2

In order to find an integrable system, one needs to construct an R-matrix. An R-

matrix R12(u) acts on a tensor product of two n dimensional vector spaces, V1 ⊗ V2. The

parameter u is the spectral parameter and the matrix elements are explicitly given by

R12(u)
i1i2
j1j2

. The transfer matrix T (u) is constructed from the R-matrix as

T (u) = R01(u)R02(u)R03(u) · · ·R0L(u) . (3.1)

Here, the transfer matrix acts on the tensor product of L+1 n-dimensional vector spaces.

The sites on the chain are numbered from 1 to L while the space V0 is an auxilary space.One

can think of T (u) as a matrix of operators that act on the L sites of the chain, with the

different matrix elements given by T i0
j0(u).

2For a nice explanation of the Yang-Baxter equation and the algebraic Bethe ansatz see [56].
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If a system is integrable, then the R-matrix satisfies the Yang-Baxter equation

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) , (3.2)

where the three R-matrices act on the tensor product of three n-dimensional vector spaces.

Given the Yang-Baxter equation, one can find the corresponding relation for a product of

transfer matrices

Rab(u− v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u− v) , (3.3)

where the indices a and b refer to two different auxillary spaces, but the transfer matrices

act on the same chain of L sites. Writing the components of the auxillary spaces explicitly,

(3.3) becomes

T ia
a ja

(u)T ib
b jb

(v) = R−1ab
iaib

kakb
(u− v)T kb

b lb
(v)T ka

a la
(u)Rlalb

ab jajb
(u− v) . (3.4)

Taking the trace on the Va ⊗ Vb tensor space, we get

Tra(Ta(u))Trb(Tb(v)) = Trb(Tb(v))Tra(Ta(u)) , (3.5)

and since the auxillary spaces are traced over, we can drop the labels a and b and write

[Tr(T (u)),Tr(T (v))] = 0 (3.6)

for all u and v. For the case that we will be considering it will turn out that these traces are

order 2L polynomials in the spectral parameter, hence the Yang-Baxter equation implies

that there are up to 2L independent operators that are mutually commuting.

Consider then the R-matrix acting on V1 ⊗ V2

R12 =
1

n− 2
[u(2u+ 2− n)I12 − (2u+ 2− n)P12 + 2uK12] , (3.7)

where I12, P12 and K12 are the identity, exchange and trace operators defined in the pre-

vious section. This R-matrix satisfies the Yang-Baxter equation [39, 40]. The verification

for this is straightforward, but tedious.

Clearly, the transfer matrices will be polynomials of order 2L in u, which we write as

T (u) =
∑

m

umTm . (3.8)

The traces we write as

t(u) ≡ Tr(T (u)) =
∑

m

umtm . (3.9)

Let us find the first few terms in the expansion. Since R12(0) = P12, the lowest order term

in the expansion is

T0 =

L∏

`=1

P0` . (3.10)

Hence the action of this operator on the tensor product of the L+ 1 vector spaces is

T0V0 ⊗ V1 ⊗ · · · ⊗ VL−1 ⊗ VL = V1 ⊗ V2 ⊗ · · · ⊗ VL ⊗ V0 . (3.11)

– 9 –
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If we now take the trace over the V0 space, we have that

t0V1 ⊗ · · · ⊗ VL−1 ⊗ VL = V2 ⊗ · · · ⊗ VL ⊗ V1 . (3.12)

Hence t0 is the discrete shift operator, the operator that shifts everything by one site.

We already encountered this operator in imposing the cyclicity of the trace on the SYM

operators.

The next term in (3.8) is found by replacing one P0` operator in (3.10) with

−I0` −
2

n− 2
P0` +

2

n− 2
K0` (3.13)

and summing over all positions `.The contribution from P0` will just give us the shift

operator again. To find the contributions of the other operators, note that

Tr0

(
`−1∏

k=1

P0k

L∏

k=`+1

P0k

)
= t0P`,`+1 (3.14)

and

Tr0

(
`−1∏

k=1

P0kK0`

L∏

k=`+1

P0k

)
= t0K`,`+1 . (3.15)

Hence we find that t1 is given by

t1 =
2

n− 2
t0

(
L∑

`=1

(K`,`+1 − 1− n− 2

2
P`,`+1)

)
. (3.16)

Since t1 and t0 are among a set of commuting operators and since we are free to add a

constant, we see that
L∑

`=1

(
K`,`+1 +

n− 2

2
− n− 2

2
P`,`+1

)
(3.17)

also commutes with these operators.

If we now consider the particular case of SO(6), we see that (3.17) is proportional to

the anomalous dimension operator in (2.4)! Therefore, the one-loop anomalous dimension

operator described in the previous section can be mapped to a hamiltonian of an integrable

system.

Showing that a hamiltonian is part of an integrable system is only part of the story. We

also want to find the eigenstates and the eigenvalues of t(u) = TrT (u). In the Heisenberg

spin chain, this is done most efficiently by using the algebraic Bethe ansatz. One can use

the algebraic Bethe ansatz for the SO(n) chain as well [57, 58].However, as was shown

by Reshetikhin [39, 40], there is another way to find the eigenvalues of t(u) which are

constrained by a series of Bethe equations.

Let us give a brief sketch of Reshetikhin’s argument. The first thing to observe is that

the R-matrix in (3.7) has a crossing symmetry

(R12(u))
T2 = R12

(
−u+

n− 2

2

)
, (3.18)
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where T2 signifies a transpose on V2 only. Assuming that u is real, it is then straightforward

to show that

(t(u))† = t

(
−u+

n− 2

2

)
. (3.19)

Hence, the eigenvalues Λ(u) of t(u) satisfy

Λ(u) = Λ

(
−u+

n− 2

2

)
. (3.20)

Next consider the combination of R-matrices

R12

(
n− 2

2

)
R13

(
u+

n− 2

2

)
R23(u) = K12R13

(
u+

n− 2

2

)
R23(u) . (3.21)

If we define K⊥12 as the orthogonal complement to the trace operator, then by the Yang-

Baxter equation we have that

K12R13

(
u+

(n− 2)

2

)
R23(u)K

⊥
12 = 0 . (3.22)

This means that R13(u+
n−2
2 )R23(u) can be written in lower triangular form on the V1⊗V2

space, where the upper left block corresponds to the operator K12R13(u+ n−2
2 )R23(u)K12

and the right lower block to K⊥12R13(u+ n−2
2 )R23(u)K

⊥
12

We next note that

R13

(
u+

n− 2

2

)i1i

j1k

R23(u)
i1k

j1j
=

=
1

(n− 2)2

[
(4u2 − (n− 2)2)(Ai1i

j1j + u2Bi1i
j1j) + 4u2Ci1i

j1j

]
, (3.23)

where only the k index is summed over and where

Ai1i
j1j = −δi1iδi1 j

Bi1i
j1j = δi1 j1δ

i
j

Ci1i
j1j = nδi1 j1δ

i1iδj1j − δij1δj1j . (3.24)

One can then show by using the independence of Ai1i
j1j on j1 that

∑

j1

Ai1i
j1jC

j1I
k1J = 0 . (3.25)

Finally, we note that

R13

(
n− 2

2

)i1i

j1k

R23(0)
i2k

j2j
= 0 if

i1 6= i2
j1 6= j2

. (3.26)

Putting together the relations in (3.22)–(3.26) and using the relation in (3.20), one can

then show that

Λ(u)Λ(−u) = 1

(n− 2)2L
(u2 − 1)L(4u2 − (n− 2)2)L + uLΛr(u) , (3.27)

– 11 –



J
H
E
P
0
3
(
2
0
0
3
)
0
1
3

where Λr(u) is a remainder term that is yet to be determined. The relation in (3.27) is

highly constraining. As was shown by Reshetikhin [39, 40], its solution is

Λ(u) =
1

(n− 2)L

[
(u− 1)L(2u− n+ 2)LH(u) + uL(2u− n+ 4)LF (u) +

+ uL(2u− n+ 2)LG(u)
]
, (3.28)

where in order to satisfy (3.27) and crossing symmetry

H(u)H(−u) = 1

F

(
−u+

n− 2

2

)
= H(u)

G

(
−u+

n− 2

2

)
= G(u) . (3.29)

A solution for the first of these equations is

H(u) =

n1∏

j=1

u− iu1,j + 1/2

u− iu1,j − 1/2
, (3.30)

where the number n1 and the possible values u1,m will depend on the particular eigenstate.

If u1,m is complex, then its conjugate must also be contained in the product.

The function G(u) will be written as a sum

G(u) =

n−2∑

q=1

Gq(u) , (3.31)

where

Gn−1−q

(
−u+

n− 2

2

)
= Gq(u) . (3.32)

Let us assume that n = 2k. Then the various Gq(u) are given by

Gq(u) =

nq∏

j=1

u− iuq,j − q/2− 1

u− iuq,j − q/2

nq+1∏

j=1

u− iuq+1,j − q/2 + 1/2

u− iuq+1,j − q/2− 1/2
1 ≤ q < k − 2

Gk−2(u) =

nk−2∏

j=1

u− iuk−2,j − k/2
u− iuq,j − k/2 + 1

nk−1∏

j=1

u− iuk−1,j − k/2 + 3/2

u− iuk−1,j − k/2 + 1/2

nk∏

j=1

u− iuk,j − k/2 + 3/2

u− iuk,j − k/2 + 1/2

Gk−1(u) =

nk−1∏

j=1

u− iuk−1,j − k/2 + 3/2

u− iuk−1,j − k/2 + 1/2

nk∏

j=1

u− iuk,j − k/2 + 1/2

u− iuk,j − k/2 + 1/2
. (3.33)

However, the eigenvalues must be a polynomial in u, but given the structure of the

above functions, it appears that Λ(u) will have poles at u = iuq,m for all of the various

values of q and m. Hence, there has to be intricate relations between the different values
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uq,m in order that the poles cancel. The relations were derived in [39, 40] and are given by

(
u1,i + i/2

u1,i − i/2

)L
=

n1∏

j 6=i

u1,i − u1,j + i

u1,i − u1,j − i

n2∏

j

u1,i − u2,j − i/2
u1,i − u2,j + i/2

1 =

nq∏

j 6=i

uq,i − uq,j + i

uq,i − uq,j − i

nq−1∏

j

uq,i − uq−1,j − i/2
uq,i − uq−1,j + i/2

nq+1∏

j

uq,i − uq+1,j − i/2
uq,i − uq−1,j + i/2

1 < q < k − 2

1 =

nk−2∏

j 6=i

uk−2,i − uk−2,j + i

uk−2,i − uk−2,j − i

nk−3∏

j

uk−2,i − uk−3,j − i/2
uk−2,i − uk−3,j + i/2

×

×
nk−1∏

j

uk−2,i − uk−1,j − i/2
uk−2,i − uk−1,j + i/2

nk∏

j

uk−2,i − uk,j − i/2
uk−2,i − uk,j + i/2

1 =

nk−1∏

j 6=i

uk−1,i − uk−1,j + i

uk−1,i − uk−1,j − i

nk−2∏

j

uk−1,i − uk−2,j − i/2
uk−1,i − uk−2,j + i/2

1 =

nk∏

j 6=i

uk,i − uk,j + i

uk,i − uk,j − i

nk−2∏

j

uk,i − uk−2,j − i/2
uk,i − uk−2,j + i/2

. (3.34)

These are the analogs of the Bethe equations for the Heisenberg spin chain [37], and the

solutions are often called the Bethe roots. It was subsequently shown, that these series

of equations can be generalized to arbitrary groups in different representations [59]. The

generalized equations are given by

(
uq,i + i~αq · ~w/2
uq,i − i~αq · ~w/2

)L
=

nq∏

j 6=i

uq,i − uq,j + i~αq · ~αq/2
uq,i − uq,j − i~αq · ~αq/2

∏

q′ 6=q

nq′∏

j

uq,i − uq′,j + i~αq · ~αq′/2
uq,i − uq′,j + i~αq · ~αq′/2

.

(3.35)

The different parameters uq,i are associated with the simple roots of the Lie group ~αq, and

the factor on the left hand side of the equations depend on the maximum weight of the

representation, ~w. In the case of SO(2k) in the vector representation, we see that (3.34)

has the form in (3.35). Finally, for the particular case of SO(6) where k − 2 = 1, the first

equation in (3.34) is modified to3

(
u1,i + i/2

u1,i − i/2

)L
=

n1∏

j 6=i

u1,i − u1,j + i

u1,i − u1,j − i

n2∏

j

u1,i − u2,j − i/2
u1,i − u2,j + i/2

n3∏

j

u1,i − u3,j − i/2
u1,i − u3,j + i/2

. (3.36)

The other two equations read

1 =

n2∏

j 6=i

u2,i − u2,j + i

u2,i − u2,j − i

n1∏

j

u2,i − u1,j − i/2
u2,i − u1,j + i/2

1 =

n3∏

j 6=i

u3,i − u3,j + i

u3,i − u3,j − i

n1∏

j

u3,i − u1,j − i/2
u3,i − u1,j + i/2

. (3.37)

3The simple roots of SO(6) are ~α1 = (1,−1, 0), ~α2 = (0, 1,−1), ~α3 = (0, 1, 1), and the weight of the

vector representation is ~w = (1, 0, 0).
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Now from (3.28) and (3.30) we can find the eigenvalues of the shift operator and the

hamiltonian. The eigenvalues of the shift operator are

Λ(0) = H(0) =

n1∏

i=1

u1,i + i/2

u1,i − i/2
. (3.38)

Hence the momenta of the eigenstates is

P = −i log(Λ(0)) = −i
n1∑

i

log
u1,i + i/2

u1,i − i/2
=

n1∑

i

p(u1,i) . (3.39)

The corresponding energies are found from the eigenvalues of t1, Λ1, which are

Λ1 =
d

du
H(u)

∣∣∣
u=0
− L n

n− 2
H(0) . (3.40)

Using (3.16) and (3.17), we see that the energy eigenvalues are

E =
n− 2

2H(0)

d

du
H(u)

∣∣∣
u=0

=
n− 2

2

n1∑

i

ε(u1,i) , (3.41)

where

ε(u) = − d

du
p(u) = 4 sin2

(
p(u)

2

)
=

1

u2 + 1/4
. (3.42)

Hence the parameters u1,i are rapidity parameters for particle like excitations of the ground

state.

Thus, specializing to SO(6) and using (2.4), (3.17) and (3.41), we find that the corre-

sponding anomalous dimension is

γ =
λ

8π2

n1∑

i=1

ε(u1,i) . (3.43)

4. Applying the Bethe ansatz

In this section we apply the results of the previous sections to many different scenarios.

Sometimes we will reduce our space of operators to those involving just Z and W scalar

fields.4 In this case our problem is basically reduced to a Heisenberg spin chain. Includ-

ing other fields complicates the problem somewhat, but we are still able to make many

statements about the eigenvalues.

As we saw in the previous section, the SO(6) chain has three types of excitations,

with each type associated with one of the simple roots of the SO(6) Dynkin diagram.

Those associated with α1 are on a somewhat different footing than those associated with

α2 and α3, since only the α1 excitations carry momentum and energy. However, the other

two types of excitations can indirectly affect the energy of the state by modifying the u1
rapidities.

4It is useful to combine six real fields into three complex scalars: Z = Φ1 + iΦ2, W = Φ3 + iΦ4,

Y = Φ5 + iΦ6, which can be regarded as lowest components of three chiral superfields in the N = 1

formalism.
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If we were to limit ourselves to only u1 excitations, then we see that the Bethe ansatz

equations in (3.36) reduce to that of the ordinary Heisenberg spin chain. For this case, the

different lattice sites can have one of two values (spin up or down). The Heisenberg spin

chain has no trace term either, so the corresponding situation for the operator chains is

to have two types of fields where the trace term does not contribute. So for example, we

could have chains made up of Z and W terms only. If we call the ground state trZ J , then

the particle excitations with rapidities u1,i create W operators in the chain. Another way

to see this is that the Z field is the highest weight in the vector representation of SO(6),

which we write as ~µ1 = (1, 0, 0). Subtracting an ~α1 = (1,−1, 0) root then gives (0, 1, 0)

which corresponds to the W field.

Now suppose that we were to try and create u2 and u3 excitations without any u1
excitations. It is not too hard to see from the Bethe equations that this is not possible.

This is clear from the perspective of the group representations as well, since ~µ1 − ~α2 and

~µ1 − ~α3 are not SO(6) weights. However ~µ1 − ~α1 − ~α2 and ~µ1 − ~α1 − ~α2 are weights, so

given some u1 excitations, it is possible to have u2 and u3 excitations.

We should also note that our SO(6) lattice chain appears in a trace, which means

that the corresponding wave functions are invariant under translation. Hence the total

momentum is zero.So in all considerations we require the trace condition for the u1,i

n1∏

i=1

u1,i + i/2

u1,i − i/2
= 1 . (4.1)

4.1 Two impurities

We first consider the case of two impurities, that is two u1 excitations, which we label as

u1,1 and u1,2. We need at least two impurities if we want to have excitations with non-

zero momentum, but with zero total momentum to satisfy the trace condition. With two

impurities the bare dimension exceeds the R charge by two units: L = J + 2. From (3.39)

we have that
u1,1 + i/2

u1,1 − i/2
u1,2 + i/2

u1,2 − i/2
= 1 . (4.2)

Recalling that u1,2 = u∗1,1 unless they are both real, we see that the only solutions have

u1,2 = −u1,1 with both values real. Now using (3.36), we find

(
u1,1 + i/2

u1,1 − i/2

)L
=

2u1,1 + i

2u1,1 − i
(4.3)

and so we find that

p(u1,1) =
2πn

L− 1
=

2πn

J + 1
(4.4)

and from (3.42)

ε(u1,1) =
1

u21,1 + 1/4
= 4 sin2

πn

J + 1
. (4.5)
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Therefore, using (3.42) and (3.43) the anomalous dimension for this configuration is

γSn =
λ

16π2
6− 2

2
× 2ε(u1,1) =

λ

π2
sin2

πn

J + 1
, (4.6)

which agrees with the result in (2.23). With no u2 or u3 excitations, the impurities are

both W ’s and so their representation is symmetric traceless.

On top of the u1 impurities, we can also add up to one each of the u2 and u3 impurities

in a nontrivial way. Putting in a u2 impurity, we see that (4.2) is unchanged, so u1,1 =

−u1,2. Using (3.37), we also have that

1 =
u2 − u1,1 − i/2
u2 − u1,1 + i/2

u2 + u1,1 − i/2
u2 + u1,1 + i/2

. (4.7)

The only solutions to this are u2 =∞ and u2 = 0. The first case is the trivial solution in

that it gives us the same anomalous dimension as before. This corresponds to having a W

and a Y in the symmetric representation. Taking the second solution and plugging it into

(3.36), we find that

p(u1,1) =
2πn

L
=

2πn

J + 2
, (4.8)

and the anomalous dimension is

γAn =
λ

π2
sin2

πn

J + 2
, (4.9)

the result previously given in (2.24). This then is the antisymmetric combination of W

and Y . This is part of the self-dual representation of the SO(4) subgroup.

If we now also add a u3 impurity, then u3 has an equation identical to that for u2 in

(4.7). If there is no u2 impurity, then the anomalous dimension is the same as in (4.9).

This is part of the anti-selfdual representation of SO(4). With both types of impurities,

the nontrivial solutions then have u2 = u3 = 0 and so (3.36) gives

p(u1,1) =
2πn

L+ 1
=

2πn

J + 3
, (4.10)

and the anomalous dimension is

γn =
λ

π2
sin2

πn

J + 3
, (4.11)

the result previously given in (2.28). Notice that −~α2 takes W to Y and −~α3 takes the W
to Y . But we also have that −~α2 − ~α3 takes W to W and that −2~α1 − ~α2 − ~α3 takes a Z

to Z. Hence this last result corresponds to the SO(4) invariant of the two impurities.

4.2 More than two impurities

In this section we consider the addition of many impurities and compute their anomalous

dimensions, up to first order in 1/J . For the most part we will limit our discussion to having

only u1 excitations.Hence, these will only be a subset of possible SO(6) representations,

namely, the real representations with 2L boxes in the SU(4) Young Tableaux. At the end

of the section we will discuss the addition of a single u2 or u3 impurity.
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Once we have more than two impurities, it is now possible to have complex u1 rapidities.

In fact, this possibility is basically forced on us when we want to find BMN states where

a particular oscillator appears more than once. In the BMN limit, the momenta of the

excitations should be small, and so the phases in the Bethe equations are small. But if two

excitations have identical momenta, then the combination
u1,1−u1,2+i
u1,1−u1,2−i

which appears in the

righthand side of the Bethe equations will have a large phase.

The resolution of this problem is that u1,1 and u1,2 get imaginary pieces such that

u∗1,2 = u1,1. This way we can get a small phase so long as |Imu1,1| À 1. The individual

momenta of the excitations are complex, but the combined momentum

p(u1,1, u1,2) = p(u1,1) + p(u1,2) = −i log
u1,1 + i/2

u1,1 − i/2
− i log

u∗1,1 + i/2

u∗1,1 − i/2
(4.12)

is real. Note further that the combined energy from these two excitations is

ε(u1,1) + ε(u1,2) = 4 sin2
(
p(u1,1)

2

)
+ 4 sin2

(
p(u1,2)

2

)
≤ 8 sin2

(
p(u1,1, u1,2)

4

)
, (4.13)

where there is an equality only if the individual momenta are real. Hence, this configuration

corresponds to a bound state of two particles,5 since the combined energy is less than twice

the energy of a single particle with momentum p(u1,1, u1,2)/2. This can be generalized to

many particles as well, where the individual momenta are complex, but their sum is real.

So a BMN state with M oscillators at the same level would correspond to a bound state

of M particles.

Unfortunately, it does not seem possible to find exact generic solutions to the Bethe

equations for more than two excitations. However, it is possible to at least find 1/J

corrections in the BMN limit. If we have particles with small momenta, then the values of

u1,i are large. From the Bethe equations, we see to leading order that these are

u1,n ≈
L

2πkn
, (4.14)

where kn is an integer. Allowing for bound states, let us group the various excitations as

µ
(n)
i , where

µ
(n)
i =

1

2πkn

(
L+ iL1/2ν

(n)
i + δ

(n)
i

)
+O

(
L−1/2

)
. (4.15)

We assume that kn 6= km if n 6= m and the index i sums over the Mn particles making up

the bound state at kn. We can now expand the Bethe equations in (3.36), (3.37) in powers

of 1/
√
L. Solving for the zeroth order term in the expansion gives integer kn.

Next solving for the L−1/2 term in the expansion gives the equation

ν
(n)
i =

∑

j 6=i

2

ν
(n)
i − ν(n)j

. (4.16)

5If the momentum were of order 1, then the separation between u1,1 and u1,2 would be close to i. In

the literature, these bound states are called “strings”, but we will stick to calling them bound states for

obvious reasons.
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It turns out that we don’t need to explicitly know the ν
(n)
i when computing the anomalous

dimension to this order, but let us consider solutions of (4.16) for a few different values

of Mn anyway. If Mn = 2, then we have that ν
(n)
1 = −ν(n)2 = 1. If Mn = 3, then

ν
(n)
1 = −ν(n)2 =

√
3 and ν

(n)
3 = 0. Finally, let us consider the case where Mn À 1, then we

can describe the distribution of ν (n)’s by a continuous density and may approximate the

sum by an integral

ν = P

∫ a

−a
dν ′

2 ρ(n)(ν ′)

ν − ν ′ (4.17)

which is Wigner’s equation for the eigenvalues of a large N hermitean matrix model with

a gaussian potential. Standard techniques give

ρ(n)(ν) =
1

2π

√
a2 − ν2 a = 2

√
Mn . (4.18)

Notice that if Mn ∼ L, then the maximum value of ν
(n)
i ∼

√
L and so the ansatz in (4.15)

breaks down.

Next solving for the L−1 term in the expansion of the Bethe equations leads to the

equation

δ
(n)
i +

(
ν
(n)
i

)2
+ 2

∑

j 6=i

δ
(n)
i − δ(n)j(

ν
(n)
i − ν(n)j

)2 + 2
∑

m6=n

Mm
km

km − kn
= 0 . (4.19)

To solve this equation, we make the ansatz that

δ
(n)
i = cn(ν

(n)
i )2 + bn . (4.20)

Substituting this back into (4.19) and making use of (4.16) we find that

cn = −1

3

bn = = −2

3
(Mn − 1)− 2

∑

m6=n

Mmkm
km − kn

, (4.21)

and so

δ
(n)
i = −1

3

(
ν
(n)
i

)2
− 2

3
(Mn − 1)− 2

∑

m6=n

Mmkm
km − kn

. (4.22)

Let us now place these results into the energies in (3.42) and (3.41). Up to and

including corrections of order 1/L, we can approximate these as

ε
(n)
i =

1

(u
(n)
i )2

. (4.23)

Hence, the energy coming from a single bound state is

ε(n) =

Mn∑

i=1

ε
(n)
i =

(
2πkn
L

)2∑

i

[
1− 2

L
δ
(n)
i − 3

L
(ν
(n)
i )2

]

=

(
2πkn
L

)2 1

L

[
LMn +

4

3
Mn(Mn − 1) + 4

∑

m

MnMmkm
km − kn

− 7

3

∑

i

(ν
(n)
i )2

]
. (4.24)
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Using (4.16), we have that ∑

i

(ν
(n)
i )2 =Mn(Mn − 1) . (4.25)

Putting this back in (4.24) we find

ε(n) =

(
2πkn
L

)2 Mn

L


L− (Mn − 1) + 4

∑

m6=n

Mmkm
km − kn


 . (4.26)

The negative term inside (4.26) is basically the contribution of the binding energy, where

the binding energy is present if Mn > 1. The last term in (4.26) comes from interactions

among the different bound states.

The anomalous dimension is then found by adding up the ε(n), giving

γ =
λ

2L3

∑

n

Mnk
2
n


L− (Mn − 1) + 4

∑

m6=n

Mmkm
km − kn


+O(L−4) . (4.27)

The trace condition in (4.1) requires that

∑

n

Mnkn = 0 . (4.28)

We can then use this to reduce (4.27) to

γ =
λ

2L3

∑

n

Mnk
2
n(L+Mn + 1) + O(L−4) . (4.29)

Since we have added n1 impurities, L = J + n1. Writing γ in terms of J we find

γ =
λ

2J3

∑

n

Mnk
2
n(J − 2n1 +Mn + 1) + O(J−4) . (4.30)

Let us now add a single u2 and/or a single u3 impurity to the mix. We have not yet

found an explicit formula analagous to (4.27) for a generic number of these impurities.

With only one each of these impurities, the Bethe equations lead to

1 =

n1∏

i=1

u2 − u1,i − i/2
u2 − u1,i + i/2

, (4.31)

and an identical equation for u3. Hence, u2 and u3 can be determined in terms of u1,i by

solving an order n1 polynomial equation. This can be solved if n1 is small, but in general

the equation appears complicated. However, it is easy to see using the trace condition in

(4.1) that u2 = 0 and u3 = 0 are always solutions to the equations.

If we only have one of the impurities, with its value set to 0, then we see that the Bethe

equation in (3.36) is identical to the equation with no impurities, except that L is replaced

with L + 1. So if the exact solution could be found for the case with only u1 impurities,

then the solution would be known for this case as well. Likewise, if we have both a u2 = 0

and a u3 = 0 impurity, then we should replace L by L+ 2.
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5. Large excitations

Ultimately, we would like to solve string theory for the full AdS5 × S5 and not just for the

plane wave limit. Then one could compare the anomalous dimensions of all gauge invariant

operators. Likewise, one would need to actually compute the dimensions of these operators

in the field theory. So far, we have been restricting ourselves to large R-charge, where we

are limited to finding 1/J corrections to BMN operators. We can think of this as the dilute

gas limit [4].

Remarkably, the Bethe ansatz equations can be used to ascertain information about

operators outside the BMN regime of validity. For example, one might ask what is the

largest possible anomalous dimension for an operator (made up of scalars only) with engi-

neering dimension L. This should be an SO(6) singlet. It turns out that this is solvable

in the large L limit [45], with a solution similar to that of the ground state of the Heisen-

berg anti-ferromagnet. Of course the ground state of the Heisenberg anti-ferromagnet also

corresponds to a particular SO(6) representation.

We now review the solution in [45] and then use the result to find the anomalous

dimension. To find the solution, we assume a large number of excitations of all impurity

types. To maximize the energy, we should take the maximal number of impurities such

that the solutions to the Bethe equations are all real. If we take the log of (3.36) and

(3.37), we find the equations

Lϑ(2u1,j) = jπ +
∑

j 6=i

ϑ(u1,i − u1,j)−
∑

j

ϑ(2(u1,i − u2,j))−
∑

j

ϑ(2(u1,i − u3,j))

0 = jπ +
∑

j 6=i

ϑ(u2,i − u2,j)−
∑

j

ϑ(2(u2,i − u1,j))

0 = jπ +
∑

j 6=i

ϑ(u3,i − u3,j)−
∑

j

ϑ(2(u3,i − u1,j)) , (5.1)

where

ϑ(u) = arctan(u) . (5.2)

Since the wave functions would be zero if u1,i = u1,j with i 6= j, the various roots are

pushed onto different branches of the arctangent.

If L is very large, then we can replace j/L by a continuous variable x and the Bethe

roots by u1(x), u2(x) and u3(x). By symmetry, we expect the distribution of u2,i and u3,i
to be identical, hence we set u2(x) = u3(x). The equations in (5.1) now become

ϑ(2u1(x)) = πx+

∫
dyϑ(u1(x)− u1(y))− 2

∫
dyϑ(2(u1(x)− u2(y))

0 = πx+

∫
dyϑ(u2(x)− u2(y))−

∫
dyϑ(2(u2(x)− u1(y)) . (5.3)

We now take derivatives with respect to u1(x) and u2(x), which gives us

2

4u2 + 1
= πρ1(u) +

∫ ∞

−∞
du′

ρ1(u
′)

(u− u′)2 + 1
− 4

∫ ∞

−∞
du′

ρ2(u
′)

4(u− u′)2 + 1

0 = πρ2(u) +

∫ ∞

−∞
du′

ρ2(u
′)

(u− u′)2 + 1
− 2

∫ ∞

−∞
du′

ρ1(u
′)

4(u− u′)2 + 1
, (5.4)
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where the ρ1(u) and ρ2(u) are the root densities

ρ1(u) =
dx

du1(x)

∣∣∣
u1(x)=u

ρ2(u) =
dx

du2(x)

∣∣∣
u2(x)=u

. (5.5)

To verify that this root configuration is the SO(6) singlet, we can take the large u limit

of (5.4) and assume that ρ1(u) and ρ2(u) fall off faster than u−2 as u → ∞. This shows

that ∫ ∞

−∞
du′ρ1(u

′) = 1

∫ ∞

−∞
du′ρ1(u

′) =
1

2
, (5.6)

which means that there are L u1 impurities and L/2 u2 and u3 impurities, precisely what

is needed to take the large J state to the singlet.

We can solve for ρ1(u) and ρ2(u) in (5.4) by Fourier transforming. Defining

ρ̃1(k) =

∫
du exp(iku)ρ1(u) ρ̃2(k) =

∫
du exp(iku)ρ2(u) , (5.7)

it is straightforward to show that the solutions of (5.4) are

ρ̃1(k) =
cosh(k/2)

cosh(k)
ρ̃2(k) =

1

2 cosh(k)
, (5.8)

Transforming back gives us

ρ1(u) =
cosh(uπ/2)√
2 cosh(uπ)

ρ2(u) =
1

4 cosh(uπ/2)
. (5.9)

The anomalous dimension can now be computed and is

γ =
λ

8π2
E =

λ

8π2
L

∫ ∞

−∞
du

ρ1(u)

u2 + 1/4
=

λ

8π2
L
(π
2
+ ln 2

)
. (5.10)

Not surprisingly, the anomalous dimension is extensive: it depends linearly on L.

However, recall that in the BMN limit, we saw that two impurities with the same real

momentum had to have their roots split off from the real line. Hence if all the roots are

real, each u1 impurity has to correspond to a string oscillator with a different level number.

Since there are L such impurities and since they are equally distributed between left and

right oscillators, we find that the total level `tot is

`tot =

L/2∑

`=1

` ≈ L2

8
. (5.11)

Therefore, we see that the full dimension of the operator has the behavior

∆ = L+ γ =
√
`tot

(
2
√
2 +

λ

2
√
2π2

(π
2
+ ln 2

))
+O(λ2) , (5.12)

the same square root dependence on the level that is generic for small α′ in string theory [2].

Of course, small α′ corresponds to strong coupling where the dimension of the operator had

a (λ)1/4 dependence. In any event, (5.12) suggests that the square root dependence of the
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Figure 2: Young tableau corresponding to the antiferromagnet configuration.

level is generic, even at weak coupling. Note that corrections coming from higher orders in

perturbation theory should also give contributions to the dimension which are linear in L,

since the large N expansion essentially localizes the interactions to nearby neighbors.

Although the level square root dependence appears to be generic, the actual λ de-

pendence depends on the operator under consideration. For example, let us consider the

operator whose SU(4) Young tableau is shown in figure 2. The corresponding Bethe state

has L/2 u1 excitatations and no u2 and u3 excitations. We then have the first equation in

(5.4) but with ρ2(u) = 0. This is same equation found for the anti-ferromagnetic Heisenberg

spin chain. Its solution is well known (e.g. see [56]). The anomalous dimension is

γ =
λ

8π2
E =

λ

8π2
L

∫ ∞

−∞
du

ρ1(u)

u2 + 1/4
=

λ

4π2
L ln 2 . (5.13)

The anomalous dimension is smaller than in (5.10), but so is the level, since there are only

L/2 excitations. For this particular state, we see that the full dimension is

∆ = L+ γ =
√
`tot

(
4
√
2 +

λ
√
2

π2
ln 2

)
+O(λ2) . (5.14)

Thus, this has the level square root dependence, but the λ dependence is different than

that in (5.12).

One can also consider “excitations” [45, 57] away from this SO(6) singlet by including

“holes” in the integers appearing in (5.1). The inclusions of these holes modifies the

equations in (5.4) to

2

4u2 + 1
= πρ1(u) + π

ñ1∑

j=1

δ(u − ũ1,j) +
∫ ∞

−∞
du′

ρ1(u
′)

(u− u′)2 + 1
−

− 2

∫ ∞

−∞
du′

(ρ2(u
′) + ρ3(u

′))

4(u− u′)2 + 1

0 = πρ2(u) + π

ñ2∑

j=1

δ(u − ũ2,j) +
∫ ∞

−∞
du′

ρ2(u
′)

(u− u′)2 + 1
−

− 2

∫ ∞

−∞
du′

ρ1(u
′)

4(u− u′)2 + 1

0 = πρ3(u) + π

ñ3∑

j=1

δ(u − ũ3,j) +
∫ ∞

−∞
du′

ρ2(u
′)

(u− u′)2 + 1
−

− 2

∫ ∞

−∞
du′

ρ1(u
′)

4(u− u′)2 + 1
, (5.15)
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where ñi refers to the number of holes of type i and ũi,j are the positions of the holes.

Assuming that ñi ¿ L, the corrections from the δ-functions to the densities are additive,

so we can consider them individually. It is convenient to write the densities as

ρ1(u) = ρ
(0)
1 (u) +

1

L
σ1(u) ρ2(u) = ρ

(0)
2 (u) +

1

L
σ2(u) ρ3(u) = ρ

(0)
3 (u) +

1

L
σ3(u) ,

(5.16)

where ρ
(0)
i are the densities with no holes present.

For a hole of type 1 at position ũ1, we can write

σ1(u) = σ11(u− ũ1) σ2(u) = σ12(u− ũ1) σ3(u) = σ13(u− ũ1) . (5.17)

The equations in (5.15) become

0 = πσ11(u) + πδ(u) +

∫ ∞

−∞
du′

σ11(u
′)

(u− u′)2 + 1
− 4

∫ ∞

−∞
du′

σ12(u
′)

4(u− u′)2 + 1

0 = πσ11(u)

∫ ∞

−∞
du′

σ12(u
′)

(u− u′)2 + 1
− 2

∫ ∞

−∞
du′

σ11(u
′)

4(u− u′)2 + 1
, (5.18)

where we have used the symmetry of the configuration to set σ12(u) = σ13(u). The equations

in (5.18) are easily solved, giving

σ11(u) = −
∫
dk

2π
e−iku

e−|k|/2 cosh(k/2)

cosh(k)

σ12(u) = σ13(u) = −
∫

dk

2π
e−iku

e−|k|/2

2 cosh(k)
. (5.19)

The change in the energy is

ε(ũ1) =

∫ ∞

−∞
du
σ1(u− ũ1)
u2 + 1/4

= −2πρ(0)1 (ũ1) , (5.20)

where ρ
(0)
1 (u) is the solution in (5.9).

To find the momentum of the hole, we can integrate ε(ũ1) with respect to ũ1, giving

p(ũ1) = π − 2 arctan

(√
2 sinh

ũ1π

2

)
. (5.21)

Notice that Lp(ũ1)/(2π) is the change in the level coming from the introduction of the

hole, which can be easily deduced by looking at (5.1), (5.4) and (5.20). It is also possible

to express ε in terms of p, where we find

ε(p) = −π sin
(p
2

)√
1 + sin2

(p
2

)
0 ≤ p < 2π , (5.22)

and so the change in the anomalous dimension is

∆γ = − λ

8π
sin
(p
2

)√
1 + sin2

(p
2

)
. (5.23)
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In order to understand the nature of these holes, notice that
∫
duσ11(u) = 1 ,

∫
duσ12(u) =

∫
duσ13(u) =

1

2
. (5.24)

Hence, we need an even number of these types of holes.6 We also see that the highest

weight of each hole is ~w = ~α1+
1
2(~α2+ ~α3) which is the highest weight of the SO(6) vector

representation. Hence these holes come with a vector index.

Next consider a type 2 hole. Proceeding as before, we find that

σ21(u) = −
∫
dk

2π
e−iku

e−|k|/2

1 + e−2|k|

σ22(u) = −
∫
dk

2π
e−iku

1 + e−|k| + e−2|k|

(1 + e−|k|)(1 + e−2|k|)

σ23(u) = −
∫
dk

2π
e−iku

e−|k|

(1 + e−|k|)(1 + e−2|k|)
. (5.25)

The energy of this type of hole is

ε(ũ2) =

∫
du
σ21(u− ũ2)
u2 + 1/4

= −2πρ(0)2 (ũ2) , (5.26)

where ρ
(0)
2 (ũ2) is the density in (5.9). Integrating ε, we find that the momentum is

p(ũ2) = π − 2 arctan(eπũ/2) , (5.27)

and so the energy of this type of hole in terms of p is

ε(p) = −π
2
sin p 0 ≤ p ≤ π . (5.28)

Hence these holes occupy only half of a Brillouin zone. We also have that
∫
duσ21(u) =

1

2
,

∫
duσ22(u) =

3

4

∫
duσ23(u) =

1

4
, (5.29)

thus the highest weight of each type 2 hole is ~w = 1
2~α1 +

3
4~α2 +

1
4~α3 which is the highest

weight of one of the spinor representations.

The argument for type 3 holes is the same as for type 2. The highest weight of each

type 3 hole is ~w = 1
2~α1 +

1
4~α2 +

3
4~α3, hence each of these type holes is in the other spinor

representation. Since the two spinor representations are complex conjugates, we choose

the energies of the type 3 holes to be

ε(p) = +
π

2
sin p π ≤ p ≤ 2π . (5.30)

The trace condition forces the total momentum of the holes to be zero mod 2π. We

can also see from (5.29) that every type 2 hole has to either come with three other type

2 holes, or a type 3 hole. The same is true for type 3 holes. These conditions tell us that

we cannot have individual spinor excitations, since the chain itself is made up of SO(6)

vectors. Instead the representations have to combine to form an adjoint rep, or another

representation that is trivial under the SO(6) center.7

6We can have an odd number, but we need to add another lattice site.
7If L is odd, then the excitations combine to form a vector representation, or another representation

which has the same action under the center of SO(6).
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6. Conclusions

In this paper we constructed a mixing operator for anomalous dimensions and showed

that it was related to the hamiltonian of an integrable SO(6) chain. We then used the

Bethe ansatz to find the anomalous dimensions of many operators, including those that

were outside the BMN limit. We also demonstrated that these non-BMN operators have

anomalous dimensions that depend on the square root of the level, a result also found at

strong coupling.

There are many other operators where it is hoped that the Bethe ansatz will allow one

to compute anomalous dimensions. These include the operators that correspond to large

wound strings oscillating on the S5. A prediction was made for the anomalous dimensions

based on a semiclassical analysis [60], and it would be nice to explicitly verify this.

It would also be nice if one could somehow relate the higher loop corrections to in-

tegrable hamiltonians. One possibility is that the higher loop corrections correspond to

the higher hamiltonians in the heirarchy of the same spin chain. On one level, this seems

reasonable. In the large N limit, one would expect the g loop corrections to the anomalous

dimensions to involve mixing between g + 1 nearest neighbors, which is precisely what is

found in the gth hamiltonian in the heirarchy. However, this idea does not appear to work.

For example, the two-loop analysis as done in [11] shows that the two-loop anomalous

dimension matrix should have operators of the form

L∑

l

(Pl,l+1Pl+1,l+2 + Pl+1,l+2Pl,l+1) . (6.1)

But the next hamiltonian in the hierarchy of a Heisenberg system has the form

L∑

l

(iPl,l+1Pl+1,l+2 − iPl+1,l+2Pl,l+1) . (6.2)

That this idea does not work is perhaps not too surprising. If the higher hamiltonians of

the hierarchy were indeed related to anomalous dimensions at higher orders of perturbation

theory, then the mixing matrix could have been diagonalized by a unitary transformation

which is independent of the coupling — a rather exceptional property. In any event, one

can now ask what role the higher hamiltonians play on the gauge theory side.
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