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1. Introduction

The energy loss experienced by a fast parton may serve as a measure of the density of color

charges of the QCD medium it travels through [1, 2]. It may be huge in a dense medium

such as the quark-gluon plasma (QGP), expected to be formed in the early stage of ultrarel-

ativistic heavy ion collisions. One of the most direct and observable consequences would be

the quenching of high p⊥ particle production [3, 4]. This is reported experimentally. The

first PHENIX data showed a large suppression in central Au-Au collisions as compared to

proton-proton measurements [5], later confirmed on a wider p⊥ range by the PHENIX [6],

PHOBOS [7], and STAR [8] collaboration. The quenching factor of Q(p⊥) ≈ 5 observed

at large p⊥ finds therefore a natural explanation in this context. This makes possible to-

mographic investigations [9], i.e., the study of the (color) structure of hot QCD matter by

measuring the energy attenuation of hard probes.

Although the understanding of medium-induced parton energy loss has been exten-

sively developed over the last few years [1, 2],[10]–[15], less is known about how to relate

this mechanism to observable quantities. A step in that direction has however been taken
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recently by Baier, Dokshitzer, Mueller, and Schiff (BDMS) in ref. [16] in which they con-

nect the measured quenching factor Q(p⊥) to the induced gluon spectrum dI/dω radiated

by the leading parton. Perhaps even more importantly, the authors emphasize that the

standard modeling of the quenching — determined by the mean energy loss — proves

inadequate. Rather, the knowledge of the full probability distribution D(ε) in the energy

loss is actually required. On general grounds, the cross sections will be modified in the

medium as

σmedium = D(ε) ⊗ σvacuum (1.1)

However, unless strong assumptions are made as for dI/dω, D(ε) cannot be calculated

analytically in a simple way. It is therefore the aim of this paper to present and discuss a

numerical computation of the distribution D(ε) from the medium-induced gluon spectrum

derived by Baier, Dokshitzer, Mueller, Peigné, and Schiff (BDMPS). Using these results,

we give some estimates for the quenching (“diagnosis”) to be compared to experimental

data in electron-nucleus and nucleus-nucleus collisions.

The outline of the paper is as follows. In section 2, we detail the numerical procedure

to compute D(ε) from its integral representation given in [16]. The distribution is simply

related to the gluon multiplicity N(ω) radiated by the leading parton, calculated in sec-

tion 2.2. Results are given in section 3. The probability distributions for both an incoming

and an outgoing quark are first presented (section 3.1) and then contrasted with analytical

approximations (section 3.2). A simple analytical parameterization of the quenching weight

D(ε) ends the section. We examine in section 4 the sensitivity of our results beyond the

approximations made in section 3 for the infrared and ultraviolet behavior of the BDMPS

medium-induced gluon spectrum. We apply our results in section 5 where the quenching of

hadron spectra is determined in cold and hot QCD matter and compared qualitatively to

HERMES and PHENIX preliminary data. Finally, section 6 summarizes the main results

of the present study.

2. Computation of the energy loss distribution D(ε)

2.1 Integral representation

The multiple soft collisions undergone by a hard parton traveling through a medium induce

gluon emission. Consequently, these radiated gluons take away an energy ε from the leading

particle with a probability distribution (or quenching weight) D(ε). Let us briefly recall

here its expression found by BDMS [16].

As long as interference effects between radiated gluons (suppressed by αS) can be ne-

glected, we may assume that the gluon emissions from the leading parton are independent.1

This allows for a Poisson formulation of D(ε), which reads [16]

D(ε) =
∞
∑

n=0

1

n!

[

n
∏

i=1

∫

dωi
dI(ωi)

dω

]

δ

(

ε−
n
∑

i=1

ωi

)

· exp
[

−
∫ +∞

0
dω

dI(ω)

dω

]

. (2.1)

1Strictly speaking, one has to assume moreover that the energy loss ε remains much smaller than the

parton energy ε¿ E (soft limit), which is precisely the case of interest in this section. We shall come back

to this point in section 4 where a finite quark energy will be explicitly considered.
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Here, dI/dω represents the medium-induced gluon spectrum and n the number of radiated

gluons by the hard parton. Note that secondary gluon emissions, neglected in the soft

limit, are not taken into account in (2.1).

Using the Mellin representation of the delta function, the series (2.1) is resumed to

finally obtain an integral representation

D(ε) =

∫

C

dν

2πi
D̃(ν) eνε, (2.2)

with the integration contour C chosen (here) to be the imaginary axis. The Laplace trans-

form D̃(ν) is simply related to the induced gluon spectrum through

D̃(ν) = exp

[

−ν
∫ ∞

0
dω e−νω N (ω)

]

(2.3)

where the integrated gluon multiplicity N(ω) is defined as the number of gluons with an

energy larger than ω, i.e.,

N (ω) ≡
∫ ∞

ω
dω′

dI(ω′)

dω′
. (2.4)

Taking ν = i b in (2.2), the distribution D(ε) thus becomes

D(ε) =

∫ +∞

0

db

π
exp (−b Is(b)) cos (b(ε− Ic(b))) (2.5)

with

Ic(b) =

∫ +∞

0
dω cos(b ω)N(ω) ,

Is(b) =

∫ +∞

0
dω sin(b ω)N(ω) . (2.6)

Given a medium-induced gluon spectrum dI/dω, the integrated gluon multiplicity N(ω) can

be determined exactly. This then allows for the numerical computation of the integrals (2.6)

and, subsequently, of the quenching weight D(ε) through eq. (2.5). The multiplicity of soft

radiated gluons computed from the BDMPS spectrum for outgoing and incoming quarks

is now discussed.

2.2 Gluon multiplicities

Outgoing quarks. Let us start with the BDMPS gluon spectrum radiated by an outgo-

ing quark with energy E traversing a medium of length L. In the soft gluon approximation

(ω ¿ E), it reads [4, 12]

dI(ω)

dω
=

α

ω
ln |cos [(1 + i)u]|

=
α

2ω
ln
[

cosh2 u− sin2 u
]

; u ≡
√

ωc

2ω
, α ≡ 2αsCR

π
. (2.7)
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where CF = 4/3 is the Casimir operator in the fundamental representation and αs =

g2/4π ' 1/2 the strong coupling constant . In the soft limit, the spectrum (2.7) is thus

characterized by only one energy scale

ωc =
1

2
q̂ L2 (2.8)

where the so-called gluon transport coefficient q̂ measures the “scattering power” of the

medium. Relating it to the gluon density of the medium, BDMPS give perturbative esti-

mates for the transport coefficient. While it is shown to be as small as q̂ ' 0.25GeV/fm2

in cold nuclear matter, a much larger q̂ ' 5GeV/fm2 is expected in a hot (T = 250MeV)

quark-gluon plasma [11].

Writing N(ω) as

N (ω) =

∫ ∞

0
dω′

dI(ω′)

dω′
−
∫ ω

0
dω′

dI(ω′)

dω′
(2.9)

and Taylor expanding the gluon spectrum at2 ω̄ ≡ ω/ωc ¿ 1, the gluon multiplicity

reads [16]

N(ω ¿ ωc) ' α

(

√

2

ω̄
+ ln 2 ln ω̄ − 1.44136

)

(2.10)

in the infrared (IR) domain, while it drops much faster

N(ω À ωc) =
α

24

(

1

ω̄

)2

(2.11)

in the ultraviolet (UV) region. It is however necessary to rely on a numerical determination

of N(ω) in between these two regimes. We decompose therefore the integrals (2.6) as

Ic =

[
∫ ω−

0
+

∫ ∞

ω+

+

∫ ω+

ω−

]

dω cos (b ω)N(ω) (2.12)

where the first two terms on the r.h.s. of (2.12) are expressed analytically in terms of Fresnel

integrals and hypergeometric functions3 while the third term is determined numerically.

The cutoff ω− (ω+) under (above) which the exact gluon multiplicity may be replaced

by its analytical approximation (2.10) (respectively, (2.11)) is taken to be ω− = 0.01ωc

(ω+ = 2ωc).

The gluon multiplicity radiated by an outgoing quark N(ω) is plotted in figure 1 as a

function of ω̄ (upper solid line), together with its analytic approximation (2.10) at small

energy (dashed). Anticipating the discussion in section 3.2, the approximation

N(ω̄) = α

√

2

ω̄
(2.13)

based on the small ω̄ behavior of (2.10) is shown as a dash-dotted line. While the expression

(2.10) is shown to reproduce the exact result for gluon energies up to ω ≈ 0.3ωc, eq. (2.13)

strongly overestimates N(ω) over the whole range of interest.

2We shall keep this notation for all variables normalized to the energy scale ωc.
3Even though the gluon multiplicity in the BDMPS formalism is sensitive in the IR, all integrals here

are infrared safe quantities.
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Incoming quarks. A similar procedure for the case of an incoming quark can be carried

out. The medium-induced gluon spectrum now reads [12]

dI(ω)

dω
=

α

ω
ln

∣

∣

∣

∣

sin [(1 + i)u]

(1 + i)u

∣

∣

∣

∣

=
α

2ω
ln

[

cosh2 u− cos2 u

2u2

]

. (2.14)

As previously, the limiting energy behavior can be extracted analytically. We found

N(ω ¿ ωc) ' α

(

√

2

ω̄
+ ln 2 ln ω̄ − 1

4
(ln ω̄)2 − 1.32099

)

. (2.15)

and

N(ω À ωc) =
α

360

(

1

ω̄

)2

(2.16)

at small and high energies respectively. The integrals (2.6) are computed as for the outgoing

quark case.

The energy dependence of the gluon multiplicity emitted by the incoming quark is

also shown in figure 1 (lower solid line) together with the analytical expression (2.15) as a

dashed line. The number of emitted gluons remains much smaller than what is observed for

the outgoing quarks (note the factor 15 difference between (2.11) and (2.16)). Indeed, for a

hard quark produced in the medium, a gluon can be emitted shortly after the hard process

and prior the first scattering of the hard quark in the medium [12, 17]. This increases the

gluon multiplicity (hence, the energy loss) radiated by outgoing quarks produced in the

medium.

3. Numerical results

3.1 Incoming vs. outgoing quarks

Following the procedure detailed in the former section, the probability D(ε) that an out-

going or incoming quark loses an energy ε while going through the medium is determined

numerically.

The normalized distribution

D̄(ε̄ = ε/ωc) = ωcD(ε) (3.1)

is represented in figure 2 for the outgoing (solid line) and the incoming (dashed) quark

case. It exhibits a strong peak for energy loss ε much smaller than the typical scale ωc.

Moreover, the long energy tail of the distribution makes the mean energy loss 〈ε〉

〈ε〉 =
∫ +∞

0
dε εD(ε) (3.2)

well larger than its peak value, as emphasized in [16].

Furthermore, figure 2 shows that the energy loss suffered by an incoming quark proves

much smaller than what happens to a quark produced in the medium. This was already

apparent from the gluon multiplicities (figure 1 and end of section 2.2): the lower the

number of emitted gluons for all ω, the smaller the energy loss ε.

– 5 –
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Figure 1: Integrated gluon multiplicity N(ω) computed from the BDMPS spectrum respectively

for outgoing (upper solid) and incoming (lower solid) quarks. Its analytic IR behavior (resp.

eq. (2.10) and (2.15)) is shown in dashed lines while the dash-dotted line represents the small ω̄

approximation (2.13), N(ω) ∝ ω̄−1/2.

3.2 Comparison with the BDMS estimate

The numerical results we obtained previously are compared with analytical estimates for

the quenching weight. Let us begin with the illustrative guess based on the small energy

behavior of the gluon multiplicity (2.13). Using eq. (2.13) in (2.3), the inverse Laplace

transform reads

D̃(ν) = exp
(

−α
√
2πνωc

)

. (3.3)

which leads, via (2.2), to [16]

D̄(ε̄) = α

√

1

2ε̄3
exp

(

−πα
2

2ε̄

)

. (3.4)

The expression (3.4) is plotted in figure 3 (dashed) as a function of the energy loss ε̄,

together with the full calculation for outgoing quarks (solid). Whereas the location of the

peak of the distribution is roughly similar (ε̄ ≈ 0.1), it exhibits a much larger energy tail

than what we found numerically.4 Consequently, the probability for a small energy loss is

somewhat reduced as compared to our full result.

The poor agreement between the illustrative guess (3.4) and our exact probability

distribution could have been anticipated from figure 1 where the small ω̄ approximation

4Remark for instance the infinite mean energy loss 〈ε〉 in eq. (3.4).
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Figure 2: Distribution in the energy loss D̄(ε̄) for outgoing (solid) and incoming (dashed) quarks

computed from the BDMPS spectrum in the soft limit.

for N(ω) (dash-dotted) was shown to fail on the whole energy range. On the contrary,

as stressed in the previous section, one might guess that the gluon multiplicity (2.10)

(respectively, (2.15)) emitted by an outgoing (respectively, incoming) quark gives more

satisfactory results. The inverse Laplace transform D̃(ν) now reads [16]

D̃(ν) ' exp
[

−α
(√

2πνωc − ln 2 ln(νωc)− 1.84146
)]

, (3.5)

for an outgoing quark case, whereas we found

D̃(ν) ' exp

[

−α
(√

2πνωc − 0.981755 ln(νωc)−
1

4
ln2(νωc)− 2.21561

)]

, (3.6)

for incoming quarks. Therefore, the quenching weights Dout(ε) and Din(ε) can be deter-

mined analytically through the inverse Laplace transforms of (3.5) and (3.6), respectively.

Although analytic, the expressions obtained are lengthy and hardly transparent (sum

of hypergeometrical functions), and are thus not reproduced here. Rather, we display in

figure 3 the excellent agreement between the analytic formula for Dout(ε) (dotted) together

with the result computed from the exact gluon spectrum. We may notice in particular that

the agreement remains perfect up to energy loss ε ≈ 0.3ωc, above which the small energy

approximations (2.10) and (2.15) for N(ω) start to fail (See section 2.2 and figure 1).

3.3 Analytical parameterization

As mentioned in the introduction, the probability distribution bridges the gap between

the theory of medium-induced parton energy loss on the one hand and the observable

– 7 –
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Figure 3: Comparison of the distribution D̄(ε̄) computed numerically for outgoing quarks with

the BDMS analytic estimate (3.4) from the small ω̄ behavior (2.13). Also shown in dotted line the

analytic formula for D̄(ε̄) extracted from the approximated gluon multiplicity (2.10).

consequences on the other hand. In particular, its knowledge is required to model the

quenching of hadron spectra in nuclear collisions. This was the main motivation for our

present study.

However, we have seen thatD(ε) cannot be solved analytically, and thus neither can the

medium cross section (1.1). Even though we have just stressed that an analytic expression

is shown to mimic almost perfectly the numerical results, its complicated expression makes

it useless in practical terms. For the sake of simplicity, we shall give instead in this section

an empirical analytical expression for D(ε).

The energy dependence of the quenching weight D(ε) follows with a great accuracy a

log-normal distribution,

D̄(ε̄) =
1√
2π σε̄

exp

[

−(log ε̄− µ)2

2σ2

]

(3.7)

characterized by two parameters, µ and σ. The very nice agreement between the log-

normal parameterization and the full result is illustrated in figure 4 for outgoing (left) and

incoming (right) quarks, using the parameters given in table 1.5

The simple analytic expression (3.7) can therefore easily be used to compute the

medium cross section (1.1) and hence the quenching of hadron yields.

5Although we give this two parameter set, a small but clear anticorrelation exists between µ and σ.
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Figure 4: Distribution D̄(ε̄) (solid) for outgoing (left) and incoming (right) quarks together with

the log-normal distributions eq. (3.7) (dashed).

To give the reader another feeling for the agreement between the parameterization (3.7)

and the exact result, the mean energy loss experienced by the fast parton in the medium,

〈ε〉 = exp

(

µ+
1

2
σ2

)

ωc , (3.8)

is computed in table 1. The values tend to be pretty close to the result found analytically

by BDMS [12]

〈ε〉 = αsCF

2
ωc =

1

3
ωc , (outgoing quark)

〈ε〉 = αsCF

6
ωc =

1

9
ωc . (incoming quark) (3.9)

BDMS [16] emphasized that the standard modeling of the
out in

µ −1.5 −2.55
σ 0.73 0.57

〈ε〉 0.3ωc 0.1ωc

Table 1: (µ, σ) pa-

rameters of the analytic

approximation (3.7) to

the distribution D̄(ε̄) for

both outgoing (left) and

incoming (right) quarks.

quenching using the mean energy loss

σmedium ' D(〈ε〉)⊗ σvacuum (3.10)

instead of (1.1) leads to a strong bias — when σvacuum is a steeply

falling function — whose strength is given by the higher mo-

ments of D(ε) [16]. In particular, the larger the asymmetry of

the quenching weight (characterized by its skewness parameter

γ = 〈ε̄ 3〉/〈ε̄ 2〉3/2), the stronger the bias effect. Indeed, we remark

for instance in figure 4 that the mean 〈ε〉 proves larger than the

most probable value of the distribution. In addition to that, let us note that this bias

will become more pronounced when considering outgoing than incoming quarks, from the

larger skewness of the distribution (γ ≈ 3.1 and 2.1, respectively).

– 9 –
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Although certainly useful, one may nevertheless wonder about the origin of the log-

normal dependence of the probability distribution D(ε). The reason for this is not clear.

Even though it could be accidental, we argue it may rather come from the effect of the

combinatorics in the Poisson approximation (2.1). Let us be more explicit. Because the

BDMPS medium-induced spectrum dI/dω dramatically drops with the gluon energy ω,

the energy loss ε will be carried away by a large6 number of soft radiated gluons. It could

be the huge product of radiation probabilities in the Poisson approximation (2.1) that

is responsible for such a behavior. We therefore conjecture that a log-normal quenching

weight may emerge for any fast falling medium-induced gluon spectrum. This will be

further discussed in the next section where the series (2.1) is partially summed.

4. Approximations

4.1 Bethe-Heitler regime

The lifetime t of the medium induced gluons emitted by the hard quark is given by [2]

t =
ω

k2
⊥

, (4.1)

where the transverse momentum k2
⊥ of the gluon and its mean free path λg are related

through the transport coefficient q̂ = µ2/λg [12]. As long as the lifetime t remains much

smaller than the typical distance between two scattering centers in the medium, the radi-

ation spectrum will be proportional to the gluon emission on one single radiator, that is

dI(ω)

dω

BH

=
L

λq
×
(

dI(ω)

dω

)

(1)

(4.2)

where L/λq is the number of collisions encountered by the leading quark with a mean free

path λq. This is the Beithe-Heitler (BH) regime that occurs in QCD for small lifetime

gluons.

On the contrary, a gluon with a long lifetime t (as compared to its mean free path

λg) will only see a group of scattering centers as a whole. In this regime, the induced

gluon spectrum (4.2) is suppressed by the number of scattering centers Ncoh that act

coherently [2],

dI(ω)

dω

LPM

=
L

λq
×
(

dI(ω)

dω

)

(1)

× 1

Ncoh
(4.3)

which is the Landau-Pomeranchuk-Migdal (LPM) gluon spectrum (2.7) and (2.14) com-

puted by BDMPS. Hence, this coherent regime will set in for gluon energies greater than

ωmin = k2
⊥ λg ' µ2 λg . (4.4)

A rough estimate ωmin ≈ 300MeV for a hot QCD medium is given by BDMS in [16].

At small gluon energy, the induced gluon spectrum is negligible as compared that of the

6Strictly speaking, the series has to be entirely resummed because of the vanishing term exp (−N(0)) in

eq. (2.1).
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extrapolation of the LPM spectrum (2.14),

ω
dI(ω)

dω
= constant¿ ω

dI(ω)

dω

LPM

at ω < ωmin . (4.5)

As already pointed out at the end of the previous section, the quark energy loss actually

originates from the emission of a large number of soft gluons, with energy ω ¿ ε ' O (ωc),

because of the divergence of the BDMPS gluon spectrum in the infrared sector. Hence,

we anticipate a large sensitivity in our results to the Bethe-Heitler regime (ω < ωmin). To

estimate this sensitivity, we have repeated the computation of the quenching weight using

a somewhat arbitrary truncated induced gluon spectrum,

dI(ω < ωmin)

dω
= 0 (4.6)

where the IR cutoff ωmin is expressed as a function of the scale ωc.

As a consequence, the number of gluons radiated by the hard quark N(0) = N(ωmin)

becomes finite, unlike in section 2 where it was shown to be slowly divergent in the IR.

Using (4.4) in (2.13), it is given by the number of collisions L/λq (or opacity) in the

medium [16]. Therefore, the probability p0 for having no interaction,

p0 = exp

[

−
∫ +∞

0
dω

dI(ω)

dω

]

≈ exp

(

− L

λq

)

(4.7)

that appears in eq. (2.1) no longer vanishes in a finite length medium. In the general case,

the probability distribution will read [18, 19]

D(ε) = p0 δ(ε) + d(ε) . (4.8)

Following Wiedemann [18], we shall subtract the discrete contribution in (4.8) before per-

forming the numerical inverse Laplace transform,

d(ε) =

∫

C

dν

2πi
(D̃(ν)− p0) e

νε (4.9)

to eventually extract the continuous part d(ε) of the probability distribution.

The result for d(ε) assuming ωmin = ωc/100 is shown in figure 5 (dashed) together

with the previously computed D(ε) without any IR cutoff (solid). Taking q̂ ' 5GeV/fm2

and L = 5 fm in (2.8), this would correspond to ωmin ' 600MeV. First, figure 5 clearly

indicates that the shape of the distribution looks pretty similar to what has been obtained

before, although shifted to smaller energy loss. This does not come as a surprise as fewer

gluons are radiated. Another remarkable feature is the structure observed at ε¿ ωc. This

actually originates from the emission of a very small number of gluons n in the Poisson

series (2.1). To go a bit further, we plot in figure 6 the quenching weight as a function of

ε in units of the cutoff ωmin. The distribution (solid line) is identically equal to zero up to

ε = ωmin when the channel for the one gluon emission opens, followed by a strong decrease

coming from the dropping gluon spectrum (2.7). Angular points may clearly be seen at

ε/ωmin = 2 and 3 which correspond to the opening of the two and three gluon radiation

channels, respectively.
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Figure 5: Distribution d̄(ε̄) for outgoing quarks computed from the BDMPS spectrum with

(dashed) and without (solid) IR cutoff ωmin.

Because each term is finite in the Poisson expression (recall, p0 > 0), it becomes

possible to sum all the individual contributions to reconstruct the quenching weight, as

D(ε < mωmin) = p0 δ(ε) +

m−1
∑

n=1

d(n)(ε), (4.10)

where the d(n) represent the probability for having exactly n gluons emitted and where the

terms n ≥ m ≈ ε/ωmin do not contribute. Although the resummation procedure offered by

BDMS allows one to compute elegantly all these terms, we nevertheless compute the first

three terms of eq. (4.10), which can be written as

d(1)(ε) = p0 ×
dI(ε)

dω
×Θ(ε− ωmin) , (4.11)

d(2)(ε) =
p0

2
×
∫ ε−ωmin

ωmin

dω1
dI(ω1)

dω

dI(ε− ω1)

dω
×Θ(ε− 2ωmin) , (4.12)

and,

d(3)(ε) =
p0

6
×
∫ ε−ωmin

ωmin

dω1
dI(ω1)

dω

∫ ε−ω1−ωmin

ωmin

dω2
dI(ω2)

dω

dI(ε− ω1 − ω2)

dω
×Θ(ε− 3ωmin) ,

(4.13)

for the emission of 1, 2, and 3 gluons. These are displayed in figure 6 as dashed, dotted,

dash-dotted lines, respectively. Their sum is shown to reproduce exactly the full result in
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Figure 6: Distribution d̄(ε̄) for outgoing quarks computed from the BDMPS spectrum with an

IR cutoff ωmin = ωc/100 (solid) together with the probability distributions ωc d
(i)(ε) to have i =

1 (dashed), 2 (dotted), 3 (dash-dotted) gluons emitted (see text for details).

solid line. At larger energy loss εÀ ωmin, the sum over the large number m ≈ ε/ωmin À 1

of gluons makes the distribution d(ε) a smooth function of the energy ε. We then recover

the log-normal behavior previously discussed.

4.2 Beyond the soft gluon approximation

The calculations performed so far have been computed in the soft gluon approximation,

i.e., assuming the gluon energy ω to remain small with respect to the leading quark energy

E. This approximation is, however, rarely justified in practice. BDMS give in ref. [12] the

full expression of the induced spectrum radiated by a quark. Neglecting O
(

(ω/E)2
)

terms,

it can be written as

dI(ω,E)

dω
=
(

1− ω

E

)

× dI(ω)

dω
×Θ(E − ω) (4.14)

where the additional factor actually comes from the quark-gluon DGLAP splitting function.

The probability distributionD(ε, E) is represented in figure 7 for various quark energies

E/ωc. The effect of the O (ω/E) corrections in the gluon spectrum (4.14) is to reduce hard

gluon emission, and hence the high-energy tail of the distribution. On the contrary, the

small ε behavior of the quenching weight remains unchanged, with the exception of the

absolute magnitude which follows from the normalization constraint. In particular, the

location of the peak does not exhibit a strong quark energy dependence. Perhaps more

interesting is the following observation. Although eq. (4.14) ensures that a single gluon
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Figure 7: Outgoing quark energy dependence of the distribution D̄(ε̄, Ē) computed from the

BDMPS spectrum eq. (4.14). Shown in solid line is the previous result obtained in the soft limit.

cannot carry more energy than available (ω < E), the use of the spectrum (4.14) does not

a priori guarantee the quark total energy loss

ε =
∑

i

ωi (4.15)

in the Poisson expression (2.1) to be bounded. Indeed, we do observe in figure 7 a small

but significant contribution of the probability distribution in this kinematically forbidden

region, D(ε > E) 6= 0, when the quark energy E is small enough. This signals the break-

down of the eikonal approximation on which the BDMPS framework rely. It is indeed no

longer justified to consider multiple successive and independent quark-nucleon scatterings

when the quark energy is smaller than, say, half the energy scale ωc.

The need for a simple analytic parameterization of the probability distribution to com-

pute the quenching of hadronic spectra has been stressed in section 3.3. Hence, we shall now

extend this parameterization for any quark energy. Noticing that the distributions D(ε, E)

still follow log-normal distributions, the quark energy dependence will enter through the

parameters µ and σ. The quenching weight thus reads

D̄(ε̄, Ē) =
1√

2π σ(Ē)ε̄
exp

[

−
(

log ε̄− µ(Ē)
)2

2σ(Ē)2

]

(4.16)

where the µ(E) and σ(E) are given by the empirical laws

µ(Ē) = −1.5 + 0.81 ×
(

exp
(

−2/Ē
)

− 1
)

,

σ(Ē) = 0.72 + 0.33 ×
(

exp
(

−2/Ē
)

− 1
)

. (4.17)

– 14 –



J
H
E
P
1
1
(
2
0
0
2
)
0
4
4

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5

mean

expected

E / ωc

ε 
/ ω

c
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quark energy E. The solid line represents the mean energy loss determined in the soft limit.

Using the parameterization (4.16), the mean energy loss 〈ε〉 is plotted as a function of

the quark energy (dashed) in figure 8. In ref. [4], BDMPS discussed in a schematic way

the characteristics of the E dependence of the mean energy loss 〈ε〉. They found that [4]

〈ε〉
ωc
∝
{

(E/ωc)
1/2 if E < ωc

1 if E > ωc
(4.18)

These features are qualitatively reproduced here. At high energy E À ωc, 〈ε〉 is indepen-

dent of E and rather close to its asymptotic value 〈ε〉 ' 0.3ωc (shown in solid line), whereas

a stronger dependence is seen at low energy, E ∼ ωc. In particular, it is interesting to note

that the L2 dependence of 〈ε〉 will not set in until approximately E ' 3ωc. Our result

is also reminiscent of what has recently been found by Gyulassy, Lévai, and Vitev in the

computation of the mean multiplicity of radiated gluons [20], that strongly increases up to

a quark energy E ≈ ωc ≈ 15GeV in their calculation. Finally, we show in figure 8 (dot-

ted) the expected energy loss (that we define as the most probable value of the quenching

weight) that is well smaller than the mean 〈ε〉 and independent of the quark energy.

5. Applications

The probability distributions for both incoming and outgoing quarks have been computed in

the previous sections. To illustrate the use of these results, we now determine the quenching

of hadron spectra in nuclear collisions and compare it to experimental preliminary data.
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5.1 Medium modification of fragmentation functions

The HERMES collaboration at DESY recently reported on hadron yields measured in

electron-nucleus collisions. They measured the production ratio

Rh
A(z, ν) =

1

N e
A(ν)

Nh
A(z, ν)

dν dz

/

1

N e
D(ν)

Nh
D(z, ν)

dν dz
(5.1)

in a “heavy” (N and Kr) over a light (D) nucleus for a given hadron species h. Here, ν

denotes the virtual photon energy in the lab frame, z the momentum fraction carried by

the produced hadron, and where the multiplicity of produced electrons N e
A normalizes the

hadron yield Nh
A.

The hadron multiplicity in (5.1) can be computed perturbatively to leading order (LO)

in αs. It is written in terms of (nuclear) parton densities qf (x,Q
2, A) and fragmentation

functions (FF) Dh
q (z,Q

2, A),7

1

N e
A

dNh
A

dν dz
=

∫

dx
∑

f e
2
fqf (x,Q

2, A)σγ
∗q(x, ν)Dh

f (z,Q
2, A)

∫

dx
∑

f e
2
fqf (x,Q

2, A)σγ∗q(x, ν)
(5.2)

and where the LO γ∗q cross section is given by

σγ
∗q(x, ν) =

4πα2
s(Q

2)Mx

Q4
×
[

1 +

(

1− Q2

x s

)2
]

. (5.3)

The integral over Bjorken x = Q2/(2Mν) appearing in (5.2) is given by the Q2 acceptance

of the HERMES experiment. To a first approximation, only the valence up quark will

contribute to the hadron yield (5.2) when x is not too small. Hence, the ratio (5.1) will

approximately be given by the ratio of the u→ h fragmentation functions

Rh
A(z, ν) '

Dh
u(z,Q

2, A)

Dh
u(z,Q

2, D)
. (5.4)

Therefore, the nuclear dependence of the fragmentation functions might be revealed

through the measure of Rh. We further note that the effects of nuclear shadowing in

the parton densities qf (x,Q
2, A) should remain small as they mainly cancel in the ratio

Nh/N e (5.2).

The multiple scattering of the produced quark in the nuclear medium may be respon-

sible for the observed dependence of the ratio Rh
A with ν and z [22]. Indeed, the energy

loss of the hard quark will shift its energy from Eq ' ν to Eq ' ν − ε at the time of the

hadronization. Therefore, this mechanism leads to a shift in z,

z =
Eh

ν
→ z∗ =

Eh

ν − ε
=

z

1− ε/ν
. (5.5)

7Isospin corrections should be small as we compare nuclei with a similar Z/A ratio, and have thus been

neglected.
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Figure 9: Attenuation ratio Rh
Kr(ν) (5.1) plotted as a function of ν for charged hadrons (upper

left), charged pions (upper right), positive and negative (lower) kaons. Calculations (solid) are

compared to HERMES preliminary data (circles) taken from ref. [21].

The effect of the energy loss mechanism on the nuclear fragmentation functions may be

modeled according to [23, 22]

zDh
f (z,Q

2, A) =

∫ ν−Eh

0
dεD(ε, ν)z∗Dh

f (z
∗, Q2) . (5.6)

Using (5.6) in (5.2) and integrating over z, the ν dependence of Rh(ν) in a krypton over

a deuterium target has been computed. In the calculation, the energy scale ωc was deter-

mined by the transport coefficient q̂ adjusted to the data and the length of matter covered

by the hard quark proportional to the nuclear radius R, L = 3/4R. The parton densities

were given by GRV98 LO [24] while we made use of the Kretzer LO parameterization for

the fragmentation functions [25].

The calculations for charged hadrons, pions, and kaons are compared with HERMES

preliminary data in figure 9. The trend is reproduced well for all hadron species, although

the calculation for the pions (π+ + π−) somehow underpredicts the effect. It is also inter-

esting to notice that the K− yield is more suppressed than the K+ — as seen in the data

— which arises from the stronger slope of the FF at large z. A much smaller difference

between the π+ and π− attenuation (average in the figure) is also observed, unlike the

present data which do not exhibit any isospin dependence in this channel. Let us also

mention that the z dependence of the ratio is fairly reproduced when z is not too large,
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the calculations predicting a much stronger suppression at large z than what is observed

experimentally. However, the formula (5.6) we use may no longer be valid in this specific

kinematic region where large higher twist corrections come into play [22].

The calculations were performed assuming the transport coefficient for nuclear matter

to be q̂ = 0.75GeV/fm 2. This would correspond to a mean energy loss per unit length

−dE/dz = 〈ε〉/L to be −dE/dz = 0.62GeV/fm in a large (L ≈ 5 fm) nucleus. This result

is close to what Wang and Wang determined in their analysis [22], although they had not

considered the full probability distribution (but its mean) and neglect the ν dependence of

the mean energy loss (which is found to be relevant at low ν ≈ 8−10GeV). Furthermore, let

us remark that this estimate is reduced by a factor of three for incoming quarks, −dE/dz ≈
0.21GeV/fm, in excellent agreement with our recent Drell-Yan data analysis [26].

It is not our aim to claim that energy loss is the only mechanism responsible for the

trend observed in HERMES data. Indeed, many other effects such as nuclear absorp-

tion [27], gluon bremsstrahlung [28], or partial deconfinement [29] have been advanced to

account for these measurements. Hence, the value extracted for q̂ has to be seen as an

upper limit.

5.2 Quenching of high p⊥ particles

A huge parton energy loss is a clear signal for quark-gluon plasma (QGP) formation. There-

fore, the production of high p⊥ hadrons might reveal the existence, and more importantly

the characteristics, of the produced medium in heavy ion collisions. Interpreting the de-

pletion of the hadron yield observed at RHIC as coming from the energy loss experienced

by hard quarks in an expanding QGP, we determine and compare the quenching factor

RAA(p⊥) =
dσAA(p⊥)/dp⊥
A2dσpp(p⊥)/dp⊥

(5.7)

to PHENIX preliminary data on π0 production in central Au-Au collisions at
√
sNN =

200GeV. The quenching factor (5.7) may be determined through the ratio8 [16]

RAA(p⊥) ≈
∫ +∞

0
dεD(ε, p⊥ + ε)× dσvacuum(p⊥ + ε)/dp2

⊥

dσvacuum(p⊥)/dp
2
⊥

(5.8)

where the p⊥ differential vacuum cross sections can be computed perturbatively. Following

BDMS, we shall however adopt the fit proposed by the PHENIX collaboration

dσvacuum(p⊥)

dp2
⊥

∝ (1.71 + p⊥ [GeV])−12.44 (5.9)

for the sake of simplicity. To determine (5.7), we use our parameterization (4.16) for

D(ε, p⊥), the energy scale ωc being given by the dynamical scaling law of Salgado and

Wiedemann [19]

〈ωc〉 = q̂(t0)

∫ t0+L

t0

dt′
(

t′ − t0
)

×
(

t0
t′

)α

. (5.10)

8We neglect the longitudinal momentum of the produced quark (p ≈ p⊥).
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Figure 10: left: The quenching factor RAA(p⊥) is computed from the BDMPS gluon spectrum in

the soft limit with (dotted) and without (solid) IR gluon energy cutoff ωmin. Effects of O (ω/p⊥)

corrections to the soft gluon spectrum are shown in dashed line. right: The influence on the

modeling of the quenching in the p⊥ dependence of the quenching factor is displayed. The solid line

represents the calculation from the full probability distribution (5.8), while the quenching factor is

computed assuming a shift of the mean (dashed) and the expected (dotted) energy loss in the cross

sections (5.9).

where q̂(t0) is the transport coefficient of the medium at the initial time t0 and α = 1

characterizes the longitudinal expansion of the QGP. We take in the following an initial

time t0 = 1 fm, a medium length L = 5 fm and the transport coefficient q̂(t0) = 3.5GeV/fm2

(which leads to 〈ωc〉 ≈ 10GeV).

The quenching (5.8) is plotted as a function of p⊥ in the soft gluon approximation

p⊥ À 〈ωc〉 in figure 10 (solid). To give an idea of the uncertainties, we show on the left

panel the effect of the O (ω/p⊥) corrections in the induced spectrum (4.14) (dashed), that

slightly (∼ 10%) reduce the depletion. The ratio RAA(p⊥) is also calculated assuming a

gluon energy cutoff ωmin ≈ 100MeV (dotted). The right panel displays the influence of the

modeling of the quenching. The suppression is computed by shifting the mean (dashed)

and the expected (dotted) energy loss in the cross section (5.9) together with the result

assuming the full distribution (solid). The effect of the bias is clear. The suppression is

overestimated by more than a factor of two when one considers a mean energy loss rather

than the full quenching weight. On the contrary, we note that shifting the cross sections

by the peak value in the distribution underestimates the quenching.

The quenching (5.8) is now compared to the PHENIX π0 preliminary measurements

[30] in figure 11. For this illustration, the transport coefficient q̂(t0) = 3.5GeV/fm2 was

chosen so as to reproduce high p⊥ data.9 Because of the strong correlation existing be-

tween q̂ and L for a given 〈ωc〉, this absolute value should however be taken with great

care. Figure 11 clearly demonstrates that the trend of our estimate is opposite to what

9In this calculation, we made use of the parameterization (4.16) for D(ε, p⊥), i.e., with O (ω/p⊥) correc-

tions and a vanishing gluon energy cutoff ωmin = 0. This corresponds to the dashed line in the left panel of

figure 10.
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Figure 11: Preliminary PHENIX data on π0 suppression factor in Au-Au collisions at
√
s =

200GeV as a function of p⊥ (circles) compared to the theoretical calculations assuming hadroniza-

tion inside (dotted) and outside (dashed) the hot QCD medium. Systematic errors are not shown.

is observed experimentally, with the possible exception of the highest p⊥ data bins. It

is not obvious to see where this discrepancy comes from. First, the extrapolation to low

p⊥ is somehow difficult, as our results shall be much more sensitive to the IR behavior

of the BDMPS spectrum (2.7) where the LPM regime is no longer guaranteed. Secondly,

we have already stressed that the eikonal approximation (2.1) breaks down for quark en-

ergies p⊥ = O (〈ωc〉/2) ' 5GeV. Moreover, other mechanisms may compete and weaken

the quenching in this low p⊥ region, such as the detailed balance process where the lead-

ing quark picks up thermally equilibrated gluons in the QGP [31]. Let us finally mention

that Vitev and Gyulassy recently suggested that the interplay of k⊥ broadening, nuclear

shadowing together with parton energy loss may account for the trend of the data [32].

It has been assumed so far that the hard quark propagates through the QGP with

length L and subsequently hadronizes outside the medium. This picture should be true at

high p⊥ when the hadronization time is large enough because of Lorentz dilation. In the

following, let us suppose that, in the p⊥ range of interest here, the hard quark hadronizes

inside the medium. The reader may of course worry about the relevance of the hadroniza-

tion concept in a QGP. Thus, we rather imagine that hadronization might occur (and

makes sense) in a cooling and more dilute (tÀ t0) system such as a hot pion gas, although

with a significant transport coefficient [33]. The length covered by the parton is then no

longer given by the system size L, but its hadronization time th,

th ' K(z)× p⊥
σ

(5.11)
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where σ ' 1GeV/fm is the string tension. Several models have been proposed in the

literature to characterize the z dependence of the hadronization time [27, 28, 34]. Here,

we take K = 1/2 assuming a mean 〈z〉 = 1/2 either in the approach by Brodsky and

Mueller [34] or in the gluon bremsstrahlung model [28]. In other words, the length ∼ th
over which the quark propagates in the medium actually depends on (and increases with)

p⊥. We may write the mean 〈ωc〉 in this simplified picture as

〈ωc〉(p⊥) = q̂(t0)

∫ t0+th(p⊥)

t0

dt′
(

t′ − t0
)

×
(

t0
t′

)α

if th(p⊥) . L . (5.12)

The formula (5.10) should be replaced by (5.12) which depends approximately linearly with

p⊥ and thus so does the energy loss. As can be seen in figure 11, this leads to a decrease of

the quenching as a function of p⊥ (as long as th(p⊥) ' O (L) over which eq. (5.12) ceases to

be valid) in good agreement with the trend of the data assuming q̂(t0) = 4.5GeV/fm2.10 In

this calculation, we have not considered possible final state interactions of the produced pion

in the medium, which may somehow modify this picture. Provided these to remain rather

small in a dilute system, a decrease followed by a subsequent increase of the quenching at

larger p⊥ would therefore be a signal of the transition between hadronization inside and

outside of the hot medium.

6. Conclusion

Let us summarize what has been carried out here.

The multiplicity of gluons N(ω) radiated by a hard quark in a QCD medium has first

been calculated from the BDMPS gluon spectrum in the soft limit (ωc ¿ E). The analytic

IR behavior of N(ω) for outgoing quarks is recalled while we give similar expressions

considering incoming quarks as well. These are shown to reproduce fairly well the exact

multiplicity for gluon energies as large as the typical scale ω ∼ ωc.

Subsequently, this allows for the computation of the probability distribution from the

integral representation given in ref. [16]. The quenching weight determined for both incom-

ing and outgoing quarks is then compared to analytic estimates based on the small energy

behavior of the gluon multiplicities. In particular, we have emphasized that the analytic

expression given by BDMS strongly overestimates the high energy tail of the energy loss

distribution, while an analytic (although complicated) expression based on the multiplicity

N(ω ≤ ωc) (eq. (2.10)) reproduces fairly well the full result. Noticing that the quenching

weight follows a log-normal distribution, we give D(ε) a simple analytic parameterization.

Going a step beyond in section 4, the probability distribution is computed from the

BDMPS spectrum truncated in the IR (ω > ωmin) to ensure the LPM regime to be at work.

It exhibits a “discrete” behavior at small energies (a few times the gluon energy cutoff)

which corresponds to the emission of a small number of gluons, followed by a smoother

“continuum” similar to what was found earlier.

10The quenching will essentially depend on the product K × q̂(t0), both terms being poorly known. It is

needless to repeat that this transport coefficient chosen to account for the data is thus a rough estimate.

This prevents us from drawing any conclusion from its absolute value.
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The O (ω/E) corrections in the gluon spectrum are then explicitly taken into account.

This leads to a reduction of hard gluon emission which suppresses the tail of the probability

distribution. To be complete, we give a (log-normal) parameterization for the quenching

weight D(ε, E) for finite quark energy, which can be of use for future tomographic studies.

In conclusion, we illustrate the former results computing the quenching of hadron spec-

tra in nuclear matter as well as in an expanding quark-gluon plasma. These estimates are

respectively compared to HERMES e-A data and recent π0 measurements by the PHENIX

collaboration in Au-Au collisions at RHIC. While the HERMES data can quantitatively

be understood as coming from the effect of quark energy loss, the trend observed in the

PHENIX data is opposite to what one could naively expect. Finally, we suggest that

this could be due to the fact that the “hard” quark produced at moderate p⊥ actually

hadronizes inside the medium. This has of course to be further investigated and is under

current study.
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