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1. Introduction

The holographic principle [1] is a reformulation of theories with gravity as a theory

without gravity in fewer dimensions. Such a reformulation implies a one-to-one

correspondence for the degrees of freedom and the observables between the bulk and

the boundary. This seems unlikely at first sight because these theories live on space-

times of different dimensions. The critical ingredient that makes the holographic

principle work is the presence of gravity in the bulk theory. It was shown, in a number

of examples, that distinct states which are indistinguishable from the boundary in the

absence of gravity become distinguishable when the effects of gravity are taken into

account [2]. Nonetheless, the complete account of bulk/boundary correspondence is

beyond our present understanding of holography.

The most concrete realization of the holographic principle known to date is the

AdS/CFT correspondence [3]. The holographic mapping of the degrees of freedom

and the observables are much better understood for this class of theories. The canon-

ical example of this correspondence is the duality between N = 4 supersymmetric
Yang-Mills theory in 3 + 1 dimensions (boundary) and the type-IIB string theory

on AdS5 × S5 (bulk). Under this correspondence, the Kaluza-Klein modes of the
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supergravity fields on AdS5 are identified with the chiral primary operators on the

SYM. This mapping is justified in part by the fact that both sides assemble into

short supermultiplets of the superconformal algebra. In the Hamiltonian treatment

of the SYM on R×S3, these chiral primary operators can be associated to the phys-
ical states of the theory created by acting with the operator on the vacuum in the

infinite past. On the AdS side, such a state corresponds to exciting the associated

Kaluza-Klein mode. The energy of such an excited state (in units of the AdS radius)

is the dimension of the chiral primary operator (see [4, section 3.3]). This provides

a concrete identification of some of the states in the boundary and in the bulk.

In a recent paper, it was suggested on the contrary that this picture should

be drastically different when the effect of angular momentum along S5 is taken

into account [5]. These authors considered Kaluza-Klein excitations carrying some

angular momentum along the S5 and considered the possibility that there exists a

stable configuration of spherical branes in S5 carrying the same quantum numbers.

Although spherical branes are unstable against shrinking due to their own tensions

in the trivial vacuum, there is an additional repulsive force due to the coupling to

the background Ramond-Ramond field in its presence. The authors of [5] found that

there indeed exists a stable spherical brane configuration.

On one hand, the observation of [5] is very intriguing. The size of the spherical

brane grows with angular momentum. However, since the size of the brane can

not exceed the size of the S5, there is a bound on the allowed angular momentum

for the spherical branes. This appears to offer a natural explanation for the stringy

exclusion principle [6]. However, one very important puzzle is raised by the existence

of such a spherical brane. There appear to be two states on the supergravity side

corresponding to the state created by the chiral primary operators on the SYM

side. This raises several questions regarding the nature of holographic principle in

AdS/CFT correspondence. Which of these states should one associate with the

chiral primary operators on the SYM side? More importantly, what is the SYM

interpretation of the states not corresponding to the chiral primaries? One should

be able to address these questions in order to resolve the holographic dictionary.

In this article, we will demonstrate that the situation is even more complicated.

In addition to the stable configuration of spherical 3-branes in S5, there is yet another

stable configuration of spherical 3-brane in AdS5 with exactly the same quantum

numbers. One must therefore find the appropriate SYM interpretation to all of these

brane configurations.

This paper is organized as follows. We will begin in section 2 by briefly reviewing

the spherical D3-branes in the S5. In section 3, we will construct the configuration

of spherical D3-branes in AdS5 and describe some of its properties. In section 4, we

will construct a classical solution to the equation of motion of SYM which shares

much of the properties of the spherical brane solution of section 3. We will conclude

in section 5. Some useful formulas are collected in the appendices A, B and C.
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2. Spherical branes in S5

Let us begin by reviewing the original argument for the existence of stable spherical

brane configurations in S5 [5]. We will work with AdS5 in global coordinates

ds2 =
R2

cos2 ρ

(−dτ 2 + dρ2 + sin2 ρ dΩ23)+R2dΩ25 , (2.1)

CtΩ3Ω3Ω3 = TR
4 tan4 ρ , (2.2)

where R is the radius of AdS5.

Consider a graviton with angular momentum L along the S5. In the presence

of the background 5-form field strength, one might expect such a graviton to lower

its own energy by “blowing up” into a spherical D3-brane along the lines of Myers’

mechanism described in [7]. This can not actually happen in this case because the

graviton saturates the BPS bound and its energy can not be made any smaller.1 At

best, one can expect to find a spherical brane carrying the same energy E = P = L/R

as the graviton.

Let us see that this is indeed the case. The lagrangian for this system is given by

L = −TRΩ3r3
√
1−

(
1− r

2

R2

)
ω2 + ωN

r4

R4
. (2.3)

where

ω =
dφ

dτ
, (2.4)

and φ is the angular parameter along the equator of S5. Due to the rotational

invariance along the equator, the angular momentum L = ∂L/∂ω is conserved.
Similarly, the conserved energy (in units of 1/R) is

E = ωL− L =
√
N2r6

R6
+
(L−Nr4/R4)2
1− r2/R2 . (2.5)

The energy E as a function of r is illustrated in figure 1. The local minimum of E at

r =
√
L/NR corresponds to the stable configuration of spherical D3 brane of that

radius. The fact that
√
L/NR must be smaller than R places a bound L ≤ N on the

angular momentum, which was interpreted in [5] as the manifestation of the stringy

exclusion principle [8]. Looking at the form of figure 1, however, it is clear that there

is another minimum at r = 0. This is a perfectly good solution to the equation

of motion, at least classically.2 Moreover, it is clear that this minimum exists also

1Even in the original context of dielectric D0-brane described in [7], classical instability for the

D0-branes to blow up into a spherical D2-brane is stabilized when the gravitational back reaction

of the background RR field strength is taken into account. We will elaborate further on this point

in the appendix A.
2Due to its very small size, there will be a strong curvature correction to the DBI action.
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Figure 1: Energy of spherical brane as a function of its radius. The local minima of this

curve corresponds to classically stable brane configurations.

for L > N . This raises a serious conundrum in AdS/CFT correspondence: If the

minimum at r =
√
L/NR is to correspond to the chiral primary operators (to match

with the stringy exclusion principle), to what does the minimum at r = 0 correspond?

To make matters worse, we will show that there is one more configuration of spherical

D-brane in AdS5 carrying the same energy and angular momentum in the following

section.

3. Spherical branes in AdS5

Existence of static spherical configuration of D3-branes in AdS5 can be investigated

along the similar lines as in the previous section. Consider embedding a spherical

D3-brane wrapping the Ω3 of the AdS5 background (2.2). Just as in the previous

section, let us consider the situation where the brane is orbiting along the equator

of S5 with angular velocity ω. The DBI action of such a brane configuration is

L = −
(
T
√
(−gtt − ω2gΩ5Ω5)g3Ω3Ω3 − CtΩ3Ω3Ω3

)
= −TΩ3R4

(
tan3 ρ

√
sec2 ρ− ω2 − tan4 ρ

)
. (3.1)

Just as in the previous section, the angular momentum L = ∂L/∂ω is a conserved
quantity, and the canonical energy takes the form

E = N

(
sec ρ

√
L2

N2
+ tan6 ρ− tan4 ρ

)
, (3.2)
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II IIII

Figure 2: I collapsed spherical D3-brane of zero size, II spherical D3-brane embedded in

S5, and III spherical D3-brane embedded in AdS5. These states are degenerate in energy

and angular momentum quantum numbers.

where we have used the fact that TΩ3R
4 = N . This function has essentially the

same form as what is illustrated in figure 1. There are local minima at tan ρ = 0 and

tan ρ =
√
L/N where E takes the value (in units of 1/R)

E = L . (3.3)

This establishes the fact that there exists a stable configuration of spherical D3-

brane embedded in the AdS5. These brane configurations, as well as the brane

configurations described in the previous section, are illustrated in figure 2.

Several comments are in order regarding the spherical brane configuration in

AdS5.

• The spherical brane in AdS5 couples electrically to the background Ramond-
Ramond field and should be thought of as a dielectric brane. The spherical

brane in S5 couples magnetically and should be thought of as a dimagnetic

brane.

• There are two solutions, one at tan ρ = √L/N and the other at tan ρ = 0,
just as in the previous section. All of these brane configuration preserve the

same 16 of the 32 supersymmetries of type-IIB theory on AdS5 × S5. At first
sight this is natural for they saturate the BPS bound. Nonetheless, this is a

very non-trivial statement since different patches of the brane world volume

are oriented in different directions. The details are explained in appendix B.

• There is an instanton solution describing the tunneling between these two min-
ima, given by

τ = τ0 ± 1
2
log

(
sin2 ρ

L/N − tan2 ρ
)
, (3.4)

whose action evaluates to

S =
N

2

(
L

N
− log

(
1 +
L

N

))
. (3.5)
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Figure 3: Instanton configuration describing the tunneling between configurations I and

III of figure 2.

The form of this instanton solution3 is illustrated in figure 3. To fully appreciate

the effect of these instanton solutions, as well as the ones on the sphere, one

must take the fermion zero modes into account. It turns out that all of these

instantons are exactly 1/4 BPS, preserving 8 of the 32 supersymmetries, as

will be explained in detail in appendix B. The supersymmetries broken by the

instantons will give rise to fermionic zero modes which will suppress the mixing

between the two minima via the tunneling effects.

• All of the solutions tan ρ = √L/N , tan ρ = 0, r = √L/NR, and r = 0 have
the same energy and angular momentum quantum numbers.

• Since tan ρ is not bounded, L can be much larger than N and hence there
is no apparent connection between spherical branes in AdS5 and the stringy

exclusion principle.

• These configurations are special case of the “large brane” configuration dis-
cussed in related contexts in [6, 9, 10, 11]. In general, these large brane config-

urations are time dependent solutions corresponding to the vacuum decay and

other related phenomena. When the effect of both angular momentum and

the Ramond-Ramond field is taken into account, we find a novel stationary

configuration of these large branes.

The mere existence of these brane configuration raises an important question:

How does one distinguish between these states from the viewpoint of the boundary

theory? Unfortunately, we are unable to offer a complete resolution to this problem.

3Similar solution describing tunneling between spherical brane in S5 and the point-like brane

also exists

τ = τ0 ± 1
2
log

(
L

N

R2

r2
− 1
)

(3.6)

whose action evaluates to

S = −N
2

(
L

N
+ log

(
1− L
N

))
. (3.7)
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One very concrete and interesting observation that we discuss in the next section is

that the spherical branes in AdS5 (as opposed to the spherical branes in S
5 and the

point-like brane) turns out to have a concrete interpretation as a classical solution

from the field theory point of view.

4. Spherical branes in AdS5 as classical solutions of SYM

In this section, we will describe a solution to the classical equation of motion of the

SYM which is dual of the spherical branes in AdS.

Configuration of spherical branes in AdS5 (illustrated in figure 2.III) is such that

the flux of RR 5-form in the interior of the spherical D3-brane is less by one unit com-

pared to the exterior. In light of the UV/IR relation of the AdS/CFT correspondence,

this suggests that the gauge symmetry is broken from SU(N) to SU(N−1)×U(1) at
low energies. Therefore we should look for a classical configuration involving Higgs

expectation values.

Since the D3-branes do not act as a source for the dilaton and the axion, the

supergravity back reaction of the spherical D3-branes is trivial in the dilaton/axion

sector. Trivial dilaton/axion background corresponds to trivial F 2 and FF̃ expecta-

tion values. The field theory counterpart of the spherical brane is therefore not likely

to involve the gauge fields. Furthermore, the fact that the energy (3.3) of the solution

we are after does not depend on the coupling constant suggests that the commutator

term in the action of the SYM should not play any role. We are therefore left with

the Abelian part of the action of the six scalar fields φi, i = 1, . . . , 6.

Theories on S3×R contain an additional term in the action coming from the pos-
itive curvature of S3. In n dimensions this term is fixed by the conformal invariance

to be

S = − 1

2g2YM

∫
dnx

(
(∂φ1)

2 + (∂φ2)
2 +
(n− 2)
4(n− 1)R̃(φ

2
1 + φ

2
2)

)
, (4.1)

where φ1 and φ2 are the two scalars we focus on and R̃ is the Ricci curvature which

is related to the radius R of AdSn+1 by

R̃ =
(n− 1)(n− 2)

R2
. (4.2)

Setting n = 4, the action becomes

S =
R3Ω3
2g2YM

∫
dt

(
φ̇21 + φ̇

2
2 −

1

R2
(φ21 + φ

2
2)

)
. (4.3)

Reparameterizing the fields according to

φ1 =

√
g2YMN

R2Ω3
η cos θ , φ2 =

√
g2YMN

R2Ω3
η sin θ , (4.4)
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gives

S =
NR

2

∫
dt

(
η̇2 + η2θ̇2 − η

2

R2

)
. (4.5)

Now, consider the ansatz

η = const. , θ = ωt . (4.6)

The angular momentum L = dS/dω is conserved, and the conserved energy, in units

of 1/R (see eq. (2.1)), is

E = Lω − L =
(
L2

2Nη2
+
Nη2

2

)
, (4.7)

which is minimized at

η =

√
L

N
. (4.8)

This constitutes a solution to the equation of motion of the field theory (4.1). The

energy associated with this solution is

E = L . (4.9)

To properly account for the SU(N) field content of the SYM, simply parameterize

φ1 and φ2 according to

φ1 =

√
g2YMN

R2Ω3
η̂ cos θ , φ2 =

√
g2YMN

R2Ω3
η̂ sin θ , (4.10)

where η̂ is a traceless diagonal N ×N matrix

η̂ =

√
N − 1
N



η

− η
N−1

. . .

− η
N−1


 . (4.11)

To leading order in 1/N , all but the first diagonal element can be ignored and the

analysis reduces to treating φ1,2 as an ordinary scalar field. The subleading 1/N

correction can be thought of as the back reaction of the spherical brane to the

background geometry. Taking the full matrix structure of φ1,2 into account does not

affect (4.7)–(4.9) for they commute.

Let us make some comments regarding this solution

• The energy of the classical solution (4.9) is precisely the energy of the spherical
brane in AdS5 found in equation (3.3).

• The magnitude of the scalar expectation value (4.8) is the same as the SUGRA
result if one uses the original UV/IR relation of Maldacena [3] and not the ones

of [12]. This is expected for we are dealing with Higgs expectation values and

not gravitational waves as the probes in the bulk.
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     N

eta
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Figure 4: Solid line is energy as a function of η of the classical solution (4.7) applicable

for small λ. The dotted line is the same function for brane probe action (4.12) applicable

for large λ.

• The classical solution is invariant under half of the supersymmetries. This can
be verified easily by acting on the solution with the supersymmetry transfor-

mation rules given in [13]. (Strictly speaking, we have only checked that the

solution is invariant with respect to 8 out of 16 Poincaré supersymmetries.)

The fact that the classical solution of the SYM shares many properties in common

with the spherical brane configuration in AdS5 is a good indication that the former is

the field theory realization of the latter. There are some subtle differences, however.

The potential (4.7) is the field theory counterpart of (3.2). To be more precise, (3.2)

is the effective action for the spontaneously broken U(1) at large λ after integrating

out the massive W-bosons. Equation (4.7) can simply be thought of as the small λ

limit of the same quantity. To facilitate the comparison, let us re-express (3.2) in

terms of η = tan ρ

E = N

(√
1 + η2

√
L2

N2
+ η6 − η4

)
. (4.12)

Potentials (4.7) and (4.12) differ from each other in one very important sense. (See

figure 4 for an illustration.) The potential at strong coupling (3.2) has two minima,

one at η = 0 and the other at η =
√
L/N . At small coupling, (4.7) has only one

minima, at η =
√
L/N .

What happened? What we have found is an argument based on duality that the

minima at η = 0 is lifted by 1/λ corrections. When λ� 1, semi-classical description
of the SYM becomes reliable, but the configuration at η = 0 simply does not exist

as a solution of the classical equation of motion. It would be very interesting to

understand the status of η = 0 solution when the quantum effects on the SYM

side is taken into account. Studying the quantum correction to (4.7) perturbatively

should teach us a lot about this issue.
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Unlike the solution at η = 0, the solution at η =
√
L/N is a robust result. This

can be seen in the following way. For large values of L/N , the spherical brane will

grow to have size much greater than the radius of AdS5. In [9], Seiberg and Witten

showed that the DBI+CS action of the n-brane in AdSn+1 has the following form for

n > 2 near the boundary of the AdS (see eq. (3.17) of that paper)

S ∼
∫ √
g

(
(∂φ)2 +

n− 2
4(n− 1)φ

2R̃ +O(φ 2(n−4)n−2 )

)
. (4.13)

The form of this action is dictated by the fact that the extension of the metric on

the boundary of AdS to the bulk is unique in the neighborhood of the boundary [14].

The leading term in large φ of (4.13) exactly matches the field theory action (4.1).

5. Conclusions

The main goal of this paper is to point out an important subtlety in our current

understanding of holography and AdS/CFT correspondence. In AdS/CFT, there

is a natural one-to-one correspondence between the chiral primary operators of the

boundary theory and the Kaluza-Klein excitations on the bulk. However, there exists

a configuration of spherical D-branes embedded in the S5 in addition to the Kaluza-

Klein excitations, carrying the same quantum numbers as was demonstrated in [5].

In this article, we demonstrated that there is yet another configuration of spherical

D-branes, embedded in the AdS5, again with the same quantum numbers. The full

understanding of holographic principle will require that one understands how each

of these spherical branes are realized on the field theory side.

The spherical branes in AdS are much like the long strings [6, 9, 11] in AdS3×S3
(see also appendix C). The long strings live on the boundary of AdS3, and gives

rise to new class of operators of the CFT. The spherical branes in higher AdS ap-

pears to play a slightly different role. These branes do not live at the boundary

but at some definite radius in the bulk. Unlike the long strings, these branes are

completely degenerate in angular momentum and energy with the Kaluza-Klein ex-

citations.

We have not resolved the problem of identifying and distinguishing all of the

brane configuration from the field theory side. To partially address this problem, we

described a classical solution to the equation of motion of the SYM which shares many

of the properties of the spherical branes in AdS5. The collapsed brane configurations

and the spherical branes in S5 do not appear to correspond to a classical solution in a

similar manner. Does this also imply that the r = 0 solution of [5] is also lifted? This

depends on whether the r = 0 solution and the ρ = 0 solution can be identified as

the same physical state. This is a tricky question because there is a large degeneracy

of states that look like figure 2.I especially when multi-particle states are taken into

account. More detailed understanding of the holographic map is needed to resolve
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this issue. Even if the ρ = 0 state and the r = 0 state turns out not to be the same

physical state, the fact that the ρ = 0 solution was lifted by 1/λ correction is a strong

indication that the r = 0 solution is also lifted.

From the point of view of semi-classical SYM, BPS classical solution is a coherent

state of many quanta of chiral excitations. If the identification of spherical branes in

S5 with the states created by the chiral primary operators turns out to be correct,

this suggests that the spherical brane in AdS5 is a coherent state of spherical branes

in S5. It would be very interesting to understand this point better.

In order to proceed further, it appears to be necessary to properly address either

the quantum correction of the SYM side or the curvature correction of the supergrav-

ity side. This is clearly a non-trivial challenge. The spherical brane configurations

in supergravity do exist, and their existence is a prediction about strongly coupled

gauge theory via the AdS/CFT correspondence. Learning to resolve these redun-

dancies should teach us a lot about the dynamical aspects of quantum field theories,

as well as the holographic principle.
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A. Classical stability and the gravitational back reaction

The general feature that branes of spherical geometry can exist stably in a back-

ground of some anti-symmetric tensor field strength is quite similar to the mecha-

nism of dielectric branes discussed by Myers [7], but there is one critical difference.

In AdS, the r = 0 solution is classically stable. In Myers’ analysis, r = 0 solution is

classically unstable. In this appendix, we will explain that even in Myers’ example,

r = 0 solution is classically stable when the effect of gravitational back reaction of

the stress-energy of the background Ramond-Ramond field strength is taken into

account.

Myers’ analysis assumes a flat space-time in a background of constant RR 4-form

field strength, giving rise to a potential of the form (see [7, equation (87)].)

E(r) = T2

(√
α′2N2

4
+ r4 − Fr3

)
≈ T2

(
Nα′

2
− Fr3 + r4

Nα′

)
. (A.1)
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r

E[r]

Figure 5: Energy of spherical brane in the background Ramond-Ramond field neglecting

the back reaction (A.1) and including the back reaction (A.6). These curves are only valid

locally near r = 0. When the back reaction is taken into account, r = 0 is classically stable.

However, it does not determine if this point is a global minimum or not.

The relevant energetic consideration comes from the r3 term which has a negative

coefficient, and the r4 term which has a positive coefficient. Since the leading small

r effect is negative, there is a classical instability (see figure 5).

The essential difference between Myers’ flat space analysis and our analysis in

AdS is that in AdS, there is a term in E(r) which grows quadratically, thereby

dominating over the cubic term which is the leading contribution in Myers’ analysis.

Closer examination reveals that the quadratic term arises from the r dependence of

g00 which enters into the Nambu-Born-Infeld action. g00 has non-trivial r dependence

because the space-time is curved in response to the stress energy generated by the

cosmological constant in the AdS space.

However, there is also stress energy associated with the field strength in the

system considered by Myers. The stress energy due to the background field strength

can certainly give rise to a non-trivial r dependence in the background metric. This

is the effect of gravitational back reaction of the anti-symmetric form field strength

background which was ignored in Myers’ analysis. However, if the effect of such

a back reaction enters at quadratic order, it can drastically alter the conclusion

regarding the classical instability in the small r region.

We claim that this is indeed the case. A complete analysis for that issue in

full generality is beyond the scope of this paper. Instead we shall demonstrate that

point by considering an example which is sufficiently generic. We consider a version

of Myers’ mechanism where a D1-brane is blown up into a spherical D3-brane in

the presence of RR 5-form field strength. The reason that this should be considered

sufficiently generic is the fact that in string theory, RR 5-form background can only

12
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be created using a source that is available in the theory. The object which acts

as a source for RR 5-form field strength is the D3-brane. D3-branes are especially

convenient because they do not act as a source for the dilaton.4

Consider taking a large number of D3-branes oriented along the 0123 directions,

distributed arbitrarily along the 456789 directions. Our ability to construct consis-

tent backgrounds will be parameterized by the degree of freedom in distributing the

D3-branes. The general form of backgrounds that can be generated this way takes

the form [15]

ds2 = f−1/2(−dt2 + dx21 + dx22 + dx23) +f 1/2(dx24 + dx25 + dx26 + dx27 + dx28 + dx29) ,
F0123i = ∂if

−1 , (A.2)

where f(x4, x5, x6, x7, x8, x9) is an arbitrary harmonic function on the 456789-plane.

At some fixed point in the 456789 plane, the invariant field strength squared is

given by

F 2 =
(∂if)

2

f 5/2
. (A.3)

Using only the fact that f is a harmonic function (∇2f = 0), one finds that at the
neighborhood of that point

Rij = −F 2gij , Rab = F
2gab , (A.4)

where i and j runs over 0123 and the direction of the gradient ~∇f , whereas a and
b runs over the rest of the directions. Therefore, at any point in the 456789 plane,

the local geometry, to quadratic order in geodesic distance, is an AdS5 × S5 with
the radius of the order R2 = 1/F 2. This in turn implies that there will always be a

quadratic correction to the g00 component of the metric in the locally inertial frame

g00 ≈ −(1 + F 2r2 + · · ·) . (A.5)

This term will always give rise to a quadratically rising potential in E(r)

E(r) = T2

(√
−g00

(
α′2N2

4
+ r4

)
− Fr3

)

≈ T2
(
Nα′

2
+Nα′F 2r2 − Fr3 + · · ·

)
(A.6)

which dominates over the r3 term at small r. Because this is the leading effect at

small r, it is inconsistent to ignore the effect of gravitational back reaction. When

this effect is properly taken into account, there will never be a classical instability

at r = 0 for a freely falling D1-brane. It should be emphasized however that this

discussion is valid only locally. In general it might be that the minimum at r = 0 is

only a local minimum and not a global minimum.
4This is not the most general possibility. For example, RR waves with no D-branes sources are

excluded from this class of backgrounds.
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B. Supersymmetry condition for branes in AdS5 × S5
In this appendix, we will analyze the supersymmetric properties of the spherical

branes in AdS5 and S
5, as well as the instanton solutions describing the tunneling

between the degenerate vacua. The strategy is to simply apply the supersymmetry

condition [16, 17] locally and to count the supersymmetries that are left unbroken

globally. Similar strategies have been applied to study the global supersymmetries

of baryonic configurations in AdS5× S5 [18, 19]. The main complication arises from
the fact that both the background and the brane are curved. Following [18], let us

introduce

ε±(x) = εL(x)± iεR(x) , (B.1)

where εL,R(x) are the left and right handed Majorana-Weyl Killing spinors of type-

IIB supergravity on AdS5 × S5, with positive spacetime chirality Γ11 = +1. The
local supersymmetry condition for D3-branes under consideration takes the form

Ωijkl(x)Γijklε
±(x) = ∓iε±(x) , (B.2)

where Ωijkl(x) is proportional to the volume element of the D3-brane. It is convenient

to write the covariantly constant spinors ε±(x) in the form

ε±(x) = S±(x)ε±0 (B.3)

so that the local supersymmetry condition reads

Ωijkl(x)ΓijklS
±(x)ε±0 = ∓iS±(x)ε±0 . (B.4)

The number of independent spinors ε±0 satisfying the condition (B.4) for all x is
the number of unbroken supersymmetries of the brane configuration. It should be

emphasized that the condition on ε±0 at different values of x is an overcomplete set,
and that there exist any ε±0 at all that satisfies this requirement is highly non-trivial.
This non-trivial condition is satisfied by the brane configurations illustrated in

figure 2. The condition on ε±0 simplifies to

(1− ΓτΓφ)ε±0 = 0 , (B.5)

where Γτ and Γφ are the Γ matrices associated with the time direction and the

direction of the orbit of the branes in S5 respectively. This condition is exactly the

same as that for massless particles in ten dimensions, and the same condition applies

to all of the brane configurations illustrated in figure 2. In other words, these branes

are indistinguishable at the level of supersymmetries, and they all belong to the same

supermultiplet as that of the supergraviton.

Instanton solutions describing the tunneling between the spherical and the point

like branes also preserve some fraction of supersymmetries. In addition to (B.5), the

constraint on supersymmetires imposed by the instanton solution takes the form

Γrφ1φ2φ3ε
±
0 = ε

±
0 , (B.6)
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where Γr and Γφ1φ2φ3 are the Γ matrices associated with the radial and the three-

sphere directions. Therefore, these instantons preserve one quarter of the supersym-

metries.

In the remainder of this appendix, we will summarize the argument leading to

the conclusion that the conditions for supersymmetry are given by (B.5) and (B.6).

To proceed, we need an explicit expression for the Ωijkl and the S±(x). Let us begin
by choosing an explicit coordinates for AdS5 × S5. We will continue to use the
metric (2.2) and parameterize the 3-sphere and the 5-sphere according to

dΩ23 = dθ
2
1 + sin

2 θ1dθ
2
2 + sin

2 θ1 sin
2 θ2dθ

2
3 (B.7)

dΩ25 = dθ
2
5̄ + sin

2 θ5̄dθ
2
4̄ + sin

2 θ5̄ sin
2 θ4̄dθ

2
3̄ + sin

2 θ5̄ sin
2 θ4̄ sin

2 θ3̄dθ
2
2̄ +

+ sin2 θ5̄ sin
2 θ4̄ sin

2 θ3̄ sin
2 θ2̄dθ

2
1̄ . (B.8)

We will generally use barred indecies to refer to S5 coordinates and unbarred indecies

to refer to AdS5 coordinates.

We will follow the Γ matrix conventions of [20]:

Γm = σ2⊗ γAdSm ⊗ 14 , Γm̄ = σ1⊗ 14⊗ γSm̄ , γ = Γ1̄2̄3̄4̄5̄ = σ1⊗ 14⊗ 14 , (B.9)

where m = 0, 1, 2, 3, 4 and m̄ = 1̄, 2̄, 3̄, 4̄, 5̄. An explicit form of the Killing spinors in

AdS5 × S5 can be obtained by combining the results of [20] and [21]

S±(x) =
√
sec ρ

(
cos
ρ

2
± ix̂αγΓα sin ρ

2

)
e±i

τ
2
γΓ0e±

i
2
θ5̄γΓ5̄

1∏
m=4

(
e−

1
2
θm̄Γm̄,m̄+1̄

)
, (B.10)

where x̂i are defined following [21]

x̂1 = sin θ1 sin θ2 sin θ3

x̂2 = sin θ1 sin θ2 cos θ3

x̂3 = sin θ1 cos θ2

x̂4 = cos θ1 . (B.11)

B.1 Supersymmetry of the spherical branes

We are now ready to analyze the unbroken supersymmetries of the spherical D3-

branes in AdS5. Let us take θ5̄ to be the direction of orbit along the S
5, more

specifically the other angles (θ4̄, θ3̄, θ2̄) set to be zero, and θ1̄ to be 0 or π, to cover

the orbit globally by two patches. Then the volume form of the spherical D3-brane

takes the form of

Ω =
R4(sec2 ρdτ + ωdθ5̄)√

sec2 ρ− ω2 ∧ dθ3 ∧ dθ2 ∧ dθ1 . (B.12)
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Thus ΩijklΓijkl is given by

ΩijklΓijkl =
1√

sec2 ρ− ω2 (sec ρΓ0 + ωΓ5̄) (−x̂1Γ234 + x̂2Γ134 − x̂3Γ124 + x̂4Γ123) .
(B.13)

Now for the point-like solution at ρ = 0, ω = 1 (figure 2.I), and on the θ1̄ = 0

branch, it is easy to show that (B.4) implies

(1− Γ0Γ5̄)ε±0 = 0. (B.14)

On the θ1̄ = π branch, ω = −1 since the orientation of the orbit is reversed.
For the finite size solution at tanρ =

√
L/N , ω = 1 (figure 2.III), after straight-

forward manipulation of Γ matrices, (B.4) also reduces to (B.14). The same remark

on the two branches of orbit is applicable in this case as well. Note that the condition

ω = 1 (or ω = −1) is actually necessary for preserving the global supersymmetries.
The unbroken supersymmetry of spherical branes in S5 (figure 2.II) can be an-

alyzed in a similar manner. We will again take θ5̄ to be the direction of orbit of the

center of mass. Then the volume form takes the form of

Ω =
R4(dτ + ω(1− r2/R2)dφ)√

1− (1− r2/R2)ω2 ∧ dθ3̄ ∧ dθ2̄ ∧ dθ1̄ , (B.15)

where tanφ = tan θ5̄ cos θ4̄, r = R sin θ5̄ sin θ4̄, and the brane is sitting at the origin

ρ = 0 in AdS5. Thus we have

ΩijklΓijkl =
1√

1− (1− r2/R2)ω2
{
Γ0 + ω

(
cos θ4̄Γ5̄ − r

R tan θ5̄
Γ4̄

)}
Γ3̄2̄1̄ . (B.16)

After some manipulation, once again (B.4) simplifies to

(1− Γ0Γ5̄)ε±0 = 0 . (B.17)

B.2 Supersymmetry of the instantons

Now we proceed to the analysis of unbroken supersymmetries of instantons on the

spherical D3-branes in AdS5. The analysis goes through in much the same way as

in the previous cases. The only difference comes from the time-dependence on the

radial direction which will be reflected in the time-like direction of the worldvolume

of the spherical D3-branes. As a result ΩijklΓijkl takes the form of

ΩijklΓijkl =
1√

sec2 ρ− ρ̇2 sec2 ρ− ω2 (sec ρΓ0 + ρ̇ sec ρx̂
αΓα + ωΓ5̄)

(−x̂βΓβΓ1234) .
(B.18)

After a little computation, one finds the global supersymmetry conditions to be

(1− Γ0Γ5̄) ε±0 = 0 , (B.19)

Γ1234ε
±
0 = ε

±
0 , (B.20)

ω ∓ iρ̇ tan ρ− 1 = 0 . (B.21)
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Using the relation between ω and L, it is easy to show that (B.21) is the instanton

equation (in euclidean time)

∓ρ̇ = tan ρtan
2 ρ− L/N

tan4 ρ+ L/N
(B.22)

whose solution is (3.4).

Similarly on the spherical D3-branes in S5, ΩijklΓijkl is given by

ΩijklΓijkl =
1√

1− (ṙ/R)2

1−(r/R)2 − (1− (r/R)2)ω2

{
Γ0 +

ṙ/R

1− (r/R)2
(
cos θ5̄ sin θ4̄Γ5̄+

+cos θ4̄Γ4̄

)
+ ω

(
cos θ4̄Γ5̄ − r

R tan θ5̄
Γ4̄

)}
Γ3̄2̄1̄ . (B.23)

This time, the condition for preservation of global supersymmetry turns out to be

(1− Γ0Γ5̄) ε±0 = 0 , (B.24)

Γ1̄2̄3̄4̄ε
±
0 = ε

±
0 , (B.25)

ω ± i r
R

ṙ/R

1− (r/R)2 − 1 = 0 . (B.26)

Once again one can easily verify that the last condition (B.26) is precisely the in-

stanton equation

± ṙ
R
=
r

R

{
N

L

( r
R

)2
− 1
}

(B.27)

whose solution is (3.6).

C. Generalizations to other AdS

In this article, we concentrated mainly on spherical branes in AdS5 × S5. This can
be generalized immediately to AdS7 × S4 and AdS4 × S7. Following the argument
presented in section 3, one obtains an expression for the energy as a function of the

angular momentum L and the radius ρ

• M2 in AdS4 × S7

E(ρ, L) = N

(
sec ρ

√
L2

4N2
+ tan4 ρ− tan3 ρ

)
(C.1)

• M5 in AdS7 × S7

E(ρ, L) = N

(
sec ρ

√
4L2

N2
+ tan10 ρ− tan6 ρ

)
. (C.2)
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Figure 6: E(ρ, L) for spherical D1-brane in AdS3 × S3.

These potentials essentially behave like (3.2) illustrated in figure 1. These are the

electric counterparts to the spherical magnetic dipoles in AdS4 × S7 and AdS7 × S4
described in [5].

The case of AdS3 × S3 is somewhat different. Consider a D1-string probe in
the AdS3 × S3 × T 4 background with Q1 and Q5 units of electric and magnetic
Ramond-Ramond 3-form fluxes, respectively. The potential energy then takes the

form

E(ρ, L) = Q5

(
sec ρ

√(
L2

Q25

)
+ tan2 ρ− tan2 ρ

)
. (C.3)

The potential has one global minimum at ρ = 0. There is an unstable stationary

point at ρ = π/2 (see figure 6). This is precisely the long string of [11]. At the special

value of angular momentum L = Q5, the potential becomes completely flat and the

long and the short strings become degenerate [11]. The fact that this happens at

L = Q5 rather than L = Q1Q5 indicates that this effect is unrelated to the stringy

exclusion principle of AdS3 × S3.
Spherical D-strings in S3 can also be analyzed in similar manner. The potential

is found to take the form

E =

√
Q25r

2

R4
+
(L2 −Q5r2/R2)2
R2 − r2 , (C.4)

which for L = Q5 becomes flat and degenerate.

Note added. While this paper was in preparation, we learned that similar results

are being considered by Grisaru, Myers, and Tafjord [22].
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