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1. Introduction

In this work we study D-branes on the quintic Calabi-Yau, historically the first CY to

be intensively studied. Our guiding question will be: to classify all supersymmetry-

preserving D-branes at each point in CY moduli space, and find their world-volume

moduli spaces. As is well known, results of this type are quite relevant for phe-

nomenological applications of M/string theory, because the world-volume theories

we will obtain include a wide variety of four-dimensional theories with N = 1 space-
time supersymmetry. The problem includes the classification of holomorphic vector

bundles (which are ground states for wrapped six-branes); and almost all M/string

compactifications which lead to d = 4, N = 1 supersymmetry (such as (0, 2) heterotic
string compactifications and F theory constructions) have a choice of bundle as one

of the inputs. Thus, many works have addressed this subject explicitly or implicitly.

As usual in string compactification this geometric data is only an input and one

would really like to answer the same questions with stringy corrections included. The

primary question along these lines is: is the effect of stringy corrections just quanti-

tative — affecting masses and couplings in the effective lagrangian but preserving the

spectrum and moduli spaces — or is it qualitative? If the latter, we might imagine

that geometric branes undergo radical changes of their moduli space or are even desta-

bilized in the stringy regime, with new branes which were unstable in the large volume

limit taking their place. It should be realized that at present very little is known

about this question; for example it has not been ruled out that the D0-brane becomes

unstable in the stringy regime or has moduli space dimension different from 3.

Clearly these questions are of great importance for the string phenomenology

mentioned above and were asked long ago in the context of (0, 2) models. No simple

answer has been proposed; we will return to this in the conclusions.

A concrete framework which allows an exact CFT study of the stringy regime is

provided by the Gepner models. The main lesson from the original study of Gepner

models for type-II and heterotic strings was that these CFT compactifications are

continuously connected to CY compactification. Mirror symmetry is manifest in the

2d superconformal field theory, and this connection was one of the earliest arguments

for it in the CY context.
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The first detailed study of D-branes in Gepner models was made by Recknagel

and Schomerus [7] who (following the general approach of Cardy) constructed a large

set of examples; further work appears in [8, 9]. So far no geometric interpretation

or contact with the large volume limit has been made. We will do so in this work.

The main tool we will use is the (symplectic) intersection form for three-cycles in

the large volume limit. This form governs Dirac quantization in the effective d = 4

theory and as such must be invariant under any variation of the moduli. As argued

in [10, 11] it is given by the index Trab(−1)F in open string CFT and thus is easily
computed for the Gepner boundary states. The detailed study of Kähler moduli

space by Candelas et. al. [12] then allows relating this to the large volume basis for

2p-branes. We can also make the large volume identification for the 3-branes, aided

by the large discrete symmetry group.

The detailed outline of the paper is as follows. In section 2 we review the quin-

tic, its homology and moduli space, and give a general overview of D-branes on the

quintic in the large volume limit. In section 3 we review the stringy geometry of its

Kähler moduli space and the monodromy group acting on B branes. In section 4

we review Gepner models and Cardy’s theory of boundary states, which will allow

us to review the boundary states constructed by Recknagel and Schomerus. We

briefly discuss the theory for K3 compactifications, and show that the results agree

with geometric expectations; in particular that the dimension of a brane moduli

space on K3 is given by the Mukai formula. In section 5 we compute the large vol-

ume charges for the quintic boundary states, and compute the number of marginal

operators. This will allow us to propose candidate geometric identifications. In

section 6 we discuss the computation of world-volume superpotentials. We begin

by presenting evidence that the superpotential is “topological” in a sense that we

explain. If true, an important consequence would be that the superpotential for

B-type branes has relatively trivial Kähler dependence and can thus be computed

in the large volume limit. This would imply general agreement between stringy and

geometric results, analogous to the case of the prepotential. In section 7 we discuss

superpotential computations in the Gepner model and derive selection rules. Be-

sides charge conservation rules similar to those in the closed string sector, additional

boundary selection rules appear, and we illustrate these with the examples of the A1
and A2 minimal models. The selection rules will allow us to establish that certain

branes have non-trivial moduli spaces. The exact superpotentials should be calcu-

lable given the solutions of the consistency conditions of boundary CFT [13, 14];

this is work in progress. In section 8 we summarize our results and draw conclu-

sions.

A point of notation: in labeling a p-brane, we always ignore its Minkowski space-

filling dimensions (for example, a D4 wraps four dimensions of the CY), but we

describe its world-volume lagrangian in d = 4, N = 1 terms (appropriate if the

brane filled all 3 + 1 Minkowski dimensions).
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2. Large volume limit of the quintic

2.1 General discussion of D-branes on large volume CY

We are interested in BPS states in type-II string theory described by collections

of D-branes at points on or wrapping some cycle in a Calabi-Yau manifold M . A

configuration for N coincident D-branes with worldvolume Σ wrapped on such a

cycle is specified by an embedding X : Σ→M and a U(N) gauge field A on Σ, with

field strength F = dA+ [A,A]. The U(1) part of U(N) appears in combination with

the B-field, F = F − X∗B, where X∗B is the pullback of the NS B-field onto the
worldvolume.

The conditions for supersymmetric embeddings with nonabelian fields turned on

has not been given, but they have been worked out for single D-branes in refs. [3, 15],

for which the action of spacetime supersymmetry and worldvolume κ-symmetry is

known [16]. A compactification preserving supersymmetry will occur if there are

constant spinors ηi on M for each of the spacetime SUSYs. These supersymme-

tries transform the embedding coordinates (and their superpartners) on the D-brane

worldvolumes; they are preserved if one can find a κ-symmetry transformation which

cancels the SUSY transformation. This condition can be written as

(1− Γ)ηi = 0 (2.1)

and those ηi which are solutions form the unbroken SUSYs. Γ is defined as fol-

lows [15]. Let Em
µ be the vielbein connecting frame indices m and spacetime indices

µ. We can pull this back to the worldvolume, defining

Em
α = ∂αX

µEm
µ (X) , (2.2)

where α is a worldvolume index for the p-brane. With this we can pull back the 10D

γ-matrices Γm:

Γα = E
m
α Γm . (2.3)

Define

Γ(p+1) =
1

(p+ 1)!
√
g
εα1...αp+1Γα1...αp+1 , (2.4)

where

gαβ = ηmnE
m
α E

n
β (2.5)

is the induced metric on the Dp-brane. We can now write:

Γ =

√
g√

g + F
∞∑
`=0

1

2``!
Γα1β1...αnβnFα1β1 . . .FαnβnΓn+(p−2)/2(11) Γ(p+1) . (2.6)

When F = 0 this can be written in the simpler, more familiar form:
Γ = εα1...αp+1∂α1X

µ1 . . . ∂αp+1X
µp+1Γµ1 . . .Γµp+1 , (2.7)
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where Γµ = E
m
µ Γm. The conditions in this latter case have been worked out in some

detail, as we will describe below. These conditions match those in refs. [17, 18] for

boundary states of BPS D-branes in flat space with constant background fields.

Solutions to eq. (2.1) in the presence of nonzero F have been worked out for flat,
intersecting branes in refs. [17, 18, 15]. In the case of BPS D-branes in Calabi-Yau

3-fold compactifications the geometric conditions implied by (2.1) (and the analog

for boundary states) have been worked out in [3, 6]. These solutions fall into two

classes: “A-type” branes wrapping special lagrangian submanifolds and “B-type”

branes wrapping holomorphic cycles. Let us describe each of these in turn.

2.1.1 B branes

“B-type” BPS branes wrap even-dimensional, holomorphic cycles in the Calabi-

Yau [3, 6]. For B (even-dimensional) branes, (2.1) is solved by holomorphically

embedded curves (2-branes) and surfaces (4-branes), as well as by 0 and 6-branes

with the obvious (trivial) embeddings. We may also have gauge fields on these branes.

In general the gauge field may change the definition of a supersymmetric cycle via

eq. (2.1). However, if the brane is wrapped around a holomorphic cycle, we can find

conditions for the gauge field to preserve the supersymmetries. In the case of N

coincident D6-branes wrapping the entire CY threefold, if we assume that the gauge

fields live only in the threefold then the SUSY-preserving gauge field must satisfy

the “hermitean Yang-Mills equations” [19]:

Fij = 0ω
2 ∧ trF = cω3 , (2.8)

where (i, j) and ī, ̄ are holomorphic and antiholomorphic indices, respectively, on the

CY. These equations define a “hermitean-Einstein” connection A with curvature F .

The first equation tells us that the vector bundle is holomorphic. The second equation

tells us that the vector bundle is “ω-stable”; conversely, ω-stability guarantees a

solution to these equations [20] (c.f. chapter 4 of [21] for a discussion and definitions.)

For branes wrapped around holomorphic submanifolds of M , these equations

must be altered. The gauge fields polarized transverse to the cycle are replaced by

“twisted” scalars Φ which are one-forms in the normal bundle to the embedding [4],

and eq. (2.8) becomes a generalization of the Hitchin equations for Φ and F [19].

It is believed that all topological invariants of a D-brane configuration are given

by an element of a particular K-theory group on M [22, 23]. When the K-theory

group and/or the cohomology ofM has torsion the K-theory interpretation is impor-

tant; one may have objects charged under the torsion. The charge can be written [22]

as a generalization of the results of [24, 25]:

v(E) = ch(f!E)

√
Â(M) . (2.9)

Here E is a vector bundle on Σ; remember that we must extend the U(1) part of the

gauge field F by the NS B-field, so properly the vector bundle E is a polynomial in F .
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Let π :M → Σ be the projection onto the worldvolume and N be the normal bundle
of Σ ↪→ M . There is a K-theory element δ(N) which is roughly a delta function on the

worldvolume and depends on N ; we can thus define f!(E) = π
∗E⊗δ(N). The moduli

space of D-branes will not just be the moduli space of vector bundles in this K-theory

class but rather the moduli space of coherent semistable sheaves in this class [26,

19]. Some advantages of this definition through K-theory and sheaves, besides the

fact that it seems to be correct, are that it places configurations with D6-branes

(gauge field configurations on M) on an equal footing with configurations without

D6-branes, and that it can describe certain singularities which lead to sensible string

compactifications.

In examples without torsion, such as the quintic, one may describe the D-brane

charge in a less esoteric fashion. Assuming the branes give rise to particles in the

macroscopic directions, for a 2n-dimensional worldvolume Σ we can write the D-

brane coupling to the RR gauge fields via the “Wess-Zumino term” as [27, 24, 25]:

∫
Σ

C ∧ ch(F −B)
√
Â(M)

Â(N)
, (2.10)

where

C = C(2n+1) + C(2n−1) + · · ·+ C(1)

is a sum over the (k)-form RR potentials that couple to the 2n-brane.

These RR charges reduce to conventional electric and magnetic charges in the

four noncompact dimensions. Given two D-branes which reduce to particles, the

most basic observable we can study is the Dirac-Schwinger-Zwanziger symplectic

inner product on their charges,

I(a, b) = QEa ·QMb −QMa ·QEb . (2.11)

We will refer to this as the “intersection form” as it is closely related to the topological

intersection form for two- and four-branes. For two six-branes, from the formulas

above it is

I(a, b) =

∫
ch(Fa) ch(−Fb) Â(M) . (2.12)

Finally, we quote a general theorem regarding stability (Bogomolov’s inequal-

ity [28]; c.f. [29, 21]): given a variety X of dimension n and ω an ample divisor on X,

then a ω-semistable torsion free sheaf E of rank r and Chern classes ci will satisfy∫
S

(
2r c2 − (r − 1)c21

) ∧ ωn−2 ≥ 0 . (2.13)

The parenthesized combination is called the “discriminant” of the sheaf and is equal

to c2(End(E)). In the special case c1(E) = 0 this amounts to requiring c2(E) ≥ 0.

6
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2.1.2 A branes

An “A-type” BPS brane wraps a three-dimensional special lagrangian submanifold

Σ [3]:1

ω|Σ = 0
Re eiθΩ|Σ = 0 . (2.14)

Here Ω is the holomorphic 3-form of the Calabi-Yau and θ is an arbitrary phase.

Equivalently to the second equation, we can require that Ω pulls back to a constant

multiple of the volume element on Σ. Furthermore the gauge field on this manifold

must be flat. A nice introduction to the general theory of these is [31]. It is shown

there (and in the references therein) that the moduli space has complex dimension

b1(Σ). The space of flat U(1) connections has real dimension b1(Σ), and ωij can be

used to get an isomorphism between T ∗Σ and NΣ; thus the deformations of Σ pair
up with the Wilson lines to form b1(Σ) complex moduli.

For three-branes, the DSZ inner product (2.11) is precisely the geometric inter-

section form.

One application of these branes is the Strominger-Yau-Zaslow formulation of

mirror symmetry, a precise formulation of the idea that “mirror symmetry is T-

duality” [32]. Since mirror symmetry exchanges the sets of A and B branes, an

appropriately chosen moduli space of A branes on M will be the moduli space of

D0-branes on the mirror W . Clearly b1 = 3 for such A-branes, and SYZ argue that

Σ will be a T 3 in this case. A similar proposal was made for general B branes with

bundles in [33].

Another application is the construction of N = 1 gauge theories with the help

of brane configurations. Supersymmetric three-cycles have been used to explore the

strong coupling limit by lifting the brane configurations to M-theory in [34].

Not too many explicit constructions of special lagrangian submanifolds are known

and it appears (e.g. see [31]) that the problem is of the same order of difficulty as

writing explicit Ricci-flat metrics on a CY. A general construction we will use below

is as the fixed point set of a real involution.

2.2 General world-volume considerations

Given a system X of A or B D-branes, we can consider the system which is identical

except that it extends in the flat 3+1 dimensions transverse to M . This system will

have a d = 4, N = 1 supersymmetric gauge theory as its low-energy world-volume
theory, whose data is a gauge group GX ; a complex manifold CX parameterized by

chiral superfields φi; a Kähler potential K on CX ; an action by holomorphic isome-

tries of GX on CX (linearizing around a solution this corresponds to the usual choice

of representation R of the gauge group), and a superpotential W (a holomorphic

1There is some evidence that the special lagrangian condition receives α′ corrections [30].
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function on CX invariant under the action of GX). If GX contains U(1) factors, each

of these can have an associated real constant ζa (the “Fayet-Iliopoulos terms”).

In the classical (gs → 0) limit, the moduli space of this theory is the solutions
of Fi = ∂W/∂φi = 0 (the “F-terms”) and Da = ζa (the “D-terms”) modulo gauge

transformations, where Da is the moment map generating the associated gauge trans-

formation (and ζa ≡ 0 in the non-abelian parts of the gauge group).
We review this well-known material for a number of reasons. First, we remind

the reader that although some of our later discussion will use other realizations of

this D-brane system (for example as particles in 3+1 dimensions), the world-volume

theories for these other realizations are all obtained by naive dimensional reduction

from the 3 + 1 theory (if gs ∼ 0), while the 3 + 1 language makes it easy to impose
supersymmetry.

Second, it is known that the study of bundles and sheaves on CY three-folds

is much more complicated than that for K3; this complication has a direct physical

counterpart in the reduced constraints of N = 1 supersymmetry. The most basic
example of this is the fact that — unlike the case for K3 — there is no formula for

the dimension of the moduli space of E given c(E). The main reason for this is that

this dimension is not necessarily constant — the moduli space can have branches of

different dimension, and can depend on the moduli of the CY as well.

Physically, this corresponds to the possibility of a fairly arbitrary superpotential

in the low energy theory. Indeed, the language of superpotentials and N = 1 effective
lagrangians might be the best one for these problems, much as hyperkahler geometry

and hyperkahler quotient is for instanton problems in four dimensions. Just as the

self-dual Yang-Mills equations can be regarded as an infinite-dimensional hyperkahler

quotient, we might pose the problem of rephrasing the YM equations under discussion

as the problem of finding the moduli space of an N = 1 effective theory with an
infinite number of fields.

The basic outlines of part of this treatment are known (see [35, chapter 6], for

a very clear discussion of the four-dimensional case). The two equations (2.8) will

correspond directly to the F-term (superpotential) constraints and the D-term con-

straints, respectively. Indeed, the problem of solving Fij = 0 is a purely holomorphic

problem, while it is not hard to see that the expression F a ∧ ωn−1 is the moment
map generating conventional gauge transformations. The stability condition on the

bundle is exactly the infinite-dimensional counterpart of the usual condition in su-

persymmetric gauge theory for an orbit of the complexified gauge group to contain

a solution of the D-flatness conditions (e.g. see [36]). Donaldson’s theorem proving

the existence of such solutions proceeds exactly by considering the flow generated by

i times the moment map to a minimum; the Uhlenbeck-Yau generalization is quite

similar (for technical reasons a different equation is used).

The other part of the story — translating the problem of finding holomorphic

vector bundles into solving constraints on a finite-dimensional configuration space,

8
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which can be derived from a superpotential — does not seem to have been addressed

in as systematic a manner; clearly this could be useful.

In a sense the six-dimensional problem is the “universal” one which also describes

the lower-dimensional branes. Not only can their charges be reproduced, but gauge

field singularities will correspond to specific lower dimensional branes (e.g. the small

instanton). Furthermore, there is a sense in which even the lower-dimensional brane

world-volume theories are six-dimensional if we include “winding strings” (by analogy

to tori and orbifolds, although this idea has not yet been made precise). Treating a

system of N D0’s as quantum mechanics requires neglecting these strings, which one

expects to be problematic once the separation between branes approaches the size of

the space.

We now turn from these abstract ideas to our concrete example.

2.3 D-branes on the quintic

Perhaps the best-studied family of Calabi-Yau manifolds is the quintic hypersurfaces

in P4. A relatively thorough discussion of these is contained in the classic paper [12].

The moduli space of these manifolds is locally the product of b2,1 = 101 complex

structure deformations and b1,1 = 1 deformations of the complexified Kähler forms

B+ iJ (where B is the flux of the NS-NS B-field). We will be particularly interested

in the Fermat quintic

P =
5∑
i=1

z5i = 0 , (2.15)

where zi are the homogeneous coordinates on P
4. Note that this equation has a

S5 ./ Z
4
5 discrete symmetry; the Z

5 generators are gi : zi → ωzi and satisfy the

relation
∏5

i=1 gi = 1, while the S5 permutes the coordinates in the obvious way.

2.3.1 B branes on the quintic

As we have discussed, D-branes on the quintic can be described by vector bundles

or sheaves on this space. Let us denote the charge carried by a single D2p-brane

wrapped about a generator of H2p as Q2p = 1.

Transporting a D-brane configuration about closed, nontrivial cycles of the mod-

uli space of Kähler structures will induce an associated Sp(4,Z) monodromy on the

B branes. We will discuss the monodromy more completely in the next section, but

there is already one cycle in the moduli space which can be understood in the large

volume limit: B → B + 1, where B is the NS 2-form. The action on the charge Q

can be seen from eqs. (2.9), (2.10) [37]. Mathematically this corresponds to the pos-

sibility to tensor the vector bundle V2p with a U(1) bundle of c1 = 1. This preserves

stability and the dimension of the moduli space. Given a bundle V this operation

and its inverse can be used to produce a related bundle with −r < c1 ≤ 0: this is
referred to as a “normalized” vector bundle.

9
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There is no classification of vector bundles and coherent sheaves on the quintic,

but we can write down a few examples in order to orient ourselves when discussing

specific boundary states at the Gepner point.

BPS D2-branes wrap holomorphic 2-cycles of the Calabi-Yau, the same cycles as

appear in worldsheet instanton corrections. Such cycles can have arbitrary genus and

arbitrary degree. Degree one rational curves are generically rigid on the quintic [38].

Nontheless for special quintics, families may exist; for example, in the case of the

Fermat quintic (2.15), there are 50 one-parameter families essentially identical to the

family [39, 40]:

(z1, z2, z3, z4, z5) = (u,−u, av, bv, cv)
a5 + b5 + c5 = 0 ; a, b, c ∈ C , (2.16)

where (u, v) are homogeneous coordinates in P1. Once we perturb away from the Fer-

mat point, these moduli are lifted and a finite number of rational curves remain [39].

This could be described in the world-volume theory by a superpotential of the general

form

W = φψ2 ,

where φ are complex structure moduli; φ = 0 is the Fermat point; ψ are curve moduli,

and ψ = 0 a curve which exists for generic quintics.

The infinitesimal description of deformations of such cycles is as sections of the

normal bundle, which by the Calabi-Yau condition will beO(a)⊕O(b) with a+b = −2
for a rational curve. One might think that all one needs to find examples of families

is to find examples with a ≥ 0 or b ≥ 0, but this is not true as deformations can be
obstructed. The canonical example is given by resolving the singularity in C4

xy = z2 − t2n . (2.17)

For n = 1 this is the conifold singularity and the “small” resolution contains

a rigid P1, parameterized by x/(z − t) = (z + t)/y. It can be shown [41] that for

n > 1 the resolution also contains a P1, now with normal bundle O⊕O(−2), but the
deformation is obstructed at n’th order, as could be described by the superpotential

W = ψn+1 . (2.18)

Intuitively this can be seen by deforming (2.17) by a generic polynomial in t2, which

splits the singularity into n conifold singularities, each admitting a rigid P1. If we

then tune the parameters to make these P1’s coincide, a superpotential describing

the n vacua will degenerate to (2.18). Such singularities do appear in large families

of quintic CY’s [38].2

2(Note added in v2): The idea that the moduli space of such a curve can always be described

as the critical points W ′ = 0 of a single holomorphic function was apparently not known to math-
ematicians. We thank S. Katz for a discussion on this point.
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It turns out that the curves in (2.16) provide another example of obstructed

deformations [39].3 The normal bundle of these curves is N = O(1) ⊕ O(−3); as
dimH0(N ) = 2, there must be another obstructed deformation; call it ρ. The correct
counting of curves upon deforming away from the Fermat point can be reproduced

by a superpotential ρ3. The modulus ρ is also connected to the fact that pairs of the

50 families in (2.16) intersect (e.g. take (2.16) and the family (av, bv, u,−u, cv) with
c = 0); it describes deformations into the second family. All of this structure can be

summarized in the superpotential

W (ρ, ψ) = ρ3ψ3 + φF (ρ, ψ) + · · · ;

where φF generalizes the φψ2 term discussed above.

Higher genus curves can generically come in families and examples can be found

as complete intersections of hypersurfaces in P4 with the quintic. A particular ex-

ample is the intersection of two hyperplanes with the quintic [40]:

5∑
k=1

akzk =

5∑
k=1

bkzk = 0 , ak, bk ∈ C . (2.19)

It is easy to see that there are six independent complex parameters after rescaling

the equations. The curve is genus 6, and the area of the curve C is
∫
C
J = 5, where

J is the unit normalized Kähler form of P4, i.e.∫
P4

J ∧ J ∧ J ∧ J = 1∫
Quintic

J ∧ J ∧ J = 5 (2.20)

Thus this brane has Q2 = 5.
4 There will be six additional complex moduli coming

from Wilson lines of the U(1) gauge field around the 12 cycles of the curve.

Similarly, four-branes can be obtained as the intersection with another hyper-

surface in P4. For example, the intersection of the quintic with a single hyperplane∑
k

akzk = 0

produces a four-parameter family of four-cycles S. Their volume is
∫
S
J = 5 and so

Q4 = 5. In addition c2(TS) = 11J
2; so that the coupling of C(1) to p1/48 in eqs. (2.9),

(2.10) leads to an induced 0-brane charge of 55/24. The four-brane generically may

support nontrivial gauge field flux over two-cycles, corresponding to D2-brane charge,

3(Note added in v3): We would like to thank S. Katz for explaining this example, pointing out

a mistake in our earlier draft, and suggesting the superpotential discussed here.
4See [42, chapters 1 and 2], for a nice description of complete intersections in projective spaces,

and of techniques for performing the calculations we allude to here.
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or instanton solutions, corresponding to zero-brane charge. Some discussion of the

moduli space of four-branes in a Calabi-Yau can be found in [43]. By (2.13), stability

of the vector bundle on the four-brane requires Q0 > 0.

Finally we can look at the case of D6-branes wrapping the entire Calabi-Yau

manifold. In fact we will find that all of the boundary states we examine at the

Gepner point will have non-trivial six-brane charge. A single six-brane by itself will

have no moduli. The U(1) gauge field on a single 6-brane can support flux with first

Chern class c1 = n corresponding to Q4 = n. We can get the relevant bundles by

restriction from U(1) bundles on P4. The latter have no moduli, and we will not gain

any upon restriction.

We can also imagine binding D2-branes to the D6-brane, by analogy to 2−6 (or
0 − 4) configurations in flat space. For Q6 = 1 and Q4 = 0 this appears singular;
U(1) gauge fields do not support smooth instanton solutions. The brane counterpart

to this is that the 2− 6 strings cannot be given vevs which bind the branes and give
mass to the relative U(1)s. This might lead us to predict that such states, if they

exist at all, exist only as quantum-mechanical bound states. Such a state should be

easily identifiable because it appears at the junction of Coulomb and Higgs branches

of the moduli space; a small perturbation should put it on the Coulomb branch

and produce two U(1) gauge fields in the macroscopic direction. In the classical

considerations of this paper, it should not show up at all.

For Q6 > 1, we require information about vector bundles on the Calabi-Yau. A

well-known example with Q6 = 3 is deformations of the tangent bundle. This has

vanishing c1 and c2(E) = 10J giving us Q2 = 50. The dimension of the moduli

space is 224. This example can be generalized as follows. (Such generalizations are

due to for example [44, 45] in the physics literature, and were previously known as

“monads” in the math literature). We consider a complex of holomorphic vector

bundles

0→ A→a B →b C → 0
such that ker a = 0, im a is a subbundle of B, im b = C and define our new bundle

as

E = ker b/ im a .

For a hypersurface M in Pn, simple bundles to start with are direct sums of the line

bundles O(n) restricted to M , as in

0→ ⊕O → ⊕mi=1O(qi)→ O
(

m∑
i=1

qi

)
→ 0 .

This data allows computing the Chern classes:

cn =

(
m∑
i=1

qi

)n

−
m∑
i=1

qni .

The dimension of the moduli space can also be computed, but this is not as easy.

12
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A physical realization of this construction is to start with fields λi parameterizing

sections of B (e.g. the world-sheet fermions of a heterotic string theory), include a

superpotential enforcing the constraints bai λ
i = 0, and gauge invariances identifying

λi ∼ λi + ai. Although it is not the only place this construction appears (e.g.

see [46]), the most relevant version for present purposes is in linear (0, 2) models [45].

These constructions have the advantage that they can be studied with conventional

world-sheet techniques; a disadvantage is that one requires the anomaly cancellation

conditions c1 = 0 and c2(V ) = c2(T ) to get a sensible model, so only a subset of

possible V can be obtained.

The anomaly cancellation conditions also appear in D-brane constructions of

the dual type-I theories as the consistency condition that the total RR charge van-

ishes [47]. However in this context we need not consider branes which fill the non-

compact dimensions but can instead consider lower dimensional branes, for which

these consistency conditions are not required (a point emphasized in [5]). It seems

likely that this additional freedom will lead to a simpler theory.

Another construction of vector bundles on a CY is the Serre construction. Given

a holomorphic curve (satisfying certain conditions), this produces a rank 2 vector

bundle with a section having its zeroes on the curve. In [48] this is used to produce

an example of a vector bundle with an obstructed deformation (on a different CICY).

Finally, to conclude this section, there are a few explicit constructions of bundles

on P4 in the literature using monads, such as the Horrocks-Mumford bundle (r =

2, c1 = 5, c2 = 10) and the bundle of Tango (r = 3, c1 = 3, c2 = 5, c3 = 5) [49], which

can be restricted to the hypersurface P = 0 to produce new examples.

2.3.2 A branes on the quintic

The simplest example of supersymmetric 3-cycles on the quintic are the real surfaces

Imωjzj = 0 with ω
5
j = 1; this was described in [3] for ω = 1. These cycles are

determined by the five phases (ω1, ω2, ω3, ω4, ω5) up to the diagonal Z5 action ωi →
ωωi (which is just a remnant of the equivalence of homogeneous coordinates under

complex multiplication), so they come in a 625-dimensional irrep of the discrete

symmetry S5 × Z45.
The equation

∑
(ωjxj)

5 = 0, where ωixi ∈ R, always has a unique solution for
xk in terms of the other real coordinates; thus the cycle is the real projective space

RP 3. The first homotopy group is π1(RP
3) = Z2; by the discussion above (c.f. [31])

the wrapped 3-branes cannot have any continuous moduli, but they can support a

discrete Z2-valued Wilson line.

To compare these cycles with Gepner boundary states it will be useful to find

their intersection matrix. Let us choose the coordinate system z1 = 1 on P
4, so that

ω1 = 1. Regard the cycle (1, 1, 1, 1, 1) as an embedding of the coordinates x2,x3 and

x4 into the quintic with positive orientation. The other surfaces are obtained by

Z45 rotation from this one,
∏5

i=1 g
ki
i (1, 1, 1, 1, 1). Since the intersection matrix must
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respect the Z45 symmetry, it can be written as a polynomial in the generators gi and

is determined by the matrix elements

〈(1, 1, 1, 1, 1)|(1, ω2, ω3, ω4, ω5)〉 = 〈(1, 1, 1, 1, 1)|gk22 gk33 gk44 gk55 |(1, 1, 1, 1, 1)〉, (2.21)

where gkii : z → ωkiz. S5 symmetry also constrains the problem in an obvious way.

There are different possibilities for intersections with the surface (1, 1, 1, 1, 1)

in this coordinate system. If ω2, ω3, ω4 and ω5 are all different from 1 there is

no intersection in this coordinate patch. If only three of them are different from 1

there is exactly one intersection in this coordinate patch and the intersection has the

signature sgn Imω2 Imω3 Imω4 assuming that ω5 = 1. If the two surfaces intersect

on a higher dimensional locus the intersection number has to be calculated by a small

deformation of one of the two surfaces. This deformation has to be normal to both

surfaces. Because of the special lagrangian property of the undeformed surfaces this

”normal bundle” of the intersection locus can be identified with its tangent space.

The intersection number is then given by the number of zeros of a section of the

tangent bundle of the intersection locus.

For example, in the case that exactly two ωj’s are not 1 the intersection locus is

a circle. A circle can have a nowhere vanishing section of its tangent bundle and the

intersection number in this coordinate patch is 0. As another example, let precisely

one ωj 6= 1. The intersection locus is then an RP2. A section of its tangent bundle
has one zero, as can be seen by modding out the ’hedgehog configuration’ of an S2 by

Z2. The orientation of this intersection is given by the intersection in the remaining

complex dimension, i.e. by Imωj .

In order to compute the full intersection we must look at all possible patches.

This can be done by using the constraint
∏5

i=1 gi = 1 to rewrite (1, ω2, ω3, ω4, ω5) as

(ω−12 , 1, ω−12 ω3, ω
−1
2 ω4, ω

−1
2 ω5) and so on. We then add all of the intersection numbers

for all of these patches. Thus, although we find that 〈(1, 1, 1, 1, 1)|(1, ω, ω, ω, ω)〉 = 0
in the z1 = 1 coordinate patch, the total intersection number — the coefficient of∏5

i=2 gi in the intersection matrix — is 1. Another example is the intersection of

(1, 1, 1, 1, 1) with (1, ω, ω, ω, 1) which gives a circle in the patch z2 = 1 and a point

in the patch z1 = 1.

A simple general formula that matches all of these results is

I
RP
3 =

5∏
i=1

(gi + g
2
i − g3i − g4i ). (2.22)

3. Stringy geometry

Type-IIB string compactification on a general CY threefoldM leads to anN = 2, d =
4 supergravity with b2,1+1 vector fields (b2,1 vector multiplets plus the graviphoton)

and b1,1 + 1 hypermultiplets (including the 4d dilaton); in IIA these identifications
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are reversed. The most basic physical observables which reflect the structure of M

are those described by the special geometry of the vector multiplets. This geometry

is determined by a prepotential FK of Kähler deformations in the IIA case, and by

the prepotential Fc for complex structure deformations in the IIB case.

A fundamental result from the study of the worldsheet sigma model is that Fc
can be determined entirely from classical target space geometry; it receives no world-

sheet quantum (α′) corrections. Let us then discuss the complex structure moduli
space. Choose a basis for the 3-cycles Σi ∈ H3(M,Z) (where i = 0, . . . , b2,1, b2,1 +

1, . . . , 2b2,1 + 2), so that the intersection form ηij = Σi · Σj takes the canonical form
ηi,j = δj,i+b2,1+1 for i = 0, . . . , b2,1 (an a cycle with a b cycle). The b2,1 + 1 vector

fields come from reducing the RR potential C(4) on the a cycles, while the b cy-

cles produce their d = 4 electromagnetic duals. Thus a three-brane wrapped about

the cycle Σ =
∑

iQiΣ
i has (electric,magnetic) charge vector Qi. Note that H3(X)

forms a nontrivial vector bundle over the moduli spaceMc of complex structures; a

given basis in H3(X,Z) will have monodromy in Sp(b3,Z) as it is transported around

singularities inMc.

The primary observables are the periods of the holomorphic three-form,

Πi =

∫
Σi
Ω .

In N = 2 language these are the vevs of the scalar fields in the corresponding vector
multiplets. The a-cycle Πi’s can be used as projective coordinates on the moduli

space; the b-cycle periods then satisfy the relations Πj = ηij∂F/∂Πi. If we fix (for
example) Π0 = 1 to pass to inhomogeneous coordinates, the related vector field is the

graviphoton. These periods determine the central charge of a three-brane wrapped

about the cycle Σ =
∑

iQi[Σ
i]:

Z =

∫
Σ

Ω = QiΠ
i .

Thus the mass of a BPS three-brane is [50]:

mQ = c|Z| = c|Q · Π| (3.1)

where c is independent of Q. If we use four-dimensional Einstein units for m, it is

c = 1/gs(
∫
Ω ∧ Ω̄)1/2.

In contrast to Fc, FK receives world-sheet instanton corrections to the classical

computation. The exact worldsheet result can be obtained by mirror symmetry: FK
for IIA on M is equal to Fc for IIB on the mirror W to M . Of course this requires

a map between the periods of M and W . This analysis has been carried out for the

quintic in [12] (see [51] for a summary) and we will quote the result in this case.
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The mirror W to the quintic threefold M can be obtained [52] as a Z35 quotient

of a special quintic

0 =
5∑
i=1

z5i − 5ψz1z2z3z4z5 .

The transformation ψ → αψ with α5 = 1 can be undone by the coordinate transfor-

mation z1 → α−1z1 and thus the complex moduli space of W ’s can be parameterized
by ψ5. This is an ”algebraic” coordinate, which although not directly observable,

does appear naturally in the world-sheet formulations [53, 54].

The moduli spaceM has three singularities, about which the three-cycles in W

will undergo monodromy. Each singularity has physical significance. First, ψ5 →∞
is the “large complex structure limit” mirror to the large volume limit. In this

limit [51]

(5ψ)−5 → e2πi(B+iJ) , (3.2)

where B is the NS B-field flux around the 2-cycle forming a basis of H2(M), and J is

the size of that 2-cycle. Next, ψ5 → 1 is a conifold singularity; here a wrapped three-
brane becomes massless [55]. This turns out to be mirror to the “pure” six-brane [56,

57]. Finally, at ψ5 = 0 the model obtains an additional Z5 global symmetry; this is

an orbifold singularity of moduli space. The Gepner model (3)5 lives at this point in

Kähler moduli space of M [53].

Each singularity in M gives a noncontractible loop, which is associated with a

monodromy on the basis of 3-cycles in W (or even homology in M) and thus on the

periods. We let A be the monodromy induced by ψ → αψ around ψ = 0; clearly

A5 = 1. T will be the monodromy induced by going once around the conifold point,

and B will be the monodromy induced by taking ψ → α−1ψ around infinity. These
satisfy the relation B = AT . One may make the physics associated with a given

singularity manifest by choosing variables (the periods) for which the associated

monodromy is simple.

In our case the periods Πi satisfy a Picard-Fuchs differential equation of hyper-

geometric type. Since b3 = 4 it is fourth order and quite tractable. There will be four

independent solutions and as per the discussion above, we generally want to choose

a basis making one of the monodromies simple. Two such bases are particularly

natural. The first is the large volume basis which we will denote (Π6,Π4,Π2,Π0)
t.

Up to an upper triangular transformation this is determined by the asymptotics as

ψ5 →∞ 
Π6
Π4
Π2
Π0

→

−5
6
(B + iJ)3

−5
2
(B + iJ)2

B + iJ

1

 . (3.3)
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The coefficients correspond to the classical volumes of the cycles. The signs were cho-

sen so that the supersymmetric brane configurations have positive relative charges.

We will derive the monodromy below.

The other natural basis for us makes the monodromy A simple, and is appropriate

for describing the Gepner point. If we choose a solution ΠG0 (ψ) analytic near ψ = 0,

the set of solutions

ΠGi (ψ) = Π
G
0 (α

iψ) (3.4)

will provide a basis with the single linear relation 0 =
∑4

i=0Π
G
i . It turns out that the

0-brane period Π0 (the solution ω̃0 of [12, eq. (3.15)]) is analytic near ψ = 0 and thus

we can set ΠG0 = Π0 and define the others using (3.4). We then (as in [12]) choose

the period vector (ΠG2 ,Π
G
1 ,Π

G
0 ,Π

G
4 )

t. In this basis, the three monodromy matrices

are 5

AG =


−1 −1 −1 −1
1 0 0 0

0 1 0 0

0 0 1 0



TG =


1 4 −4 0
0 0 1 0

0 −1 2 0

0 4 −4 1



BG =


−1 −7 5 −1
1 4 −4 0

0 0 1 0

0 −1 2 0

 . (3.5)

In [12], the relation between the large volume and Gepner bases proceeds through

a third basis which we will call Π3, which is naturally described by a particular

basis of 3-cycles in W . The intersection form in this basis has the canonical form

η13 = η24 = −1, and the T monodromy is simple: Π3i → Π3i + δi,2Π34. Thus Π34 is
the vanishing cycle at the conifold and Π32 is its dual. This turns out to be enough

information to relate it to the Gepner basis uniquely up to a remaining SL(2,Z)

acting on Π31 and Π
3
3, which we may fix arbitrarily. One then finds a transformation

of Π3 to a basis satisfying (3.3). This is an SL(2,Z) transformation of the type which

was unfixed in the previous step; so the Π3 basis has no significance intrinsic to our

problem of relating ΠG to the large-volume basis. Thus we will merely quote the

final result for this change of basis, which is:

Π = MΠG Q = QGM−1 A =MAGM−1 . . .

5There is a typo in [12, table I] as published in Nuclear Physics B.
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M = L


0 −1 1 0

−3
5
−1
5

21
5

8
5

1
5

2
5
−2
5
−1
5

0 0 1 0

 . (3.6)

Here Q and QG are the charge vectors in the large-radius and Gepner basis re-

spectively. (In the notation of [12], M = KNm: with K a matrix taking the

vector (Q4,−Q6, Q2, Q0) of their conventions to our conventions; and N taken with
a′ = b′ = c′ = 0.) The matrix L is an as-yet undetermined Sp(4, Z) ambiguity in the
Q2 and Q0 charges of the six- and four-branes:

L =


1 0 −b −c
0 1 a b

0 0 1 0

0 0 0 1


with (a, b, c) integers (the (a′, b′, c′) of [12]).
Given the classical intersection form η in the large-radius limit, we can now

determine the intersection form in the Gepner basis:

ηg =M
−1η(M−1)t =


0 −1 3 −3
1 0 −1 3

−3 1 0 −1
3 −3 1 0

 , (3.7)

where η14 = −η41 = −η23 = η32 = 1 from [12].
6 L does not enter since it is

symplectic, and so preserves η. ηg has determinant 25 and thus the Gepner basis is

not canonically normalized; this point will not be important for us.

We want to better understand the ambiguity L. We can start by comparing the

monodromy B with our expectations from the large volume limit. One may define a

basis of charges such that ΓRRk is the charge under the RR potential C(k+1), with the

switch in four- and six-brane charge as in (3.3). In this basis the effect of the shift

B → B + 1 follows from eq. (2.10):

BL =


1 1 −5

2
−5
6

0 1 −5 −5
2

0 0 1 1

0 0 0 1

 . (3.8)

The factors 1/2 and 1/6 in this expression come from expanding the exponential

(they can also be seen in (3.3)) and indicate that in this basis the charges are not

integers.

6The signs Σ6 · Σ0 = +1 and Σ4 · Σ2 = −1 in the large volume intersection form η follow from

the definition (2.12).
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The B monodromy in the Π basis (3.3) is

B =


1 1 3− a −5− 2b
0 1 −5 −8 + a
0 0 1 1

0 0 0 1

 . (3.9)

Eqs. (3.8) and (3.9) agree if a = 11/2 and b = −25/12, i.e.if we make a non-integral
redefinition of the charge lattice. The explanation of this is that the intersection

form in the conventions leading to (3.8) is actually not canonical, because it includes

the other terms in (2.10). If we act on the basis (3.3) with the matrix L(a =

11/2, b = −25/12, c), we can see that the charges are modified in precisely this way.
The modification due to b comes from the Â term in (2.12) (as c2 = 50 for the

quintic). a induces a two-brane charge on the four-brane and might come from c1 of

its normal bundle. These effects were referred to in [19] as the “geometric Witten

effect”.

The most interesting ambiguity comes from c which induces zero-brane charge on

the six-brane. In [12] this was attributed to the sigma model four-loop R4 correction

in the bulk lagrangian. In the D-brane context, one possibility is that this comes

from an as yet unknown term at this order in the D-brane world-volume lagrangians.

We should also keep in mind that the intersection form we are computing involves

the bulk propagation of the RR fields between the branes, so another possibility is

that it comes from a partner to the R4 term in the bulk lagrangian which affects the

RR kinetic term in a curved background.

In [12], the redefinition L was used to make the charge basis integral, but an

overall Sp(4,Z) ambiguity was left over. It is in general more useful to have an integer

charge basis so we will follow this procedure (this was already done implicitly as we

took integer coefficients in the change of basis). We can resolve most of the Sp(4,Z)

ambiguity by calling the state which becomes massless at the mirror of the conifold

point a “pure” six-brane with large volume charges (1 0 0 0), following [56, 57]. This

determines b = c = 0. A geometrical argument for this is that any fluxes on the

six-brane would produce additional contributions to its energy. If there is a line

from the large volume limit to the conifold point along which the six-brane becomes

massless with no marginal stability issues, this argument will presumably be valid.

Another argument is that we will find this state as a Gepner model boundary state

with no moduli, as is appropriate for a pure six-brane. Finally, this choice simplifies

the charge assignments for the other boundary states.

We still have the ambiguity in a to fix. As it happens this does not enter into

the results we discuss, so we have no principled way to do this. We will simply set

it to zero.
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4. Boundary states in CFT

4.1 Some results from boundary conformal field theory

A CFT on a Riemann surface with boundary requires specifying boundary condi-

tions on the operators. For sigma models these conditions can be derived by im-

posing Dirichlet and/or Neumann boundary conditions directly on the sigma model

fields. For more general CFTs we do not have a nice lagrangian description; so

the construction, classification, and interpretation of boundary conditions is not as

straightforward. (See [58, 7, 59, 8] and references there for recent work in this direc-

tion.)

Given that a CFT has a chiral symmetry algebra, one may simplify the problem

by demanding that the boundary conditions are invariant under the symmetry. We

can start with the Virasoro algebra which must be preserved (in superstring theory,

an N = 1 superconformal symmetry is gauged). Let the boundary be at z = z̄

in some local coordinates. Reparameterizations should leave the boundary fixed, so

we must impose T = T̄ . If the remaining symmetry algebra is generated by chiral

currents W (r) with spin sr, then such boundary conditions are

W (r) = ΩW̄ (r)Ω† , (4.1)

where Ω is an automorphism of the symmetry algebra.

We are interested in describing BPS D-branes which preserve N = 1 spacetime
SUSY. The closed-string sector will have at least N = (2, 2) worldsheet SUSY and
the boundary conditions must preserve a diagonal N = 2 part [60, 61]. Eq. (4.1)
leads to two classes of boundary conditions [6]: the “A-type” boundary conditions

T = T̄ , J = −J̄ , G+ = ±Ḡ− , (4.2)

and the “B-type” boundary conditions

T = T̄ , J = J̄ , G+ = ±Ḡ+ . (4.3)

These conventions correspond to the open-string channel where the boundary prop-

agates in worldsheet time. For Calabi-Yau compactification at large volume, A-type

boundary conditions correspond to D-branes wrapped around middle-dimensional su-

persymmetric cycles; and B-type boundary conditions to D-branes wrapped around

even-dimensional supersymmetric cycles [6].

A CFT on an annulus can also be studied in the closed-string channel where

time flows from the one boundary to the other. The boundaries appear as initial and

final conditions on the path integral and are described in the operator formalism by

“coherent” boundary states [62, 63]. The boundary conditions (4.1) can be rewritten

in the closed-string channel as operator conditions on these boundary states; for
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example

Jn = J̄−n A type

Jn = −J̄−n B type. (4.4)

The relative sign change from (4.2), (4.3) can be understood as the result of a π/2

rotation on the components of the spin one current; it means that the A-type states

are charged under (c, c) operators and the B-type under (c, a) operators.

The solution to these conditions [64, 65] are linear combinations of the “Ishibashi

states”:

|i〉〉Ω =
∑
N

|i, N〉 ⊗ UΩ|i, N〉. (4.5)

Here |i〉 is a highest weight state of the extended chiral algebra; the sum is over all
descendants of |i〉; and U is an anti-unitary map with U |i, 0〉 = |i, 0〉? and UW̄ (r)

n U † =
(−1)srW̄ (r)

n .

Modular invariance requires that calculations in either channel have the same

result. This gives powerful restrictions on possible boundary states. In particular

one requires that a transition amplitude between different boundary states can be

written as a sensible open-string partition function, via a modular transformation.

For rational CFTs with certain restrictions, Cardy [13] showed that the allowed linear

combinations of Ishibashi states (4.5) are:

|I〉〉Ω =
∑
j

Bj
I |j〉〉Ω =

∑
j

SjI√
Sj0

|j〉〉Ω . (4.6)

If χj is a character of the extended chiral algebra, then S
j
i is the matrix representation

of the modular transformation τ → −1/τ . In this notation capital and lower-case
letters denote the same representation; we use capital letters to denote this particular

linear combination of Ishibashi states. We may also associate a bra state to the

representation I∨ conjugate to I:

Ω 〈〈I∨| =
∑
j

Ω 〈〈j|Bj
I . (4.7)

These boundary states are in one-to-one correspondence with open-string boundary

conditions which we will label the same way. Cardy argued that the open-string

partition function was determined by the fusion rule coefficients. Let worldsheet

time and space be labeled by τ and σ respectively; and let the boundary run from

σ = 0 to σ = π, and the boundary conditions be I∨ and J , respectively. Then the
number of times that the representation k appears in the open-string spectrum is

precisely the fusion rule coefficient Nk
IJ ; in other words, the open-string partition

function will be

ZI∨J =
∑
k

Nk
IJχk . (4.8)
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4.2 The Gepner model in the bulk

Gepner models [66, 67] (see also [68] for a quick review) are exactly solvable CFTs

which correspond to Calabi-Yau compactifications at small radius [53]. They are

tensor products of r N = 2 minimal models together with an orbifold-like projection
that couples the spin structures and allows only odd-integer U(1) charge. We will

review their construction here. For simplicity we will discuss theories with d + r =

even, where d is the number of complex, transverse, external dimensions in light cone

gauge.

Our building blocks are the N = 2 minimal models at level k; these are SCFTs
with central charge c = 3k

k+2
< 3 [69, 70, 71, 72]. The superconformal primaries are

labelled by 3 integers, (l,m, s) with

0 ≤ l ≤ k ; |m− s| ≤ l ; s ∈ {−1, 0, 1} ; l +m+ s = 0 mod 2 . (4.9)

The integers l and m are familiar from the SU(2)k WZW model and can be un-

derstood from the parafermionic construction of the minimal models [73, 74]. s

determines the spin structure: s = 0 in the NS sector; and s = ±1 are the two chi-
ralities in the R sector.7 The conformal weights and U(1) charges of these primary

fields are:

hlm,s =
l(l + 2)−m2
4(k + 2)

+
s2

8
,

qlm,s =
m

k + 2
− s

2
. (4.10)

The N = 2 chiral primaries are clearly (l, l, 0) in the NS sector. The related Ramond
sector states (l,±l,±1) can be reached by spectral flow. The minimal models can also
be described by a Landau-Ginzburg model of a single superfield with superpotential

Xk+2 [75]–[79]. At the conformal point X l = (l, l, 0) and the Landau-Ginzburg fields

provide a simple representation of the chiral ring.

The N = 2 characters and their modular properties are described in [80, 81,
66, 67]; we will follow the notation in [66, 67]. One extends the s variable to take

values in Z4. The NS characters are labelled by s = 0, 2 and the different values

of s denote opposite Z2 fermion number. The contribution from the NS primary

is in χl,m,0. Similarly, in R sector s = ±1 denotes contributions from opposite
fermion number: the s = 1(s = 3) character includes the contribution from the

s = 1(s = −1) Ramond-sector primary. These characters are actually defined in
the range l ∈ {0, . . . , k}, m ∈ Z2k+4 and s ∈ Z4, where l + m + s = even. They
obey the identification χlm,s = χ

k−l
m+k+2,s+2 by which the fields can be brought into the

range (4.9).

7The variable m in [74], in [66, sec. 2.1], and [67, section 4], is what we are calling m− s.

22



J
H
E
P
0
8
(
2
0
0
0
)
0
1
5

Not every c = 9 tensor product of minimal models will give a consistent string

compactification with 4d spacetime SUSY. We must find a reasonable GSO projec-

tion, and we must project onto states with odd integer U(1) charges [60]. We must

then add “twisted” sectors in order to maintain modular invariance. The resulting

spectrum is most easily represented by the partition function, for which we require

some notation. We will tensor r minimal models at level kj with the CFT of flat

spacetime. The latter also has a N = 2 worldsheet SUSY in our case, and we de-
note the characters by the indices i. The vector λ = (l1, . . . , lr) gives the lj quantum

numbers and the vector µ = (m1, . . . , mr; s1, . . . , sr), the charges and spin structures.

Now define βj=1,...,r to be the charge vector with a two at the position of sj , and all

other entries zero; and define β0 to be the charge vector with all entries one. The

modular invariant partition function in light cone gauge can be written as [66, 67]:

Z =
∑
(i,̄i),λ,µ

∑
b0,bj

δβ(−1)b0χi,λ,µ(q)χī,λ,µ+b0β0+∑j bjβj(q̄) , (4.11)

Here χi,λ,µ is the character for the r minimal models specificed by λ, µ and for the

character of the flat transverse spacetime coordinates (labelled by i). In the sum,

b0 = 0, . . . , 2K − 1, bj = 0, 1 and K = lcm{2, kj + 2}. δβ is a Kronecker delta

function enforcing both odd integral U(1) charge and the condition that all factors

of the tensor product have the same spin structure.

The kth minimal model has a Zk+2 × Z2 symmetry [66, 82] which acts as:
gφlm,s = e

2πi m
k+2φlm,s, hφ

l
m,s = (−1)sφlm,s . (4.12)

With the above projection, all Z2 symmetries have the same action on a given state

and are identified. The remaining Z2 symmetry acts only on R states by reversing

their sign. The Zk+2 symmetry is correlated with the U(1) charge. In particular, the

diagonal generator G =
∏

j gj is the identity for integral U(1) charges. The Gepner

model is an orbifold theory; the orbifold group H is the group generated by G. The

remaining discrete symmetry is ⊗ri=1Zkr+2/H . For example, the (k = 3)5 model is
an orbifold by the diagonal Z5 of (Z5)

⊗5 (and the off-diagonal Z2 symmetries, to
correlate the spin structures).

4.3 Boundary states in the Gepner model

It is difficult to construct the most general boundary state for the Gepner model,

because the Gepner model is not rational. Following [7], we will consider states

which respect the N = 2 world-sheet algebras of each minimal model factor of the
Gepner model separately, and can be found by Cardy’s techniques. These might be

called “rational boundary states.” They are labeled according to Cardy’s notation

by α = (Lj,Mj , Sj) and an automorphism Ω of the chiral symmetry algebra. In our

case there are two choices of Ω giving either A- or B-type boundary conditions; Ω

must have the same action on every factor of the tensor product.
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Recknagel and Schomerus [7] proved the modular invariance of A- and B-type

boundary states with internal part:

|α〉〉 = 1
κΩα

∑
λ,µ

δβδΩB
λ,µ
α |λ, µ〉〉Ω . (4.13)

The coefficients are:

Bλ,µ
α =

r∏
j=1

1√√
2(kj + 2)

sin(lj, Lj)kj√
sin(lj, 0)kj

e
iπ
mjMj
kj+2 e−iπ

sjSj
2 , (4.14)

a result of eq. (4.6) for the minimal models and the extra coefficient κΩα described in

the appendix. Here

(l, l′)k = π
(l + 1)(l′ + 1)

k + 2
.

δΩ denotes the constraint that the Ishibashi state |λ, µ〉〉Ω must appear in the closed
string partition function (4.11). For A-type boundary states this is no constraint

as the Ishibashi states are already built on diagonal primary states and δβ already

enforces that total U(1) charge is integral. However, the B-type Ishibashi states have

opposite U(1) charge in the holomorphic and antiholomorphic sector, and these only

appear as a consequence of the GSO projection; so the δB constraint requires that all

the mj are the same modulo kj+2. Finally, an integer normalization constant C has

to be included in κΩα to get the correct normalization for the open-string partition

function.

It is easy to see from eqs. (4.13), (4.14) that the action of the Zkj+2 (Z2)

symmetries is Mj →Mj + 2 (Sj → Sj + 2). As a result of the δβ constraint, the two

physically inequivalent choices for Sj are S =
∑
Sj = 0, 2 mod 4. The Sj = odd case

seems to be inconsistent because their RR-charges do not fit into a charge lattice

together with the S = even states; thus they will violate the charge quantization

conditions8. In the end, due to the Z2 symmetry, it is enough to consider only

boundary states with S = 0. A boundary state can be written as

g
M1
2
1 · · · g

Mr
2
r h

S
2 |L1 · · ·Lr〉Ω := |L1 · · ·Lr;M1 · · ·Mr;S〉Ω =

g
M1−L1
2

1 · · · g
Mr−Lr
2

r h
S
2 |L1 · · ·Lr;M ′

1 = L1 · · ·M ′
r = Lr;S

′ = 0〉Ω .
For B-type boundary states, the δβ constraint in eq. (4.13) implies in addition that

the physically inequivalent choices of Mj can be described by the quantity

M =
∑
j

K ′Mj

kj + 2
,

where K ′ = lcm{kj + 2}.
8The amplitude between a S = odd boundary state and a S̃ = even boundary state also has

interchanged roles of R- and NS-states in the open string sector.
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We will be interested in counting the number of moduli for a D-brane state; these

will be the massless bosonic (i.e. NS) open-string states. To find their contribution

to the open-string partition function, it is enough to examine the NS-NS part of

a transition amplitude in the internal dimensions. The reason is that the (open-

string) NS characters arising from the modular transformations of the RR part of

the transition amplitude come with an insertion of (−1)F [80, 81]. With this in mind,
a calculation similar to that in [7] leads to9

ZA
αα̃(q) =

1

C

NS∑
λ′,µ′

K−1∑
ν0=0

r∏
j=1

N
l′j
Lj ,L̃j

δ
(2kj+4)

2ν0+Mj−M̃j+m′j
χλ

′
µ′(q) , (4.15)

and

ZB
αα̃(q) =

1

C

NS∑
λ′,µ′

δ
(K′)
M−M̃
2
+
∑ K′
2kj+4

m′j

r∏
j=1

N
l′j
Lj ,L̃j

χλ
′
µ′(q) . (4.16)

(Here δ
(n)
x is one when x = 0 mod n and zero otherwise.) This shows that only a U(1)

projection and the SU(2)k fusion rule coefficients constrain the open string spectrum

of B-type boundary states; these states are much richer as a consequence.

The condition that two D-brane boundary states |α〉〉 and |α̃〉〉, with the same
external part, preserve the same supersymmetries is [7]:

Q(α− α̃) := −S − S̃
2
+

r∑
j=1

Mj − M̃j

kj + 2
= even . (4.17)

To explore the charge lattice of the boundary states, and to find the geometric

interpretation of given boundary states, we wish to calculate the intersection (2.11),

(2.12) of our branes. The CFT quantity which computes this is IΩ = trR(−1)F in
the open string sector [11]. The best way to do this is to start in the closed string

sector and to do a modular transformation to the open string sector. In the closed

string sector this trace corresponds to the amplitude between the RR parts of the

boundary states with a (−1)FL inserted. The calculation is done in the Appendix
and the result for A-type boundary states is:

IA =
1

C
(−1)S−S̃2

K−1∑
ν0=0

r∏
j=1

N
2ν0+Mj−M̃j
Lj ,L̃j

. (4.18)

For B-type boundary states,

IB =
1

C
(−1)S−S̃2

∑
m′j

δ
(K′)
M−M̃
2
+
∑ K′
2kj+4

(m′j+1)

r∏
j=1

N
m′j−1
Lj ,L̃j

. (4.19)

9N l
L,L̃
are the SU(2)k fusion rule coefficients [83]: they are one if |L− L̃| ≤ l ≤ min{L+ L̃, 2k−

L− L̃} and l+L+ L̃ = even, and zero otherwise; note that our indices thus differ from those in [83]
by a factor of two.
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The intersection matrix depends only on the differences M − M̃ as was required

by the discrete symmetry. We also see that the Z2 action S → S + 2 changes the

orientation of a brane.

In the next section we will rewrite these formulas in a more compact notation

and use them to identify the charges of the boundary states.

4.4 D-branes on K3 and the Mukai formula

For compactifications with N = 4 worldsheet supersymmetry, the index in the Ra-
mond sector is directly related to the number of marginal operators in the NS sector.

We now use this to give a CFT proof of Mukai’s formula [84, 19] for the dimension

of the moduli space of 1/2-BPS D-brane states.

K3 compactifications are geometric throughout their moduli space [85]. The

BPS D-brane states in these compactifications are described by coherent semistable

sheaves E [19] which can be labelled by the Mukai vector [84, 19]. In terms of the

rank r and Chern classes ci of E, this is

v(E) =
(
r, c1,

1
2
c21 − c2 + r

) ∈ H0(M,Z)⊕H2(X,Z)⊕H4(M,Z). (4.20)

There is a natural inner product on the space of Mukai vectors:

〈(r, s, `), (r′, s′, `′)〉 = s · s′ − r`′ − `r′ , (4.21)

where s · s′ is defined by the natural intersection pairing of 2-cycles on M . In fact
this is just (minus) the intersection form (2.12).

Mukai’s theorem [84] states that the complex dimension of the moduli space of

an irreducible coherent sheaf E is:

dimension = 〈v(E), v(E)〉+ 2 . (4.22)

We now argue that this follows from the relation

tr
a,a
(−1)F = 〈v(Ea), v(Ea)〉 (4.23)

and general properties of supersymmetry. First, only two d = 2, N = 4 representa-
tions have nonvanishing Witten indices [86, 87]. We list them below together with

the NS weights related by spectral flow:

identity rep. : (h = 0, ` = 0)NS −→
(
h =
1

4
, ` =

1

2

)
R

tr(−1)F = −2

“massless” rep. : (h =
1

2
, ` =

1

2
)NS −→

(
h =
1

4
, ` = 0

)
R

tr(−1)F = 1 , (4.24)

where ` is the SU(2)R isospin. The identity representations lead to world-volume

d = 6, N = 1 (or d = 4, N = 2) gauge multiplets, while the massless representations
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lead to world-volume half-hypermultiplets, so there will be one complex scalar in the

open-string sector for each massless multiplet.

Let there be Ng identity and Nm massless multiplets; then the Witten index is

tr(−1)F = Nm − 2Ng. (4.25)

Using (4.23) we find that (4.22) will be true if the world-volume theory has a (Higgs

branch) moduli space of complex dimension Nm − 2Ng + 2. This moduli space is

essentially determined by the d = 6, N = 1 world-volume supersymmetry: it is the
hyperkähler quotient of the configuration space by the subgroup G of the gauge group

which acts non-trivially on the hypermultiplets. The resulting space has complex

dimension Nm − 2dimG.
Now, any brane configuration will have an overall U(1) acting trivially whose

partners in the vector multiplet are the center of mass position of the brane; if more

U(1)s act trivially we will have more center of mass moduli, so such a configuration

must correspond to a reducible bundle. Therefore dimG = Ng − 1 for an irreducible
bundle and we have proven (4.22).

4.5 Generalizations

Mukai’s theorem used the Hirzebruch-Riemann-Roch formula together with special

properties of K3 surfaces; these properties allowed one to extract the dimension of

the moduli space of a bundle directly from the holomorphic Euler characteristic.

We have a similar statement for CY threefolds if we keep track of both chiralities

separately. The self-intersection number of a brane on a threefold is of course zero,

but we can get non-trivial statements if we consider the intersection of two different

branes.

For example, consider the index of the Dirac operator on the bundle E. Since

the world-volume is Kähler this is

ind /D =
3∑
i=0

(−1)idimH i(M,E) = χ(E)

which is the holomorphic Euler characteristic. By the Hirzebruch-Riemann-Roch

formula,

χ(E) =

∫
M

ch(E)Td(TM). (4.26)

Here

ch(E) = r+ c1(E) +
1

2

(
c21(E)− 2c2(E)

)
+
1

6

(
c31(E)− 3c1(E)c2(E) + 3c3(E)

)
+ · · · ,

and

Td(TM) = 1 +
c2(TM)

12
+ · · · = 1− p1(TM)

24
+ · · · .
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Thus on a threefold, Td(M) = Â(TM), and combining eqs. (4.26) and (2.12), we

find:

ind /D = 〈D6, D(E)〉 = tr
D6,D(E)

(−1)F , (4.27)

where D(E) is the D-brane representation or generalized Mukai vector for E.

On the other hand, the Ramond ground states which contribute to the open

string index are exactly the fermion zero modes which contribute to the index of /D.

In the type-I case where E is a gauge bundle with vevs entirely in an SU(3) subgroup

and with the gauge connection equal to the spin connection, c1(E) = 0; this gives a

brane picture of the standard result

Ng = (# of generations) =

∫
M

c3

2

for this case. If we are interested not in the bulk gauge theory on 9-branes in type I

but in a gauge theory on a brane B intersecting another brane A, the generalization

is that the number of generations (with respect to the B gauge group) associated

with the brane A is the intersection form 〈A,B〉. For B-type branes this follows from
eq. (2.12) and the Hirzebruch-Riemann-Roch theorem for the bundle E(A)∗⊗E(B);
for A-type branes each intersection contributes a chiral multiplet with chirality given

by the sign of the intersection [17].

5. Discussion of the 35 model

Let us apply these results to the example to model (k = 3)5, the Gepner point in the

moduli space of the quintic. We will consider boundary states labelled by Lj ∈ {0, 1},
0 ≤ Mj < (2k + 4) = 10, and S = 0. Let the Z

4
5 symmetry be generated by the

operators gj taking Mj →Mj + 2, and satisfying g1 · · · g5 = 1. Note that g1/2j which

takesMj →Mj+1 is well-defined for these states (using the identifications on LMS,

it relates branes to antibranes).

We will be particularly interested in computing the intersection forms (4.18)

and (4.19), as we will be able to use them to extract the charges and open string

spectrum for a given brane. The main advantage of considering these quantities over

the charges themselves is that they are canonically normalized, as already noted

in [1].

We can consider the intersection form as a matrix I acting on the space of

boundary states; since it commutes with Z45 it can be written as a function of the

generators gi. The main content of formulae (4.18) and (4.19) is contained in the

SU(2) fusion rule coefficients. In these equations the labels Mj , M̃j can be thought

of as indices of a matrix acting on the states. The particular fusion coefficients we
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will need are:10

N
Mj−M̃j
00 → (1− g4j ) ,

N
Mj−M̃j
01 → g

1
2
j (1− g3j ) = N00 g

1
2
j (1 + g

4
j ) ;

N
Mj−M̃j
11 → (1 + gj − g3j − g4j ) = N01g

1
2
j (1 + g

4
j ) . (5.1)

These various fusion matrices are related by successive multiplication with g
1
2
j (1+g

4
j ),

so we can express the RR charges of all our boundary states in terms of those for

Q(|00000〉Ω).
By eq. (4.17) there are two cases of pairs of branes preserving a common susy.

If the total ∆L is even (so integral powers of g appear), a pair with ∆M = ∆S = 0

(brane and brane) will preserve susy. If the total ∆L is odd (powers g5k+5/2 appear),

a pair with ∆M = 5 and ∆S = 2 (brane and anti-brane) will preserve susy.

In the case that the two D-branes are both A-type or B-type, the massless open

string spectrum can also be expressed in terms of the fusion coefficients. It is easy

to see from (4.15) and (4.16) that if the two boundary states are the same, there

is exactly one vacuum and one spectral flow operator in the open string channel;

if they are not the same, neither state propagates. This means that the unbroken

worldvolume gauge group is (the center-of-mass) U(1), and the brane can be viewed

as a single object (a priori, it still might be a bound state).

The SUSY-preserving moduli of the D-branes are constructed from chiral vertex

operators. The Witten index counts these operators albeit with a sign depending

on their chirality. In our explicit CFT calculation we can remove this sign by hand,

and thus the total number of chiral fields can be calculated using (4.18) and (4.19)

with the fusion matrices replaced by their absolute values.11 We can again write this

“modified” matrix as a polynomial PΩ(gj) in the shift matrices gj. For example, the

matrix for boundary states |11111〉B is:
PB(g) = (1 + g + g

3 + g4)5 . (5.2)

If spacetime supersymmetry is preserved, the chiral fields have integer U(1) charges,

and are related to antichiral fields by spectral flow. In particular charge-2 chiral

fields in ZΩαα̃, are related to charge-−1 antichiral fields in ZΩαα̃; the latter are the
hermitean conjugate of charge-1 chiral fields in ZΩα̃α. Thus

∑
kmk in the open-string

channel will be a multiple of 5 for marginal, chiral vertex operators. Examination of

the fusion coefficients in (4.18) and (4.19) reveals that the number of massless chiral

superfields is given by counting terms in

1

2
(PΩ(gj)− 2)

with the total power of g being a multiple of 5/2.
10The coefficients for m > l are defined in the Appendix.
11In other words, we define Nm

LL̃
= +N−m−2

LL̃
, rather than the opposite sign in the appendix.
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Applying these statements to eq. (5.2) shows that the D-brane described by

|11111〉B has 101 marginal operators. This particular case can also be worked out
by checking that the fusion rules lead to all possible L values, so for every operator

in the (c, c) ring of the model there is a corresponding chiral open string operator.

5.1 A boundary states

The intersection matrix (4.18) for the A-type boundary states with Lj = 0 is

IA = (1− g41)(1− g42)(1− g43)(1− g44)(1− g1g2g3g4). (5.3)

To determine the rank of the intersection matrix we can count the number of nonzero

eigenvalues. The gj can be diagonalized as gj = diag(1, e
2πi
5 , e

4πi
5 , e

6πi
5 , e

8πi
5 ). Zero

eigenvalues appear if a gj = 1 or if g1g2g3g4 = 1. The combinatorics leads to 204

nonzero eigenvalues, which is the number of independent 3-cycles on the quintic.

Thus, the Lj = 0 states provide a basis for the charge lattice. So far as we can

tell they do not provide an integral basis of the charge lattice. Furthermore, the

charges of the other A-type Gepner boundary states can be obtained from these by

successive multiplication by g
1
2
j (1+g

4
j ); for example, Q(g

1
2
1 |10000〉A) = Q(|00000〉A)+

Q(g1|00000〉A), so these are even farther from an integral basis.
The intersection matrix for the |11111〉A states,

5∏
i=1

(1 + gi − g3i − g4i )

coincides with the intersection matrix (2.22) for the three-cycles Imωjzj = 0, and

thus we identify these states with the RP3’s.

This leads to a potential contradiction with the large volume limit in that the

L = 1 states have one marginal operator, while the RP3’s do not. Although it might

be that this is indeed a contradiction, from what we know at present an equally

likely resolution is that the L = 1 marginal operator is not strictly marginal; in other

words the world-volume theory has a superpotential for the corresponding field ψ,

perhaps of the form

W = ψ3 + ψφ

where φ is the Kähler modulus (ψ5 in the notation of section 3). Such a superpotential

has two ground states and would also fit the fact that the RP3 has a Z2 Wilson line

in the large volume limit.12

12(Note added in v2): Actually, the two choices of Wilson line are topologically distinct bundles

so they would not be continuously connected in the large volume limit. This would suggest that

the potential should have a unique minimum. On the other hand, it can be shown that any

simply connected six-dimensional manifold X with H∗(X) torsion-free (such as the quintic CY)
has K(X) ∼= H∗(X), and thus the K theory class distinguishing the two bundles becomes trivial
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5.2 B boundary states

As we discussed in the previous section, the B-type boundary states at fixed Lj are

described by the single integer, M =
∑
Mj and the gj for different j are identified.

The intersection matrix (4.19) for L = 0 states can be written as:

IB = (1− g−1)5 = 5g − 10g2 + 10g3 − 5g4. (5.4)

We want to describe these boundary states in the Gepner basis. The Gepner inter-

section form (3.7) in the same notation is:

Ig = −g + 3g2 − 3g3 + g4 . (5.5)

A linear change of basis preserving the action of Z5 can be written as a polynomial

in the operator g as well and a transformation of the form I → mImt will be

I → Im(g)m(g−1). The relation

IB = (1− g)(1− g−1)Ig
provides this change of basis.

The results of section 3 allow us to write these charges in the large volume basis.

The Gepner charge vector QG is related to the large volume charge vector Q as

Q = QGM
−1 .

Thus QG =
(
0 1 −1 0 ) becomes Q = (−1 0 0 0 ) which is a pure (anti)six-brane.

The other charges can be found by acting with the operator AL.

One can now compute the charges for the L 6= 0 branes by using the multiplica-
tive relation in (5.1). For example, we have

Q(g
5
2h|10000〉B) = −Q(g2|00000〉B)−Q(g3|00000〉B) .

Starting with M = 0 and successively applying this operation produces a subset of

branes which preserve the same supersymmetry. This can be checked by computing

the central charges using the periods at the Gepner point, which are simply the fifth

roots of unity. Thus the central charge for the L’th brane in this series is

Z(L) =
(
2 cos

π

5

)L
Z(0) .

The charges in the Gepner basis charges can written in large volume basis viq

eq. (3.6). Tabulating these results and the numbers of marginal operators, we have

(for the Z5 representatives related to the six-brane) table 1.

when lifted to the CY. (We thank D. Freed and J. Morgan for explaining this to us.) Thus there

is no candidate for a space-time topological charge which could distinguish the two D-branes, and

it is not ruled out that transitions between the two choices of bundle are possible in the full string

theory.
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L Q6 Q4 Q2 Q0 dim

00000 −1 0 0 0 0

10000 2 0 5 0 4

11000 1 0 5 0 11

11100 3 0 10 0 24

11110 4 0 15 0 50

11111 7 0 25 0 101

Table 1: Charges and numbers of marginal operators of the D-branes.

The simple pattern QL+1 = QL +QL−1 follows from the identity (−g2 − g3)2 =
1− g2 − g3.
It is also easy to compute the number of marginal operators between pairs of

distinct boundary states. For example, |00000〉B and |(1 . . .)L(0 . . .)〉 have (for 1 ≤
L ≤ 5) 4, 3, 3, 4 and 1 (respectively) marginal operators. Each corresponds to a chiral
superfield of charge (1,−1) and its charge conjugate (since the mutual intersection
numbers are zero, none of these pairs has chiral spectra). The number of operators

between two branes of higher L of course depends on which Li are non-zero.

5.3 Comparison with geometrical results

To what extent can we compare these results with the geometrical branes and bundles

we discussed in section 2? The only clear match is the six-brane which indeed has

no moduli as expected.

Our states can plausibly be identified with vector bundles since they obey the

stability condition c2 > 0. We were not able to identify any of them with the explicit

constructions we mentioned in section 2. This may just reflect our lack of knowledge

of vector bundles on the quintic; thus we might regard our results as predictions of

the existence of new vector bundles. We should note that the numbers of marginal

operators we obtained are only upper bounds for the dimension of the moduli space

as in general these theories will have potentials.

The problematic objects are the |11000〉B branes as an object with these charges
cannot be a classical line bundle. For reasons explained in section 2 we do not

believe it is a quantum bound state either, since we have found it at string tree

level. There is a piece of evidence that it is some sort of bound state of the six-brane

with the two-brane (2.19): namely, they come in the same multiplet of the discrete

symmetries. Like all B branes, the |11000〉B branes are invariant under Z45, while S5
acts by permuting the Li labels. The two-brane construction (2.19) also picks out

two of the five coordinates and thus comes in the same multiplet. This identification

creates a puzzle opposite to the one we faced for the RP3’s: the geometric object

appears to have more moduli (12) than the boundary state. Such a mismatch could

not be fixed by a superpotential. On the other hand, it could be that the (unknown)
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mechanism which binds the two-brane to the six-brane removes moduli, so this is

not a clear disagreement.

One candidate for such a bound state is the instanton in noncommutative U(1)

gauge theory [88]. Again by analogy with flat space, (since noncommutative gauge

theory has not been formulated on curved spaces, this is all we can say), at generic

values of B we might expect the D6-brane gauge theory to be noncommutative [89,

90, 91]. The center-of-mass position of the instanton would then (presumably) give

the moduli of a two-brane and provide at least some of the moduli we observe. A

potential problem with this idea is that we can continue to B = 0 in the large volume

limit, and there is no sign that this bound state is unstable there.

One may ask why the D0-brane does not appear on our list. One possible

explanation is that the path from the large volume limit to the Gepner point crosses

a line of marginal stability, and the D0 does not exist at the Gepner point. To test

this we found the periods for all the branes in table 1 by numerically integrating

the Picard-Fuchs equations along the negative real ψ axis. We found that the D0

is lighter than any brane from the list along the whole trajectory, so we have no

evidence for instability. Our favored explanation is simply that all of the B branes

by construction are invariant under the Z45 discrete symmetry, while any location we

might pick for the D0 would break some of this symmetry. Thus, even if the D0

exists at the Gepner point, it cannot be a rational boundary state, at least in this

model.

6. Superpotential and topological sigma models

The calculations of the previous section describe the field content of the D-brane

world-volumes, but not their dynamics. The primary question in this regard is to

find the world-volume potential and true moduli spaces for the brane theories. In

CFT language, the marginal boundary operators operators we found might not be

strictly marginal.

N = 1, d = 4 supersymmetry tells us that the world-volume potential will be a
sum of F-terms and Fayet-Iliopoulos D-terms. The D-terms are simply determined

by the gauge group and charges of the matter fields. In the case of a single brane

or N identical branes we have checked in the models we are studying that the gauge

group is U(N) with all matter uncharged under the diagonal U(1), so there is no

possibility for a D-term. More generally we must consider such terms, for example

in the case of D0-branes near orbifold points.

However, we may expect a non-vanishing superpotential, in general constrained

only by holomorphy and the symmetries of the problem. These conditions are often

stronger than they might appear, but in general the superpotential must be found

by explicit computation. It should eventually be possible to do exact calculations at

the Gepner point, as we will discuss in the next section. In this section we will try to
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make some general statements about the superpotential in these models by showing

that they can be calculated as amplitudes in some topologically twisted version of

the open string theory. In particular we will use this fact to describe the cubic term

in the superpotential, and to discuss to what extent the superpotential couples to

the background CY geometry.

6.1 Known examples of brane superpotentials

In order to motivate the search for superpotentials in these theories we will start

with a few examples where we know they arise. The most obvious example is N

D3-branes in flat space; one may write the N = 4 lagrangian in N = 1 notation so

that there are 3 adjoint complex scalar fields Z i=1,2,3 = Z i
at
a with the superpotential

TrZ1[Z2, Z3] (here ta are adjoint matrices for U(N)). Of course this vanishes for

N = 1 but not for N > 1.

A plausible generalization of this to weak curvature (still preserving N = 1

world-volume SUSY) is a function W written as a single trace of the adjoint chiral

superfields and with the property that

δ

δZ i
a

δ

δZj
b

δ

δZk
c

W = fabcΩijk(z) (6.1)

for variations around the diagonal vevs Z i = zi1. The assumption of this form of

the superpotential is a fairly weak constraint; see [92] for analysis along these lines.

In the case of a large Calabi-Yau threefold, we will find below that this assumption

is correct, and that Ω is the holomorphic (3, 0) form of the threefold.

A well-studied genuinely stringy example is that of D-branes near orbifold sin-

gularities, or near resolved orbifolds with string-scale curvature. In these examples

a “single” brane (in the orbifold limit they are described by Chan-Paton factors in

the regular representation of the orbifold group) can have a superpotential, which

furthermore can have non-trivial dependence on the closed string moduli. A “single”

brane is described via Chan-Paton factors transforming in the regular representation

of the orbifold group [5]. The superpotential takes the general form

W = TrZ1[Z2, Z3]|proj + ζiTrZi . (6.2)

The spectrum of these models is obtained as a subset of the N = 4 SYM spectrum [5,
93, 94], and the notation “W |proj” indicates that the N = 4 superpotential is simply
restricted to this subset. The ζi are closed string moduli.

This intrinsically stringy background illustrates the important lesson that by

varying both closed and open string moduli, it is possible to bring down new massless

open string states invisible in the weakly-curved geometric limit described above. For

example, the C2/Z2 model of a single brane has U(1) gauge symmetry generically;

but when both closed- and open-string moduli are tuned to the orbifold point, the
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gauge symmetry is enhanced to U(1)2. Furthermore a new branch of moduli space

meets this point, where the single brane breaks up into branes wrapping the shrunken

cycles of the orbifold [5, 95]. This new branch is a transition from Higgs to Coulomb

branch and as usual in supersymmetric gauge theory it is almost impossible to predict

such transitions starting from the Higgs branch. In the present context we see that

we should be wary of arguments that rely on the distinction between configurations

involving “one” or “several” branes, or equivalently “one” or “several” distinct world-

sheet boundary conditions, as they can be continuously connected. Other examples

where this distinction is questionable are a small instanton leaving a Dp-brane as a

Dp− 4-brane, or an intersection of 2-branes as described by [96].
Another point we will return to is that the closed string moduli ζi which appear in

the superpotential in this example are complex structure moduli. Of course orbifold

resolution also depends on Kähler moduli, but these enter in the Fayet-Iliopoulos

D-terms.

Our final example is the superpotential on a wrapped two-brane. Recall that

a supersymmetric theory arises when we wrap the 2-brane on a holomorphic cycle.

The massless fields correspond to infinitesimal deformations of this cycle into a cycle

close by in the D-brane moduli space. Witten [97] has argued that an M-theory

two-brane (or 5-brane) wrapped around a two-cycle Σ has the superpotential

W (Σ) =

∫
B

Ω (6.3)

when Σ is homologically trivial, where B is a three-manifold bounded by Σ. Indeed,

this is a holomorphic functional of the embedding coordinates, which is stationary

by holomorphic curves. When Σ is in a nontrivial homology class, the superpotential

is defined up to an additive constant as:

W (Σ)−W (Σ0) =
∫
B

Ω , (6.4)

where Σ0 is an arbitrarily chosen referent holomorphic 2-cycle in the same homology

class as Σ, and B has boundary Σ−Σ0. Here the additive constant depends both on
Σ0 and the homology class of B. For purely classical, geometric deformations these

formulae should hold for D2-branes; there may also be terms arising from the gauge

fields on the D2-brane worldvolume.

Before discussing the computation in general, we note that in all of our examples,

which are of B-type branes, the superpotential depends on closed string moduli only

through the complex structure, not through the Kähler structure. Could it be that

this is a general statement?

We can see some potential problems with the statement by considering the other

branes on the list. First of all, we need to describe not just the embedding but

also the gauge bundle on the branes. To the extent that this is determined by a
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choice of a holomorphic vector bundle, this will fit into the same class of problems

depending only on complex structure data. However, one might object that general

four- and six-brane configurations involve a gauge bundle with c2 6= 0 and such a
holomorphic bundle will correspond to a solution of Yang-Mills only if it is stable,

a condition which depends on the Kähler class. This condition indeed should enter

into the potential but as we discussed in section 2, it is more natural to expect that

it appears as a D-term, which would not contradict the decoupling statement.

Mirror symmetry for boundary states [6] and the statement we are consider-

ing would together imply that the superpotential for A-type branes depends on the

Kähler structure of the background, but not the complex structure. But any for-

mula for the potential on the brane analogous to (6.3) will necessarily involve both

structures, since the special lagrangian condition cannot be stated without bringing

in Ω.

This situation can only be compatible with our decoupling statement if the terms

involving Ω are D-terms, an assertion not contradicted by any existing results.13 One

might object that this possibility would require charged matter under a gauge group

which is not immediately apparent, but the small instanton and orbifold examples

show that such gauge groups can be broken and become invisible in the large vol-

ume limit. This would lead to the further interesting possibility that, at special

moduli points in the space of a “single” 3-brane, enhanced gauge symmetry could

appear. The simplest way this could happen is for the brane to split in two at a

self-intersection, leading to U(1)2 gauge symmetry.

We conclude that we have several examples in which decoupling (before taking

stringy corrections into account) is clear, and no examples in which it is clearly false.

Thus we will consider this decoupling statement further below.

6.2 CFT computation of superpotential

Given the above examples, we have good reason to believe that the Gepner model

boundary states we have constructed correspond to D-branes with worldvolume su-

perpotentials. We want to know how to calculate these in the models at hand.

We are interested in BPS D-branes in N = 2 compactifications of type-II string
theory; these lead to N = 1 worldvolume theories. Thus the open- (closed-) string
sectors will have N = 2 (N = (2, 2)) worldsheet supersymmetry [60, 61]. To fix
notation we write out the OPE algebra for the holomorphic piece:

T (z)T (w) ∼
1
2
c

(z − w)4 +
2T (w)

(z − w)2 +
∂T (w)

(z − w) + · · ·

T (z)G±(w) ∼
3
2
G±(w)
(z − w)2 +

∂G±(w)
(z − w) + · · ·

G±(z)G±(w) ∼ · · · (6.5)

13Related questions are being considered by G. Tian.
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G+(z)G−(w) ∼
c
6

(z − w)3 +
1
2
J(w)

(z − w)2 +
1

2

T (w) + 1
2
∂J(w)

(z − w) + · · ·

J(z)G±(w) ∼ ± G±(w)
(z − w) + · · ·

J(z)J(w) ∼
c
3

(z − w)2 + · · · .

For compactifications with c = 9 J(z) can be constructed from the internal part of

the spacetime SUSY current [60]. It can be written in terms of a single boson H ,

J(z) = i
√
3∂H (6.6)

and operators with charge q under this U(1) R-symmetry can be written as:

Oq = ei(qH/
√
3)O0 . (6.7)

The spacetime SUSY currents can be constructed from the macroscopic spin

fields and the internal U(1) current algebra. In the (±1/2) picture, the currents can
be written as:

Q± 1
2
,α(z) = e

±φ/2SαΣ± (6.8)

where

Σ± = e±i
√
3H/2 (6.9)

is the spectral flow operator of the N = 2 worldsheet algebra, mapping the NS sector
to the R sector and vice-versa. φ is the bosonized superconformal ghost.

On the 4d noncompact worldvolume, we can have massless chiral superfields ΦiIJ
with scalar components φi, fermionic components ψi and auxiliary components F i.

i will label the (complex) internal moduli of the D-brane configuration on the CY

threefoldM ; these moduli correspond to marginal boundary operators of the internal

CFT. (IJ) label gauge indices, which are described by Chan-Paton factors on the

worldsheet. These could be adjoint indices if there are coincident branes, or bifun-

damental indices if there are several types of (possibly intersecting) branes. More

abstractly, the off-diagonal terms are boundary condition-changing operators [13]

and the diagonal terms are boundary condition-preserving operators.

The superpotential can be written via a holomorphic function W (Φ) and it

contributes the following terms to the lagrangian:∫
d4x

(
d2θ trW (Φ) + h.c.

)
=

=

∫
d4x

(
∂i∂j

∂

∂φiIJ
W (φ)F i

IJ −
∂

∂φiIJ

∂

∂φjKL
W (φ)ψiIJψ

j
KL + h.c.

)
, (6.10)

where we use the superfield conventions in [98]. We are interested in small fluctua-

tions about a reference D-brane state, so we expand W (φ) in a Taylor series in φ.
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All of the terms of interest in eq. (6.10) will be of the form

tr

[
wi1i2i3...in

(
F i1φi2 . . . φin − 1

2
ψi1ψi2φi3 . . . φin

)]
.

The coefficients w may also depend on the closed-string background. We will examine

small fluctuations about some reference background so that we can sensibly expand

w in a Taylor series in fluctuations of the closed-string background.

The worldvolume fermions are represented in the open string theory by dimension

1 boundary Ramond vertex operators constructed from spin fields. In the (−1/2)
picture they can be written as:

V
(−1/2)
R,IJ = ζαi,ae

−φ/2SαΣitaIJ , (6.11)

where Sα is the spacetime part of the spin field and has dimension 1/4; Σ
i is the

internal part of the boundary vertex operator and has dimension 3/8; ζ carries po-

larization and gauge indices; and taIJ are the Chan-Paton matrices. Since we are

interested in computing a potential term we are interested in zero-momentum ampli-

tudes, so we can omit spacetime momentum factors eik·X . Note that the spacetime
directions will have standard Dirichlet or Neumann conditions, so that Sα is easily

related to its bulk counterpart, for example by the doubling trick.14

Similarly, the worldvolume scalars are represented by NS vertex operators. In

the (−1) picture they can be written as

V
(−1)
NS,IJ = ζi,ae

−φψitaIJ , (6.12)

where e−φ has dimension 1/2, and ψ is a dimension 1/2 boundary operator arising
from the internal sector. To find the 0-picture operator, we find the superpartner of

ψ under the (gauged) worldsheet N = 1 SUSY,

TF (z)ψ
i(w) =

1/2

(z − w)O
i(w) , (6.13)

where TF =
1√
2
(G+ + G−) is the gauged N = 1 part of the N = 2 superconformal

currents. Here Oi has dimension 1. The vertex operator is simply Oi; if it is ex-
actly marginal its integral over the boundary is a valid conformal deformation of the

worldsheet action. Note that if ψi is a chiral primary,

G+(z)ψi(w) = (non− singular terms)

as z → w, and may write

G−(z)ψi(w) =
1/2

(z − w)O
i .

14c.f. [99] for a nice discussion of this method.
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The internal part of the vertex operators for the auxiliary fields, in the (0)

picture, can be constructed from the internal part of the (−1)-picture scalar vertex
operators, via the spectral flow operator mapping the NS sector back to itself [100]:

Vaux,IJ = lim
z→w

[
(z − w)e−i

√
3HV

(−1)
NS,IJ

]
. (6.14)

Essentially this is because one gets the auxiliary component by acting on the scalar

fields twice with the spacetime SUSY current.

For deformations preserving spacetime SUSY, the internal part of the vertex

operators should be constructed from the chiral ring of the N = 2 algebra.15 This is
because the marginal (0)-picture operators will have vanishing R-charge; thus they

may be added to the worldsheet lagrangian while maintaining N = 2 worldsheet
supersymmetry. The (−1)-picture operators will have charge q = 1; the (−1/2)-
picture Ramond operators will have charge q = −1/2; and the auxiliary fields will
have charge q = −2.
We will also want to include bulk vertex operators in order to measure the

effects of the closed-string background. For SUSY-preserving deformations, we will

be interested in marginal operators in the (c, c) or (a, c) ring. The vertex operators

for massless fields can be constructed from dimension (1/2, 1/2) operators ψ(z, z̄) in

the internal sector, with charge (1, 1) if they are in the (c, c) ring, (−1, 1) if they are
in the (a, c) ring, and so on. In the (−1) picture these operators are:

V
(−1)
bulk = e

−φ(z)−φ(z̄)ψ(z, z̄) . (6.15)

The (0, 0) picture operators can be constructed via the N = 2 supercurrents which
cancel the U(1) charge, i.e.

V
(0,0)
bulk (w, w̄) =

∮
dz

∮
dz̄G−(z)G−(z̄)ψ(w, w̄) (6.16)

for (c, c) operators, and

V
(0,0)
bulk (w, w̄) =

∮
dz

∮
dz̄G+(z)G−(z̄)ψ(w, w̄) (6.17)

for (a, c) operators.

Now we wish to calculate the tree-level contribution to the nth order term of the

superpotential; we will expand out the coefficients to kth order in the closed string

fields. We are particularly interested in the case n > 2, as we are studying putative

moduli. We will examine the contribution of this term to the fermion bilinear part

of the action. On the disc, we must fix 3 real moduli due to the SL(2,R) symmetry.

In addition, we must absorb the superconformal ghost number violation on the disc.

15Or antichiral ring. We will fix the overall sign ambiguity of the U(1) charges by demanding

that the boundary operators be chiral.
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These requirements can be met by using the (−1/2) picture for the two fermionic
vertex operators and placing them at opposite sides of the disc, or equivalently at

z = 0 and z = ∞ in the upper half plane. Furthermore we will take one of the NS
vertex operators to be in the (−1) picture and fix its location between the two R
vertex operators, i.e. at z = 1 in the upper half-plane. The remaining open- and

closed-string vetex operators are in the (0) and (0, 0) pictures, and are integrated

respectively over the boundary and bulk of the worldsheet. The resulting amplitude

on the disc is:

A = lim
δi,εi→0

〈
e−φ/2SαΣi1I1I2(x3)

∫ x3−δ2

x2+ε2

dy1O(i2,(0))I2I3
(y1)

∫ y2−δ3

x2+ε3

dy2O(i3,(0))I3I4
(y2) . . .×

×e−φψik(−1)IkIk+1
(x2) . . . e

−φ/2SβΣ
i`
I`I`+1

(x1) . . .

∫ yn−4−δn−3

x3+εn−3
dyn−3O(in,(0))(yn−3)×

×
∫
D

dz1 . . . dzkO1(0,0)(z1, z̄1) . . .Ok(0,0)(zk, z̄k)
〉

(6.18)

where ε2 > ε3 > · · · > εk−1, εk+2 > · · · > ε`−1, ε`+1 > · · · > εn−3; this prescrip-
tion of the limits of integration ammounts to a point-splitting regularization on the

boundary. In addition we sum over all orderings consistent with the Chan-Paton

indices; amplitudes with adjacent operators φIJφKL are only nonvanishing if K = L.

For gauge-invariant amplitudes we would sum over all such indices and thus over all

orderings.

So far we have not specified which of the four chiral rings the closed-string vertex

operators live in. We will discuss below how operators in the different rings may or

may not couple to these amplitudes for a given boundary condition.

We will also be interested in superpotential terms which are linear in the super-

fields and contain couplings to closed-string moduli, such as the last term in eq. (6.2).

This term will not show up as a fermion bilinear; only the auxiliary field will in fact

couple. Such a term can be computed on the disc with a single closed-string insertion

and a single open-string insertion. SL(2,R) invariance allows us to fix the positions

of both vertex operators. In addition, if we place the closed-string vertex operator

in the (−1,−1) picture and the open-string operator in the (0)-picture we have ab-
sorbed the superconformal ghost number violation (the left- and right-moving ghost

zero modes will be tied together by the boundary condition.) The relevant tree-level

amplitude is thus:

〈e−φ−φ̄ψ(−1,−1)(z, z̄)VF,II(x)〉. (6.19)

All of these prescriptions allow us to perform tree-level calculations for fixed

boundary conditions in the Gepner models. In the rest of this section we will dis-

cuss these amplitudes in general compactifications as correlators in the topologically

twisted version of the internal CFTs. In this language we can revisit our question

regarding Kähler decoupling from the superpotential of B-type branes.
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6.3 Topological CFT with boundaries

We begin by reviewing and generalizing the discussions in refs. [101, 102, 103] of

topological CFTs with boundary.

Topological CFTs can be constructed from N = 2 CFTs via “twisting” the stress
tensor with the U(1) current [104]; that is, we define a new stress tensor:

T top(z) = T (z)± 1
2
∂J(z) . (6.20)

Note the sign ambiguity; as we will discuss, the overall sign is physically unim-

portant but the relative sign between left- and right-moving sectors is physically

meaningful. This twisting may be achieved by adding a charge of ±c/3 at infinity;
the change in the stress tensor is simply the shift derived in the Feigin-Fuchs con-

struction. In closed string theories one can see this most simply by adding to the

action the coupling of the U(1) current to a background gauge field A = 1
2
ω where

ω is the worldsheet spin connection [103]. In the cases we are interested, where

J = i
√
3∂H , the term ∫

d2z
1

2

(
Jω̄ + J̄ω

)
(6.21)

can be integrated by parts to get a coupling of H to the Riemann curvature. For

amplitudes on the sphere, one may use conformal invariance to write the sphere as a

flat cylinder with two hemispherical caps. The initial and final states are created by

the path integral on those caps with any operator insertions one might have there; the

curvature on these hemispherical caps means that the above terms in the lagrangian

become the half-unit spectral flow operators applied to the initial and final states.

If one constructs the open-string case via the doubling trick on the Riemann

sphere, one finds again that the topological twisting is equivalent to an amplitude

with half-units of spectral flow applied to the initial and final states. More generally,

to derive the twisted theory on a surface with boundary via the above coupling to

the background field, one must take the boundary contribution in
∫
Jω̄ + c.c. into

account. If we rewrite the disc as a long strip with two caps, the background charge

will be concentrated on the boundary of these caps and the result will again be

spectral flow applied to the in- and out-states [103]. Care should be taken with any

boundary operator insertions on or near this part of the boundary, as they may have

contact terms with the charge insertion.

The relative sign of the twisting of the holomorphic and anti-holomorphic parts

of the stress tensor comes from the relative sign of the background charge. The

“A-model” arises from an axial twisting while “B-model” arises from a vector twist-

ing [105]. In the presence of D-branes, the twisting must be compatible with the

boundary conditions. We can see easily that A-type boundary conditions are com-

patible with the A-model and B-type boundary conditions are compatible with the
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B-model, as in each case the “twisted” stress tensor satisfies

T top = T̄ top

and thus satisfies sensible boundary conditions.

In these twisted models, the conformal dimensions of N = 2 primary operators
are shifted by half their U(1) charge, with the sign depending on the twisting. In

the B-model, G+ and Ḡ+ become dimension-zero “scalar” Grassman operators and

suitably define BRST currents. The NS (c, c) operators are annihilated by them and

have dimension 0 with respect to T top. These operators are denoted the “topological”

operators and their correlators are independent of position, as one can see using the

conformal Ward identities in the presence of the background charge. We denote

them as the “0-form” operators Oi(0). In the closed string theory, we can also define
“(1, 0)-” and “(0, 1)-form” operators∮

z→w
dzG−(z)O(0)(w, w̄) = O(1,0)(w, w̄)∮

z̄→w̄
dz̄Ḡ−(z̄)O(0)(w, w̄) = O(0,1)(w, w̄) , (6.22)

and “2-form” (or “(1, 1)-form”) operators:∮
z→w

∮
z̄→w̄

dzdz̄G−(z)Ḡ−(z̄)O(0)(w, w̄). (6.23)

We can see that the (0)-form operators are simply the internal parts of the (−1,−1)
operators of the untwisted theory, while the (1, 1)-form operators are the internal

parts of the (0, 0)-picture operators of the untwisted theory. The operators∮
dzO(1,0) ;

∮
dz̄O(0,1) ;

∫
d2zO(1,1),

are BRST-invariant on Riemann surfaces without boundary. On surfaces with bound-

ary, the integrated 2-form operator is only BRST-invariant up to an integral of the

one-form operators along the boundary, as one can see by integrating by parts; sim-

ilarly the BRST transformations of the one-form operators pick up boundary terms

if the curve of integration ends on a boundary of D.

One may similarly construct topological operators on the boundary from the

chiral primary boundary operators. From these one may also construct “one-form”

operators from the commutators or anticommutators of the operator with modes of

the spin-2 operators G:
1√
2

{
G−−1/2 + Ḡ

−
−1/2 ,O(0)

}
(6.24)

In the cases that we can construct the boundary condition and boundary operators

via the doubling trick, these can be written as closed-string one-form operators via

42



J
H
E
P
0
8
(
2
0
0
0
)
0
1
5

holomorphic contour integrals, as above. Again, the integral of these operators along

the boundary are BRST-invariant, up to potential contact terms with other boundary

operators.

One may similarly construct BRST-invariant operators in the A-model with A-

type boundary conditions. If the CFTs correspond to geometric Calabi-Yau sigma-

models, then we can see following refs. [105, 6] that the open-string A-model de-

scribes D-branes wrapped around special lagrangian submanifolds and the topologi-

cal closed-string operators are the Kähler deformations of the target space; while the

B-model describes D-branes wrapped around holomorphic cycles, and the topological

closed-string operators correspond to complex structure deformations of the target

space. Note that although refs. [101, 103] discuss only the case of purely Neumann

boundary conditions for the B-model, our general discussion shows that we may cou-

ple this topological theory to any supersymmetric, even-dimensional brane. (Mirror

symmetry requires this, if we are allowed to discuss any supersymmetric 3-cycle in the

mirror). Note also that in this geometric picture, the almost-BRST-invariance of the

integrated 2-form observables makes sense: a change of complex structure (Kähler

class) will change the definition of holomorphic (special lagrangian) submanifolds.

Now let us return to the fermion bilinear part of the (n > 2)th order superpo-

tential. By stretching the cylinder out into the capped strip (figure 1) we may write

the amplitude as the expectation value of some set of NS vertex operators between

Ramond states; these states are created by applying the Ramond vertex operators to

the vacuum. N = 2 worldsheet supersymmetry allows us to write the internal-CFT
part of these states as the spectral flow operator applied to NS operators acting on

the vacuum;

Σi(0)|vac〉 = e−i
√
3H/2ψi(0)|vac〉. (6.25)

The amplitude (6.18) factorizes into three pieces. The first is the superghost piece;

the second is the two-point function of the spin fields polarized in the spacetime direc-

tions. These give essentially universal answers which we can expect from 4d Lorentz

invariance. The internal CFT amplitude is the interesting part. It is an expectation

value of n chiral or antichiral NS boundary operators and k bulk NS-NS operators in

one of the four closed-string chiral rings, with two additional half-unit spectral flow

operators each mapping NS states to R states. The fixed boundary operators become

0-form observables and the integrated boundary operators, 1-form observables. If the

closed-string operators are (c, c) for the B-type twisting, corresponding to complex

structure deformations, they become (almost)-invariant topological observables. If

they are (a, c) operators, corresponding to Kähler deformations, they are exact with

respect to the left-moving BRST current and one might hope that they decouple.

We will address this issue below.

The result is (up to the caveats above) a correlator of topological operators in

the topologically twisted theory. The fixed operators become 0-form observables and
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(x )3
i(-1/2)Σ R

φ j(-1) (x  ) 2NS

φ m(0)dx (x )

x1

2x

+ ε

− δ

k(-1/2)Σ (x )1R

k(-1/2)Σ (x )1R

B)

A)

=

3

e -i H/2 k(-1) (x  )1φ
NS

= | k, R > = | k, NS >e -i H/2

3

3

Figure 1: Computing the disc contribution to the D-brane superpotential. A). CFT

contribution. R vertex operators on “caps” can be written as R ground states. B). Rep-

resentation of R ground state as path integral on half-disc. Spectral flow maps this to NS

ground state created by insertion of NS vertex operator.

the integrated operators become 1-form and 2-form observables. We may bring the

techniques of topological field theory to bear on this calculation, and will do so below.

Similarly, the computation of eq. (6.19) is topological (with the same caveats).

Here the auxiliary field is related by a full unit of spectral flow to the (0)-form

observable of the associated scalar field. The superghost part of the amplitude merely

takes care of the relevant zero modes. The internal CFT part is once again an

amplitude in the topologically twisted theory of a (0)-form boundary observable and

a (0, 0)-form bulk observable.

6.4 Computations in the geometric sigma model

The topological symmetry of these correlators, and the localization properties of the

topological path integrals [106, 105], make the above calculations relatively straight-

forward. To see this we will compute the cubic part of the superpotential for a

D0-brane in a weakly curved background, and discuss the linear part of the super-

potential for generic wrapped B-branes.
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To begin with we need to construct the relevant topological observables. The

closed-string case has been described in ref. [105] and the open-string case for fully

Neumann boundary conditions has been described in [101]. We need to generalize

these results to arbitrary B-model boundary conditions.

In the untwisted sigma-model, the propagating worldsheet fields are 3 complex

scalars φi, and three complex fermions ψi±. ψ
i has U(1) charge 1 and ψ ı̄ has charge

−1. Thus in the B-twisted theory ψi have dimension zero and become worldsheet
scalars, while ψ ı̄ have dimension one and become worldsheet one-forms. The BRST

currents G+, Ḡ+ give rise to global symmetries parameterized by constant Grassman

scalars ε,ε̄ (since these are scalars such constants are well-defined on any worldsheet).

In order to write these transformations in the simplest form, it is convenient to rewrite

the fermions as:

ξi = ψi+ + ψ
i
−θ̄ = gi̄

(
ψi− − ψi+

)
. (6.26)

If we integrate out the auxiliary fields on the worldsheet, the BRST transformations

become

δBφ
i =

i

2
ε
(
ξi + gi̄θ̄

)
δBφ

ī = 0

δBξ
i = iΓijk

(
εψi+ψ

k
− + ε̄ψ

j
−ψ

k
+

)
δBθ̄ = igi̄Γ

i
jk

(
εψj+ψ

k
− − ε̄ψj−ψk+

)
+ gi̄,kg

i¯̀(iεψi+ + iε̄ψ
i
−)θ¯̀

δBψ
̄
− = −ε̄∂̄φ̄δBψ̄+ = −ε∂φ̄ . (6.27)

These do not necessarily close off-shell once we have integrated out the auxiliary

fields. In the presence of a boundary we must set ε = ε̄.16 Then the transformations

simplify: in particular, the important transformations are:

δBφ
i = iεξi

δBξ
i = 0δBθ̄ = 0 . (6.28)

Recall that in the Dirichlet directions of the untwisted model, ψi is fixed and ψi+ =

−ψi−; in the Neumann directions (when we have turned off the NS 2-form and bound-
ary gauge field), ψ+ = ψ−. Thus along Dirichlet directions, ξ vanishes at the bound-
ary; while along Neumann directions, θ vanishes at the boundary. Of course, for

curved boundaries, whether a given polarization is “Dirichlet” or “Neumann” will

depend on φ; this can be defined by a projection matrix Pij(φ(C)) : TM −→ TC.
The (0)-form topological observables in the bulk were constructed in [105]. They

are of the form:

Λi1...ip
̄1...̄qξi1 . . . ξipθ̄1θ̄q ; (6.29)

Λ is a ∂-closed (0, p) form with values in ∧qT (0,1)M .
16This is a sensible thing to do in the closed-string sector as well, as B-model path integrals

localize onto constant maps into the target space [105].
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The boundary observables will live on the appropriate holomorphic submanifold

C ⊂ M and will tak e values in the Chan-Paton algebra ĝ. In the fully Neumann case,

the boundary observables are ĝ-valued (p, 0)-forms, while in the fully Dirichlet case

they will be antiholomorphic functions of the position of the boundary, with values

in ∧qT (0,1)M ⊗ ĝ. In the 2-brane and 4-brane cases, the observables will be forms on
C valued in the normal bundle times the gauge group of the internal worldvolume,
NC|M ⊗ ĝ. The 0-form boundary observables corresponding to the marginal, chiral
primaries of the untwisted model are linear in the worldsheet fermions. For all of

these observables, open and closed, it is easy to see that the BRST operator acts

as the holomorphic differential on C. Thus topological observables are ∂-closed, and
trivial BRST-exact observables are ∂-exact.

The construction of these topological amplitudes makes it clear that we have

some anomalous U(1) charge. This essentially counts fermion number in these mod-

els. In the closed-string B-model, nonvanishing correlators have fermion number 3

for both θ and ξ corresponding to zero modes for each of these fields. On the disc,

the boundary conditions will kill the ξ zero modes polarized along the Dirichlet di-

rections and the θ zero modes polarized along the Neumann directions. Thus for a

holomorphic p-cycle, nonvanishing correlators will have ξ fermion number p and θ

fermion number 3− p.
The other fact that makes these amplitudes straightforward to calculate is that

the topological path integral localizes onto constant maps, restricted to the submani-

fold defined by the boundary conditions. The correlation functions are then integrals

of the appropriate forms over the moduli space of constant maps; in these cases they

will be integrals of the pullback of forms on M onto the submanifold C.
Let us start by computing the cubic term in the superpotential for a brane

sitting at a point in the CY. The topological boundary observables corresponding to

the world-volume chiral fields will be

O = φı̄aθı̄ta , (6.30)

where ta is a matrix in the adjoint of the Chan-Paton group. The correlation function

is:

φı̄1a φ
ı̄2
b φ

ı̄3
c (〈θı̄1θı̄2θı̄3〉+ 〈θı̄2θı̄1θı̄3〉) tr(tatbtc). (6.31)

Note that the expectation value is antisymmetric in the fermions; thus this will

vanish if there is only one D-brane, after summing over the ordering. The moduli

space of constant maps is a point. Chiral deformations of the location by boundary

observables live in T 0,1M and anti-chiral deformations are valued in T 1,0M . The

latter are BRST-exact in our picture, so the above correlator is ∂-closed as a function

of the location of the point.17 The correlators must be antiholomorphic functions of

17This is a sensible thing to do in the closed-string sector as well, as B-model path integrals

localize onto constant maps into the target space [105].
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the location of this point, and they live in ∧3T (0,1)M . Serre duality implies that they
are components of a closed antiholomorphic (0, 3) form. On the Calabi-Yau manifold

there is only one such form Ω within cohomology. Thus the superpotential is

W = Ωı̄1 ı̄2 ı̄3f
abcΦı̄1a Φ

ı̄2
b Φ

ı̄3
c . (6.32)

This superpotential is similar to the term coming from fully Neumann boundary

conditions. The topological string theory in this latter case has been argued to be a

holomorphic six-dimensional version of Chern-Simons theory [101]; the vertex opera-

tors which describe chiral fields in the spacetime lagrangian describe antiholomorphic

gauge fields Ā on the Calabi-Yau. The low-energy lagrangian has been argued to be

S =

∫
M

Ω ∧
(
Ā ∧ ∂Ā + 2

3
Ā ∧ Ā ∧ Ā

)
. (6.33)

This second term is the superpotential.

Finally, we can look for linear terms in the superpotential coming from a coupling

to closed strings. Again, the boundary topological operator will be linear in the

worldsheet scalar fermions; for the correlator to have the right fermion number, the

closed-string operator must be quadratic. We can analyze these couplings for 0-

, 2-, 4- and 6-cycles separately and we find that some of these amplitudes vanish

automatically.

For boundaries living on points, the open-string operator is written in eq. (6.30).

The closed-string operator must be quadratic in θ and have no ξ charge by U(1)

charge conservation. This latter operator is an element of H0(M,∧2T (1,0)M). By
Serre duality this group is equivalent to the Dolbeaux cohomology group H(0,1)(M)

which vanishes for Calabi-Yau compactifications. Thus there is no closed-string op-

erator which couples to a single open-string operator on the D0-brane. The argument

is almost identical for D6-branes and rests on the fact that H (2,0)(M) is trivial on a

Calabi-Yau manifold.

For 2-cycles the story is a bit richer. If the open-string vertex operator is polar-

ized along a Neumann direction,

VN = Ai,aξ
ita , (6.34)

(we work in a coordinate patch where the tangent-normal split is trivial), then

fermion number conservation requires that the closed-string operator be quadratic in

θ and there are no such nontrivial operators as we have just argued. But for vertex

operators polarized in a Dirichlet direction, the closed-string operator must be bilin-

ear in ξ and θ, making it a one-form valued in T (0,1)M . Serre duality relates this to

an element of H(2,1)(M) and this group is certainly nontrivial, so these open-closed

correlators are allowed. Similarly we can have nontrivial linear terms for chiral fields

coming from Neumann directions along a 4-cycle.
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Indeed, these results should not surprise us. If we change the complex structure

of the manifold, the holomorphic 2- and 4-cycles, and the homomorphic bundles

on them, will change. We should generically find that the reference cycle is no

longer a stable, supersymmetric configuration. On the other hands, the 0- and 6-

cycles are holomorphic regardless of the complex structure, so we expect them to be

supersymmetric so long as the closed-string background maintains N = 2 spacetime
SUSY.

6.5 Decoupling of non-topological moduli

One of the more powerful statements one can make in topological closed string theory

is that the Kähler (complex structure) deformations decouple from topological ampli-

tudes in the B (A) model. This is related to the fact that the spacetime of the theory

has N = 2 supersymmetry and the vector multiplets and hypermultiplets decouple
(away from singular points in the moduli space). One can show in the topologically

twisted B (A) models that insertions of integrated (c, a) ((a, c)) operators, which

one would get by taking derivatives of the amplitudes with respect to the Kähler

(complex structure) moduli, lead to vanishing amplitudes. In the open string case

the status of this decoupling is less clear. To start with, the spacetime SUSY is only

N = 1 and the lagrangian is far less constrained. For example, recall the analogous
E8 ×E8 heterotic string, compactified on a CY 3-fold. There the charged multiplets
arising from the Kähler and complex structure decouple from each other at finite

order in α′ [44] but couple due to worldsheet instantons [107]. Furthermore, in the
generic (0, 2) model it may not make sense to identify deformations with Kähler or

complex structure deformations.

Actually, a total decoupling is not to be expected, even from geometric consider-

ations. For example, if we consider the theory of D9-branes wrapped on the CY, the

four-dimensional action will come with the prefactor V6/gs where V6 is the volume of

the CY. On the other hand this is a B-brane so the topological amplitudes naturally

depend on complex moduli. Thus the strongest conjecture we could make is that the

superpotential (for a B brane) takes the form

W = m(φK)W (φc, ψ), (6.35)

where m(φK) is proportional to the brane tension (3.1).

A known example which illustrates this is the one-loop topological open string

amplitude. For the D6-brane this is the Ray-Singer torsion I(V ) associated to

the Chan-Paton bundle V on M [103]. In general I(V ) is not independent of the

Kähler moduli, but ratios ln(I(V1)/I(V2)) are, where V1,2 are two different bundles on

M [108]. This is consistent with (6.35); furthermore this amplitude also corresponds

to a chiral (
∫
d2θ) term in the effective action, the one-loop correction to the gauge

coupling.
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In a system involving several different branes, (6.35) does not even predict a uni-

versal multiplicative dependence of the total superpotential on the Kähler moduli.

At the very least it will be the sum of several terms of this form but with differ-

ent m(φK). There will also be terms involving strings stretched between different

branes. Geometrically these would be expected to come with m(φK) for the surface

of intersection; it would be quite interesting to make a more general proposal along

these lines.

In any case, it is preferable to have string world-sheet arguments for decoupling.

Thus we proceed to consider the cubic and quartic terms in the superpotential as

computed on the disk, to see if derivatives with respect to Kähler moduli φK are

consistent with (6.35). We will work in the untwisted theory in order to ensure that

we are not avoiding any subtleties; our statements can be carried over to the twisted

theory.

Recall that the cubic term in the superpotential for B-type boundary conditions

is calculated via the 3-point disc amplitude. The part arising from the internal CFT

is:

〈Σi1IJOi2JKΣi3KI〉 (6.36)

plus a sum over any orderings consistent with the Chan-Paton factors. We may fix

the ordering by picking suitable Chan-Paton factors, which we will do here. Now

the first derivative of this amplitude with respect to some Kähler deformation will

lead to the above amplitude with the insertion of an integrated (0, 0)-picture vertex

operator constructed from the (a, c) (or (c, a)) ring:

V =

∫
D

d2w

∮
z→w

∮
z̄→w̄

dzdz̄G+Ḡ−(z̄)ψi(w, w̄) , (6.37)

and the complete amplitude is show in figure 2. Conformal invariance allows us to

deform the integral of G+ out to the boundary. This amounts to using the super-

conformal Ward identities. Let us concentrate on the case where the doubling trick

allows us to describe amplitudes on the upper-half plane via amplitudes on the full

complex plane. The contour may be deformed to a sum of integrals of G+ around

each boundary operator18, plus a contour integral around the image of (see figure 2)

V
(0,1)
(a,c) =

∫
d2w

∮
dz̄Ḡ−(z̄)ψi(w, w̄). (6.38)

In the end, the contour integrals around the boundary operators will vanish as the

operators are chiral. The contour integral around the image of the bulk operator in

the lower half-plane may be expressed in the upper half-plane as an integral∮
z̄→w̄

Ḡ+(z̄)

18Taking some care with the branch cuts created by the spin fields.
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D
G + ψG - (a,c)

I

J

K

φ (x   )j
2

Σ κ
1(x   )

C

Σ ι
3(x   )

IJ

JK

KI

Figure 2: Perturbation of cubic part of superpotential by Kähler deformation. The

superconformal Ward identities allow us to pull
∮
dzG+(z) to the contour C. This can

be deformed to a contour integral around each of the boundary operators and an integral

over C of dz̄Ḡ+(z̄) which can be deformed back to the insertion of Ḡ−ψ. The result is an
integral over the insertion of ∂̄wψ which can be integrated by parts to an integral of ψ over

C.

around V
(0,1)
(a,c) . Using the superconformal algebra, this term becomes:∫

d2w∂̄wψ
i =

∮
∂D

ψi . (6.39)

In this integral over the boundary, we must take some care when the contour passes

near one of the boundary operator insertions. The result is the correlation function〈
Σα1IJOα2JKΣα3KI

∮
C

ψi
〉
, (6.40)
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where the contour C is shown in figure 2. We get two potential contact terms from

this correlator. One arises from the operator product of the (a, c) operator with the

boundary [14]:

lim
y→0

ψi(x+ iy, x− iy) ∼ CI
ψiOα

1

y1−δOα
Oα(x) (6.41)

(here I lables the boundary condition in the region of the contact term); the other

from the operator product of ψi with the boundary operators Σα,Oα. Note that O
will have zero U(1) charge. Let us deal with each of these in turn; we will in fact

argue that this second contact term is taken care of by the first.

The bulk-boundary OPE can be treated as a factorization of the disc amplitude

onto an intermediate open-string state. The OPE coefficient CI
iα will be proportional

to the open-closed disc amplitude 〈ψiOα〉. There are in fact two classes of terms to
worry about in eq. (6.41): δOα < 1 and δOα = 1. In the former case the intermediate
state is a tachyon. Either this is removed by the GSO projection, or the perturbation

by ψi has changed the acceptable boundary conditions — for example by changing

the stability condition on vector bundles — so that the original boundary is no

longer a stable D-brane. Such a divergence will have to be removed by perturbing

the boundary conditions. The second case is a more genuine contact term; it is

a dimension-one operator which is integrated over the boundary. In this case the

3-point correlator satisfies:(
∂i − Cboundiα ∂α

) 〈Σα1IJOα2JKΣα3KI〉 = 0 . (6.42)

If Oα is a topological operator then the perturbation by ψi has the fairly simple
effect of moving the vev slightly along a flat direction. It should not affect the form

of the superpotential, in keeping with our claim.

A very similar formula to (6.42) appears in [6]. In that case they find that

by defining a suitable connection, the chiral primary part of the boundary state of

the B-type brane is covariantly constant with respect to deformations of the Kahler

moduli. Our result should be the open-string version of this fact.

The second contact term above is between the bulk operator ψi and boundary

operator Oβ. By using the doubling trick this is described as the coalescence of three
operators and, associativity allows us to write this by taking the bulk-boundary OPE

(6.41) of ψ first, and then taking the OPE of Oα and Oβ. But this will be included
in the limits of integration of the first contact term Oα over the boundary.
Higher order amplitudes are more subtle since they have a moduli space of inser-

tions of vertex operators. When applying the Ward identities, we will find integrals

of total derivatives with respect to these moduli, leading to contributions from the

boundaries of moduli space.19 Indeed such terms are important in deriving the one-

loop holomorphic anomaly for topological amplitudes [110]. We can already illustrate
19This is similar to the fact that insertions of the stress tensor into correlators on higher-genus

Riemann surfaces lead not only to transformations of the operators but to derivatives of the ampli-
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this phenomenon by looking at the contribution to the quartic term of the super-

potential from a single derivative with respect to the Kähler moduli. The resulting

amplitude is:

lim
ε,δ→0

〈
Σi,(−1/2)(x3)

∫ x3−ε

x2+δ

dx
1√
2

{
G− + Ḡ−,Oj,(−1)(x)}× (6.43)

×Ok,(−1)(x2)Σ`,(−1/2)(x1)
∫
d2w

∮
z→w

∮
z̄→w̄

dzdz̄G+(z)Ḡ−(z̄)ψ(a,c)
〉

plus a potential sum over orderings. As before we may fix the orderings of the

boundary operators via a judicious choice of Chan-Paton factors. Once again, we

pull the contour integral of G+ off of the bulk operator and apply the superconformal

Ward identities. In addition to the terms which we have already argued to vanish,

we get a term coming from the contour integral of G+ around the integrated NS

operator. Again, let us look at the case where we may describe this amplitude via

the doubling trick. Then the above anticommutator can be replaced with a contour

integral of G− around a point on the real line, and the contour integral of G+ around
this leads simply to a derivative of ψj . The result is the difference of contact terms:

lim
ε→0

〈
Σi(x3)

(Oj(x3 − ε)−Oj(x2 + ε))Ok(x2)Σ`(x1)×
×
∫
d2w

∮
z̄→w̄

dz̄Ḡ−(z̄)ψ(a,c)(w, w̄)
〉
. (6.44)

In the twisted theory we might hope that factorization and associativity means that

this difference would vanish. This would be true if there was no insertion of ψ(a,c).

With such an insertion, it is not clear that the amplitude will factorize onto topo-

logical intermediate states, so we cannot complete this argument at present.

The upshot of all of this is that there is a simple world-sheet mechanism which

could lead to decoupling. It is very analogous to the known decoupling of bulk Kähler

and complex structure deformations: the decoupling operator is a descendant with

respect to an operator which annihilates the boundary chiral fields (say for Kähler

and B-type, the operator G+). The situation is better than that for (0, 2) heterotic

string models as there are still two N = 2 algebras involved; they are identified only
on the boundary.

Such world-sheet arguments are valid up to the possible contributions of contact

terms and to make them precise, one needs to show that the contact terms either

vanish or have simple interpretations (e.g. as connection coefficients on the moduli

space). We have interpreted some but not all of these terms and thus can say that

we have found further evidence for decoupling but by no means a proof.

tude with respect to the moduli of the surface [109]. Indeed such terms are important in deriving

the one-loop holomorphic anomaly for topological amplitudes [110].
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7. Correlation functions in minimal models and Gepner mod-

els

We now turn to the problem of computing correlation functions in the Gepner model.

To begin with, let us recall a few properties of Gepner model boundary correlators,

which are comparable to properties of bulk correlators. As with correlators in the

bulk theory, in the boundary theory there are restrictions due to ghost number

conservation. This can easily be seen using the doubling trick and has been discussed

in the previous section. In addition, the boundary fields transform under particular

representations of the chiral algebra, similar to chiral halves of bulk fields. The chiral

algebra is the tensor product of the chiral algebras of the minimal models involved.

The fields obey the same fusion rules. Correlators forbidden by the fusion rules

therefore vanish.

In this section we point out a number of differences with bulk theory computa-

tions and interpret their consequences.

7.1 Ordering effects

Correlation functions involving boundary operators require a specification of operator

ordering along the boundary (which we will place on the real line):

〈ψ1(x1)ψ2(x2) . . . ψn(xn)〉 x1 > x2 > · · · > xn

This ordering corresponds directly to the ordering of the matrix fields in the world-

volume lagrangian: for example terms trψ1ψ2ψ3 and trψ1ψ3ψ2 come from these two

orderings of the three-point function.

In some particularly simple models (for example, free field theory), correlation

functions of boundary operators can be analytically continued to the bulk. In this

case it is possible to determine the effect of arbitrary permutations of the fields.

This was formalized by Recknagel and Schomerus [111] in a discussion of non-

supersymmetric conformal field theories. Two boundary operators ψ1,2 were called

mutually local if

ψ1(x1)ψ2(x2) = ψ2(x2)ψ1(x1) (7.1)

inside correlators. Here, the left hand side implies x1 > x2 and the right hand side

x1 < x2. Recknagel and Schomerus then argued that self-local marginal boundary

operators are truly marginal. The argument is basically that an o.p.e.

ψ(x1)ψ(x2)→ 1

x1 − x2ψ(x1) + · · ·

of the form which would spoil marginality is incompatible with (7.1).

Free fermion correlators can be continued into the bulk as well, and in section 6

we saw that the superpotentials governing these operators were completely antisym-

metric. In particular they vanish in the theory of a single brane. It seems quite
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plausible that this result applies to all operators which are strictly marginal in the

large volume limit; however since we do not know whether an operator we find at the

Gepner point is marginal in the large volume limit until we compute the superpoten-

tial (and many interesting operators are never strictly marginal), such considerations

appear somewhat circular.

In general, one does not expect either that boundary correlation functions have

a continuation into the bulk or that the boundary operators have such simple ex-

change relations. By general principles (which we review in the next subsection)

boundary correlation functions in minimal models and Gepner models are particular

combinations of several chiral conformal blocks, each of which has different exchange

relations, chosen to be single-valued on the boundary. To make any statement about

ordering effects, we must consider this analysis.

7.2 Sewing constraints

In this section we will briefly discuss sewing constraints on boundary fields. Cor-

relation functions in two-dimensional CFT with boundaries have been studied for

rational conformal field theories in [112, 14]. In the bulk, the n-point functions on

the sphere are determined by the three-point functions; the higher-point functions

can be computed by sewing. The result is independent of the decomposition of the

n-point function into three-point functions, as guaranteed by crossing symmetry for

the four-point functions. Similar results hold for the case with boundaries. Here, we

have three types of sewing constraints, those involving only boundary fields, those,

involving both bulk- and boundary fields and those involving only bulk fields. The

structure constants for boundary fields depend on the boundary conditions.

As discussed in section 4, for RCFTs the possible boundary conditions preserving

all the symmetries are labeled by the primary fields and can be implemented by

boundary states carrying these labels, and we have written analogous states for

Gepner models. The field content of the theory can be read off from the partition

function Zαβ; thus the propagating fields also carry the labels α, β. In the case that

α 6= β, the field φαβ is a boundary condition-changing operator. If α = β, it preserves
the boundary condition.

Let us concentrate on the correlation functions for boundary fields. The bound-

ary OPEs are:

φαβi (x)φ
βγ
j (y) =

∑
k

cαβγijk φ
αγ
k (y)(x− y)hk−hi−hj + · · · y < x . (7.2)

The structure constants cαβγijk , together with the vacuum amplitude, determine the

three-point functions:

〈φαβi (xi)φβγj (xj)φαγk (xk)〉 = cαβγijk†c
αγα

k†k1〈1〉α(xi − xj)hk−hi−hj(xj − xk)−2hk . (7.3)
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We can also evaluate the correlator in the other channel:

〈φαβi (xi)φβγj (xj)φαγk (xk)〉 = cαβαii†1 c
βγα

jki†〈1〉α(xj − xk)hi−hj−hk(xi − xj)−2hi . (7.4)

The dependence on the coordinates is dictated by conformal symmetry. As mentioned

above, conformal symmetry does not relate three-point functions with different or-

derings. Comparison of (7.3), (7.4) leads to a consistency condition on the structure

constants.

In addition to these conditions on the OPE coefficients, we must demand the

crossing symmetry of the four-point functions. Nonvanishing correlation functions

for boundary fields are of the form

〈φαβ1 φβγ2 φγδ3 φδα4 〉, (7.5)

as illustrated in figure 3. In the case of rational

α

β

γ

δ

φ

φφ

φ
αβ

βγγδ

δα

Figure 3: Four-point function.

symmetric models the factorization conditions can

be made explicit using the conformal blocks. Note

that for boundary correlators, the four point func-

tions are linear in the conformal blocks.

In [113] an explicit solution was given for the

Virasoro minimal models:20

cαβγijk = Fkβ

[
α γ

i j

]
,

If we want to compare the four point functions for

open string operators with different orderings, we

have to take into account that the change in the ordering will in general require differ-

ent boundary conditions for the respective four point function to be non-vanishing.

Different boundary conditions will in general change both the structure constants

and the expectation values of the identity so that we do not expect the four point

functions to agree. In the example of the Virasoro minimal model, where we have

an explicit solution, the boundary structure constants satisfy

cαβγijk = c
γβα
jik . (7.6)

In particular, they are completely symmetric in the case that there is only one bound-

ary condition involved. The symmetry of the structure constant is of course a direct

consequence of the symmetries of the F -matrices, which are specific for minimal

models. (In general, there will be a phase involved [116].)

Another simple example is the U(1) boson. The primary fields are given by

tachyon vertex operators eikX . The vertex operator eikX connects the boundary

20(Note added in JHEP version): This was later proven in [114, 115].
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conditions |n〉〉 to |n + k〉〉. Therefore, the condition (7.5) is fulfilled, whenever
momentum conservation holds.

The sewing constraints determining the OPEs have not yet been solved forN = 2
minimal models or for Gepner models. We will return to this in future work.

7.3 Boundary selection rules

Given two boundary states, |α〉〉, |β〉〉, the partition function will contain the charac-
ters of a particular set of marginal operators, whose insertion changes the boundary

conditions from α to β. In general, this set of marginal operators will be a subset of all

possible weight one representations, and are determined by the fusion rules [13]. As a

consequence, certain correlators remain uncorrected, because the required marginal

operator does not propagate with the particular boundary conditions. As a sim-

ple application, consider a boundary condition-changing marginal operator φαβ. All

non-vanishing correlators 〈φγδ1 φδε2 φεγ3 〉 containing only boundary changing operators
cannot be corrected by insertions of φαβ. On the other hand, one can generate a

non-zero correlator which vanishes at lower order.

7.4 Three-point functions in the Gepner models

A superpotential for massless fields is computed from n > 2-point functions as we

have discussed. Let us briefly discuss the conditions under which a three point

function can be non-vanishing. To compute a 〈φφF 〉 term we start by picking three
vertex operators in the NS sector and we apply spectral flow by one unit to one of

them. This is done by splitting the operators in a charged and an uncharged part as

in (6.7) and applying the spectral flow e−iH
√
3. This gives the following correlator:

〈Oαβ01 e−iH
2√
3Oβγ02 ei

H√
3Oγδ03 ei

H√
3 〉 . (7.7)

Including the ghost contributions, the result is the product of the OPE coeffient cαβγ123
for the uncharged operators, with the vacuum expectation amplitude for the bound-

ary condition α. Thus, a cubic term in the superpotential is directly proportional to

a structure constant cαβγ123 .

7.5 The A1 model

The power of boundary selection rules can be nicely illustrated with the example of

the A1 model, where all correlators between chiral fields are forbidden. The model

contains the chiral operators 1, φ
(0)
1 = e

i√
3
φ
and the antichiral operator φ

(0)
−1 = e

− i√
3
φ
.

As discussed in section 6, from these operators we can derive one-form operators. For

the chiral operator, we get the one-form operator φ
(1)
1 = e

−2i√
3
φ
. Alternatively, this

operation can be interpreted as picture changing, if the A1 model is part of a string

theory compactification. A candidate for a non vanishing correlator is 〈(φ(0)1 )3φ(1)1 〉
and we have to check whether it is compatible with the boundary conditions. We can
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determine, which boundary conditions allow for the field φ1 by using the fusion rules.

The field φαβ1 exists whenever N
1
αβ does not vanish. This is the case for αβ = 11,−11

and 1−1. As a consequence, our candidate is suppressed by boundary selection rules.

7.6 The A2 model

In the A2 model, the boundary selection rules do not forbid all correlators. We will

give an example of an allowed correlator, where permutation of the operators requires

different boundary conditions.

The A2 minimal model can be seen as one real boson χ and one real fermion λ.

The central charge is 3/2. Apart from the identity there are two more chiral primary

fields,

φ1 = σe
iχ

2
√
2 , φ2 = e

iχ√
2 .

There are two corresponding anti-chiral fields of opposite charges.

φ−1 = µe
− iχ

2
√
2 , φ−2 = e

−iχ√
2 .

There is also an uncharged field λ, which is the ordinary fermion, or in minimal model

language the field l = 2, m = 0. The spectrum for various boundary conditions can

now be determined by fusing the fields labeling the boundary conditions.

The boundary conditions for the anti-
1 11,1, 11,1, 1−1,−1, 12,2, 1−2,−21λ,λ

φ1 φ1,21 φ
−2,1
1 φ1,−21 φ2,−11 φ−1,λ1 φ1λ, 1

φ2 φ1,−12 φ−1,12 φ2,λ2 φλ,−22

λ λ1,1λ−2,2λ2,−2

Table 2: Spectrum of boundary fields de-

pending on the boundary conditions.

chiral fields follow from this table: For any

chiral field φαβq we have an antichiral field

φβα−q. A non-trivial four-point function to
compute is

〈φ2φ2φ1φ1〉,
where one operator is a one-form and in-

tegrated over the boundary. There exists another ordering

〈φ2φ1φ2φ1〉.
The first ordering requires the following boundary conditions:

〈φ2,λ2 φλ,−22 φ−2,11 φ1,21 〉
The other ordering requires the boundary conditions:

〈φ1,−12 φ−1,λ1 φλ,−22 φ−2,11 〉.
Evaluation of the two four-point functions leads to structure constants with different

boundary conditions (which will in general be not equal). In the final result, the

expectation value of the identity is taken with two different boundary conditions.

Therefore, the two results are not expected to agree.
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7.7 The models (k = 2)2 and (k = 2)4, (k = 1)3 and (k = 1)9

There are two Gepner models containing only the (k = 2) model: the model (k = 2)2,

which corresponds to a 2-torus; and (k = 2)4, which corresponds to a K3 surface.

We will consider in this section the case of a single boundary condition (i.e.a sin-

gle brane). In this case it is known that the superpotential vanishes, which we can

check using the Gepner model description. The marginal operator in the (k = 2)2

model is the operator φ
(1)
2 φ

(2)
2 . This operator corresponds to the complex fermion ψ

in sigma-model language. We know that this operator is an anticommuting variable.

Therefore, all superpotential terms involving this operator vanish in the absence of

Chan-Paton factors, due to the sum over operator ordering. Similarly, as a conse-

quence of the fusion rules, in the (k = 2)4 case all marginal operators are of the form

φ
(i)
2 φ

(j)
2 . We know from the torus that these operators anticommute. Therefore, all

superpotential terms vanish after summing over all permutations. This verifies the

result discussed in section 4.4. for the case Ng = 1.

Similar statements can be made for the models consisting only of (k = 1) models,

like the torus (k = 1)3 and the orbifolded six-torus (k = 1)9. The fermion in the two-

torus is given by the field φ
(1)
(1,1,0)φ

(2)
(1,1,0)φ

(3)
(1,1,0). Simlilarly, we can form three complex

fermions for the six-torus example. The marginal operators propagate for the L =

1 boundary conditions in these models. Again, we know that the superpotential

vanishes by antisymmetry.

7.8 The quintic

Let us now turn to the applications of the boundary selection rules to the (k = 3)5

Gepner model. We are particularly interested in correlators of marginal operators.

For the B-boundary states discussed in section 5, we found that if we impose the

same boundary conditions on both ends of the string there are boundary conditions

with either 101, 50, 24, 11, 4 or 0 marginal operators propagating.

The 101 marginal operators propagating between the boundary states L =

{1, 1, 1, 1, 1} are of the same form as the complex structure deformations in the
closed string case. These are left-right symmetric fields of charge (1, 1). If we use the

doubling trick, the boundary marginal operators look the holomorphic part of these

operators. They are of the form:

(1, 1, 0)5 1

(1, 1, 0)3(2, 2, 0)(0, 0, 0) 20

(1, 1, 0)2(3, 3, 0)(0, 0, 0)2 30

(1, 1, 0)2(2, 2, 0)2(0, 0, 0) 20

(2, 2, 0)(3, 3, 0)(0, 0, 0)3 20

(7.8)

For these boundary conditions there are no further restrictions on possible cor-

relators from the boundary selection rules. All correlators allowed by U(1) charge
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conservation and fusion rules will also be allowed by the boundary selection rules.

The difference from closed string computations is that these correlators depend on:

the one-point function of the identity in the presence of particular boundary condi-

tions; the values of the fusion coefficients cαααijk for the boundary conditions; and the

different integration domain for the four- and higher point functions.

The 4,11, 24 and 50 marginal operators are particular subsets of the 101 op-

erators. Here, restrictions from boundary selection rules are possible: some of the

correlators which are present in the closed string case cannot appear as the opera-

tors do not propagate with the given boundary conditions. We expect the strongest

results for the case with 4 marginal boundary operators.

To compute superpotential terms, we start with three (or more) chiral primary

fields in the NS sector. One way to relate this to a physical amplitude is to apply

a unit of spectral flow, so that from the space time point of view we are computing

the 〈Fφφ〉 term in the worldvolume lagrangian. For 4- and higher-point functions,
charge conservation requires us to apply the operator G to the additional operators

(which changes the label s of the Gepner model fields from 0 to 2). In our example,

unit spectral flow is implemented by the operator φ5(3,−3,0).
The four marginal operators for the boundary conditions L = {1, 0, 0, 0, 0} are

given by

ψi = φ
(1)
(2,2,0)φ

(i)
(3,3,0) ,

where the upper index labels the minimal model, i = 2, 3, 4, 5. Spectral flow re-

lates these operators to φ
(1)
(1,−1,0)φ

(i)
(0,0,0)φ

3
(3,−3,0). There is no non-vanishing three-point

function for these operators. However, there are some higher-order terms which are

allowed. The four point function

〈ψ2ψ3ψ4
∫
∂Σ

Gψ5〉

is not suppressed by the selection rules. We can ask about possible corrections to

this correlator. The fusion rules tell us that all higher order terms have to be of the

form (∫
∂Σ

Gψj

)5
,

since the fifth powers of φ(2,2,2) and φ(3,3,2) contain the identity in their fusion. Note

that there are a lot more correction terms for the corresponding bulk 4-point function.

Let us move on to the next most complicated example, the example with 11

marginal operators. The marginal operators are of the form

φ
(1)
(2,2,0)φ

(i)
(3,3,0), φ

(2)
(2,2,0)φ

(i)
(3,3,0), φ

(1)
(1,1,0)φ

(2)
(1,1,0)φ

(i)
(3,3,0). (7.9)

Compared to the previous case, this example is already much less restricted. For

example, we have in this case two types of three-point functions: those containing
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each type of operator listed in (7.9) once; and that containing the three operators of

the third type listed in (7.9). However, a lot of corrections which would be allowed

in the corresponding bulk case are absent for these boundary conditions, because

in the factors 3, 4, 5 of the minimal models, φ(3,3,0) is the only chiral primary which

propagates.

Likewise, we potentially get more three point functions for the cases with 24

and 50 operators, and less corrections are suppressed. Finally, for the case with 101

marginal operators, all allowed bulk correlators have a boundary equivalent.

To conclude this section, let us briefly commment on the A-type boundary

conditions. Here, the L = 1 states have one marginal operator, which is the op-

erator φ
(1)
(1,1,0) . . . φ

(5)
(1,1,0). The three-point function between three operators of this

type is allowed by the selection rules. Also, higher-order correlators containing(∫
G
(
φ
(1)
(1,1,0) . . . φ

(5)
(1,1,0)

))5
are allowed. Taking the 5th power is required by the

fusion rules: φ5(1,1,0) contains the identity. For the A-type boundary conditions we

have also argued for a coupling of this operator to a bulk field. The closed string

observables in the A-model are the (a, c) fields. On the quintic, this is the Kähler de-

formation (
∏5

i=1 φ(1,1,0),
∏5

i=1 φ(1,−1,0)). Taking this operator to the boundary, we get
boundary fields contained in the OPE of

∏5
i=1 φ(1,1,0) ×

∏5
i=1 φ(1,1,0). This certainly

makes a bulk-boundary coupling of the desired form possible.

7.9 Consequences of the selection rules

Perhaps the simplest conclusion we can draw from these selection rules is that the B

branes with L ≥ 1 have non-trivial moduli spaces. Consider the example of |10000〉B:
the superpotential must take the form

W = ψ2ψ3ψ4ψ5f(ψ
5
2, ψ

5
3, ψ

5
4 , ψ

5
5).

No matter what f is, the subspace ψ2 = ψ3 = 0 (or any two ψ’s zero) solves W
′ = 0.

On the other hand, we found that the branes |11111〉A, which we identified with
the large volume RP3s, admitted a superpotential W = ψ3f(ψ5) + φψg(ψ5), which

would resolve the potential contradiction with the lack of moduli in the large volume

limit. A non-trivial f and g would break the ψ → −ψ R symmetry of the leading
order superpotential, which has no reason to exist in the large volume limit. However

we cannot test the prediction for the number of minima of W at this point.

8. Conclusions and further directions

In this work we began a systematic study of D-branes in the stringy regime of the

quintic Calabi-Yau. Our main result was the determination of the charges (in the

usual large volume conventions) of the explicit Gepner model boundary states con-

structed by Recknagel and Schomerus. Our tools were the intersection form, and the
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monodromy and continuation formulas for the CY periods. The techniques clearly

generalize to any Calabi-Yau given this data.

The primary question we hope to address is whether the spectra and low energy

world-volume theories of branes in the stringy regime are the same (up to renormal-

izations of couplings) as in the large volume limit or not. We will refer to this as

the “geometric hypothesis.” Unlike the previously studied cases, supersymmetry is

not sufficient to answer this question. From the bulk point of view, N = 2, d = 4
supersymmetry allows lines of marginal stability for BPS states, while from the brane

point of view N = 1, d = 4 supersymmetry allows transitions from Higgs to Coulomb
branch which are essentially unpredictable from the large volume point of view.

There are a number of considerations which would lead us to expect non-geo-

metric phenomena. Perhaps the simplest is that the B monodromies relate branes

of different dimension. Another essentially non-geometric phenomenon is the topol-

ogy change seen in various Calabi-Yaus; both phenomena make the the geometric

interpretation of brane probes ambiguous. The mere existence of these phenomena

however does not really contradict the geometric hypothesis as we have stated it,

if the different geometric objects related by monodromy and topology change lead

to the same low energy theories. What we would be saying is that the same brane

theory can have multiple large volume limits, a familiar phenomenon in duality.

Small instantons and the C3/Z3 orbifold provide examples which do contradict

the geometric hypothesis in its simplest form. At a special point (more generally, in

complex codimension one) in moduli space, enhanced gauge symmetry and additional

states appear. This might be considered a relatively mild failure as it is associated

with a singularity of the riemannian geometry or gauge bundle. If all failures of the

geometric hypothesis were associated with singularities, conversely it would be true

under the mild condition that the geometry stayed non-singular. As we mentioned in

the introduction, we can imagine much more drastic failures — a priori, the spectrum

of branes at the Gepner point might have satisfied none of the relations we expected

from geometry and gauge theory.

The results we have presented here are not (yet) inconsistent with the geometric

hypothesis. Most of the branes we find could certainly correspond to the appropri-

ate geometric constructions — holomorphic vector bundles and special lagrangian

submanifolds. For example, all of the branes we found satisfied the (mathematical)

stability condition on vector bundles. The lack of any classification of these makes it

difficult for us to assert that branes which we did not identify actually do not have

geometric constructions. The elliptically fibered case may be more promising in this

regard. The most problematic case was a brane which would correspond to a rank

1 bundle with c1 = 0 but c2 6= 0. Although such things do not exist in conventional
gauge theory, they are known to exist in modified gauge theories (such as noncom-

mutative gauge theory), so one can imagine that this object has a description in the

large volume limit.
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We also presented a general argument that B-type branes should be described

by geometric considerations — namely, that their world-volume potentials are deter-

mined by quantities in B-twisted topological models, which are equal to their classical

values in the B-twisted topological sigma models, up to hopefully minor effects of

Kähler deformations. Besides a formal world-sheet argument we showed that many

known cases fit with this idea. By contrast, the superpotentials in A brane theories

can depend directly on Kähler moduli and a priori it would seem much more likely

that the geometric hypothesis fails.

Finally, we made some first steps towards explicit computation of the superpo-

tentials on these branes. These superpotentials appear to be quite non-trivial and

it appears that such computations are doable with existing techniques; we will re-

turn to this in future work. An exciting possibility is that topological open string

theory can be developed to the point where exact superpotentials can be obtained,

perhaps with some analog of the special geometry determining the bulk prepoten-

tials.

One important direction to develop is to find more direct ways to get the ge-

ometric interpretation of these states. The results here suggest that this will be

simpler in the A picture — the simplest picture is that each component minimal

model has a specific boundary condition for its LG superfield. If we had the D0-

brane boundary state, we could apply a probe construction to get the geometri-

cal picture for the B boundary states (indeed we could derive the corresponding

(0, 2) models); perhaps larger classes of boundary states containing the D0 can be

found.

A study of curves of marginal stability is in progress, to decide whether the large

volume and Gepner D-branes should be expected to match up, and whether new

phenomena appear near the conifold point.

Let us close with a brief discussion the physical relevance of our primary ques-

tion. To the extent that branes in the stringy regime are qualitatively different than

geometric branes, all of the work on compactification using branes will have to be

reconsidered. On the other hand, to the extent that they are qualitatively the same,

these techniques will provide new ways of deriving geometric results, such as the

existence and moduli space dimension for vector bundles.

Questions of existence of branes are also directly relevant for non-perturbative

constructions of M theory. For example, Matrix theory constructions to date use D0-

branes as their starting point. Compactifications on some manifold M are believed

to be described by D0-branes in a certain scaling limit of type-IIA string theory

on M [117]. The authors of ref. [118] argued that for Calabi-Yau compactifications

this limit was the mirror of the conifold point. If it were to turn out that the

D0-brane did not exist in the stringy regime, this construction would have to be

reconsidered.

In any case we believe there is much to be discovered in this direction.
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A. An explicit calculation for A-type boundary states

This appendix shows the explicit calculation of the intersection number of two A-type

boundary states. The Witten index trR(−1)F in the open string sector is obtained
from the transition amplitude between the (internal) RR parts of the boundary states

with (−1)FL inserted21. The first part of this calculation is very close to that in [7].
For the A-type boundary states the δA constraint is trivial, as we have discussed.

tr
R
(−1)F qH = 1

κAακ
A
α̃

β,R∑
λ,µ

β,R∑
λ̃,µ̃

Bλ̃,µ̃
α̃ Bλ,µ

α A〈〈λ̃,−µ̃|(−1)FL q̃L0− c
24 |λ, µ〉〉A

=
1

κAακ
A
α̃

β,R∑
λ,µ

ev∑
λ′,µ′

Bλ,−µ
α̃ Bλ,µ

α (−1)Q(µ)+d/2S(λ,µ),(λ′,µ′)χλ
′
µ′(q), (A.1)

where S(λ,µ),(λ′,µ′) is the modular transformation matrix and ev means lj +mj + sj =

even. The β-constrained sum together with the charge projection operator can be

rewritten as

β,R∑
λ,µ

(−1)Q(µ)+d/2 =
R∑
λ,µ

1

K

K−1∑
ν0=0

e
iπ(2ν0+1)(−∑ sj

2
+
∑ mj
kj+2

+ d
2
)

=
1

K

R∑
λ,µ

∑
ν0

eiπ
d
2
(2ν0+1)

r∏
j=1

e
iπ

mj
kj+2

(2ν0+1)
e−iπ

sj
2
(2ν0+1) . (A.2)

Putting all these equations together and collecting terms we get:

tr
R
(−1)F qH = 1

κAακ
A
α̃

1

K

ev∑
λ′,µ′

∑
ν0

eiπ
d
2
(2ν0+1)

r∏
j=1

( 1

2(kj + 2)2
×

21One has to be careful with the definition of (−1)FL in the RR sector. It should be defined by
(−1)FL = (−1)J0+d/2 because the charge might be half- integer moded.
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×
R∑

lj ,mj ,sj

sin(lj, Lj) sin(lj , L̃j) sin(lj, l
′
j)

sin(lj, 0)
×

×eiπ
mj
kj+2

(2ν0+1+Mj−M̃j+m′j)eiπ
sj
2
(−2ν0−1−Sj+S̃j−s′j)

)
χλ

′
µ′(q). (A.3)

The sums over lj, mj , sj can be evaluated as follows:

1

2(k + 2)2

R∑
l,m,s

sin(l, L) sin(l, L̃) sin(l, l′)
sin(l, 0)

eiπ
m
k+2

Meiπ
s
2
S =

=
1

(k + 2)2

R∑
l,m

sin(l, L) sin(l, L̃) sin(l, l′)
sin(l, 0)

eiπ
m
k+2

M(−1)S2 δ(2)S

=
1

k + 2

∑
l

sin(l, L) sin(l, L̃) sin(l, l′)
sin(l, 0)

(−1) Mk+2 (l+1)δ(k+2)M (−1)S2 δ(2)S

=
1

2
N l′
L,L̃
δ
(2k+4)
M δ

(2)
S (−1)

S
2 . (A.4)

Inserting this result into (A.3) gives

tr
R
(−1)F qH = 1

κAακ
A
α̃

1

K

1

2r
(−1)S−S̃2

R∑
λ′,µ′

∑
ν0

(−1) d2 (2ν0+1) ×

×
r∏
j=1

N
l′j
Lj ,L̃j

δ
(2kj+4)

2ν0+1+Mj−M̃j+m′j
(−1)ν0+

1+s′j
2 χλ

′
µ′(q). (A.5)

This fits with the normalization constant being κAα =
√
C/K2r, where C is an extra

integer constant depending on the specific model. It can be understood from the β

constraints. Imposing the same spin structure on all subtheories reduces the number

of states by a factor of 1/2r, the U(1) constraint gives another factor of 1/K.

To simplify this result we have to use the fact that the R ground states are given

by φll+1,1 which are identified with φ
k−l
−k+l−1,−1; only these states will contribute to the

Witten index. We continue the upper index of fusion rule coefficients N l
L,L̃
with a

period of 2k + 4; we identify N−l−2
L,L̃

= −N l
L,L̃
; and we set N−1

L,L̃
= Nk+1

L,L̃
= 0. This

continuation is natural from the point of view of the Verlinde formula. Neglecting

an overall factor of (−1) d2 we find that:

tr
R
(−1)F qH = 1

C
(−1)S−S̃2

∑
ν0

(−1)(d+r)ν0
r∏
j=1

2kj+3∑
mj=0

N
−m′j−1
Lj ,L̃j

δ
(2kj+4)

2ν0+1+Mj−M̃j+m′j

=
1

C
(−1)S−S̃2

∑
ν0

(−1)(d+r)ν0
r∏
j=1

N
2ν0+Mj−M̃j
Lj ,L̃j

. (A.6)
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