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Abstract: Field theories based on non-commutative spacetimes exhibit very dis-

tinctive non-local effects which mix the ultraviolet with the infrared in bizarre ways.

In particular if the time coordinate is involved in the non-commutativity the theory

seems to be seriously acausal and inconsistent with conventional hamiltonian evo-

lution. To illustrate these effects we study the scattering of wave packets in a field

theory with space/time non-commutativity. In this theory we find effects which seem

to precede their causes and rigid rods which grow instead of Lorentz contract as they

are boosted. These field theories are evidently inconsistent and violate causality and

unitarity. On the other hand open string theory in a background electric field is ex-

pected to exhibit space/time non-commutativity. This raises the question of whether

they also lead to acausal behavior. We show that this is not the case. Stringy ef-

fects conspire to cancel the acausal effects that are present for the non-commutative

field theory.
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1. Introduction

Non-commutative field theory is a model of a world with non-commuting spatial

coordinates (space/space non-commutativity) and in fact such field theories do arise

as the description of string theory in certain backgrounds [1, 2, 3]. Non-commutative

theories are very non local in the non-commuting spatial directions but are quadratic

in time derivatives. Nonlocality in spatial directions ruins Lorentz invariance but it

is consistent with the basic rules of hamiltonian quantum mechanics. Action at a

distance may occur but events never precede their causes.

The situation is much less clear for field theories with non-commutativity between

time and a space direction (space/time non-commutativity). The action is arbitrarily

non local in time with the evolution of fields at one time depending on the value of

fields at both past and future times. The question then is whether the kind of

unusual behavior found in space/time non-commutative field theories can ever occur

in any consistent theory with a hamiltonian and a unitary S-Matrix. We don’t know

the answer to this question but we examine an obvious candidate, string theory in a

background electric Bµν field. This theory is manifestly unitary and may be expected

to exhibit effects similar to those seen in the field theory example. However as we

have seen in [4, 5] the theory in an electric field never becomes a field theory and

retains its stringy excitations. We will see that the stringy effects cancel the acausal

effects of space/time non-commutativity.

The plan of the paper is as follows. In section 2 we describe the scattering

of wave packets in non-commutative field theory. In the case of space/space non-

commutativity the scattering induces a sudden spatial displacement of the wave
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packet in the direction orthogonal to the momentum. The magnitude of displacement

is proportional to the momentum. As expected the degree of nonlocality increases

with momentum. The scattered particles behave like rigid rods oriented perpendic-

ular to their momentum with a size proportional to their momentum [3, 6, 7, 8].

In the space/time case the wave packets scatter in a manner that appears to

violate causality. Two scattered packets appear. One of them is physically sensible

and corresponds to a time delay proportional to the incoming momentum. The

other wave packet has a negative time delay! As in the space/space case the effect

increases with the momentum. Thus at very high energy one of the outgoing waves

appears to originate long before the particles could have collided. We refer to this

behavior as advanced . Alternatively the particles behave like rods oriented along the

direction of motion. Again the length of the rod is proportional to its momentum.

This increase of length with momentum is very counterintuitive and is quite opposite

to the expected Lorentz contraction.

Having defined the distinctive signatures of space/time non-commutativity, in

section 3 we proceed to look for string theory realizations of these signatures. We

investigate open string scattering with and without background electric fields. We

find delayed wave packets with time delay proportional to momentum as expected

in non-commutative theories. We emphasize that the delayed effect occurs with and

without a background electric field. However in no case do we find the acausal

signatures of space-time non-commutativity. The case of open strings in electric

fields is particularly interesting. Although the amplitudes acquire Moyal phases the

stringy effects mask the phases that would otherwise give rise to advanced effects.

The scattering with the electric field does not seem appreciably different than without

it even in the critical limit.

2. Scattering in non-commutative field theory

In this section we study the effect of space/space and space/time non-commutativity

on the scattering of massless scalar particles. We begin with the space/space case.

To illustrate the main points it is sufficient to consider (2 + 1)-dimensional non-

commutative scalar φ4 theory in lowest-order perturbation theory. The coordi-

nates are labeled (x, y, t). Since this case is familiar we will just describe the

scattering schematically. Let us consider two high energy particles moving along

the x axis with spatial momentum Px. We will take the initial wave function

to be

Ψ(x, y) = exp(iPxx)ψin(y) , (2.1)

where

ψin(y) =

∫
dPyψ̂in(Py)e

iPyy . (2.2)
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The important feature of the scattering amplitude for our purposes is the Moyal

phase factors which take the form

M = exp
i

2
θ(PxQy − PyQx) , (2.3)

where Q is the momentum transfer. We assume Px � Py, Qx, Qy.

After the scattering, the scattered momentum space wave function is given by

an expression of the form

ψ̂out(Py) =

∫
dQyψ̂in(Py +Qy) exp

i

2
θ(PxQy) . (2.4)

In coordinate space

ψout(y) ≈ ψin(y)δ

(
y − 1
2
θPx

)
. (2.5)

In other words the outgoing scattered wave appears to originate from the displaced

position y = θPx/2.

An intuitive way to understand this effect is to think of the incident particles as

extended rods oriented perpendicular to their momentum [3, 6, 7, 8]. The size of the

rods is θP and the rule is that they only interact if their ends touch.

Now we turn to the more interesting case of space/time non-commutativity which

we will study in much more detail. For simplicity we will work in 1 + 1 dimensions.

We denote time by t and the spatial variable by x.

Let us begin by reviewing the scattering of wave packets in 1+1 dimensions. A

free scalar field in 1 + 1 dimensions has the following Fourier decomposition

φ(x, 0) =

∫
dp

(2π)
√
2Ep

(
ape

ipx + a†pe
−ipx) (2.6)

with [
ap, a

†
k

]
= (2π)δ(p− k) . (2.7)

Because of the special infrared divergences of massless (1+1)-dimensional scalar

fields we will work with the derivative of φ rather than φ itself:

φ′(x, 0) = i
∫

dp

(2π)
√
2Ep

(
pape

ipx − pa†pe−ipx
)
. (2.8)

Single particle states with momentum p are normalized as follows:

|p〉 =√2Epa†p|0〉 . (2.9)

Then the norm

〈p|k〉 = 2Ep(2π)δ(p− k) (2.10)
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is Lorentz invariant. The wavefunction of such a state will be defined by

〈0|φ′(x)|p〉 = ipeipx . (2.11)

Using the equation of motion for the free scalar field, we can find the wavefunction

at all times.

Next, we turn on some interactions. For example, consider a commutative φ4

interaction. We are interested in the scattering of massless scalars, in particular

2-body to 2-body scattering. For sufficiently high energies, we can use perturbation

theory to calculate an S-matrix. The S-matrix takes the following form

S = 1 + iT , (2.12)

where

〈p1, p2|iT |k1, k2〉 = (2π)2δ2(k1 + k2 − p1 − p2)iM(k1, k2 → p1, p2) . (2.13)

Here, k1, k2 denote the 2-momenta of the incoming particles and p1, p2 the 2-momenta

of the outgoing particles. The invariant amplitude iM is computed in the usual way
using Feynman diagrams. For the simple case of a φ4 interaction,

iM = −ig (2.14)

to leading order in perturbation theory. In 1 + 1 dimensions the only effect one

expects to see in 2-body to 2-body scattering is time delays.

Now, consider an incoming state consisting of correlated pairs of particles with

opposite momenta:

|φ〉in =
∫

dk

(2π)2Ek
φin(k)|k,−k〉 , (2.15)

with

φin(k) = φin(−k) . (2.16)

The wavefunction of such a state is given by

Φin(x) ≡ 〈0|φ′(x1)φ′(x2)|φ〉in = 2
∫

dkk2

(2π)2Ek
φin(k)e

ikx , (2.17)

where x = x1 − x2 is the relative separation of the two particles. There is no

dependence on the center of mass position, since the overall center of mass momentum

is zero. Let us also choose φin(k) so that at the time of the collision t = 0, the wave-

packet is well concentrated at x = 0. Then the incoming particles are close together

at t = 0. For example, we may choose

φin(k) = e
−(k−k0)2/λ + e−(k+k0)

2/λ . (2.18)
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The wavepacket is concentrated at energies closed to k0. The width of the packet in

space is given by 1/λ1/2. We let λ � k20 and take k0 large. At earlier times, t < 0,

we can use the free equations of motion to find that the packet is concentrated at

x = 2t. This means that the incoming particles are far apart in the past and they

collide at t = 0.

Similarly, the outgoing state is taken to be

|φ〉out =
∫

dp

(2π)2Ep
φout(p)|p,−p〉 . (2.19)

Then,

|φ〉out = S|φ〉in = |φ〉in + iT |φ〉in . (2.20)

Therefore, we have that

φout(p)

(2π)2Ep
=

φin(p)

(2π)2Ep
+
〈p,−p|iT |φ〉in
8(2π)2E2pδ(0)

. (2.21)

Now, using the form of the matrix element 〈p,−p|iT |k,−k〉, eq. (2.13), we find that
the non-trivial part of φout(p) is given by∫

dk

(2π)2Ek
φin(k)

(
iM
8E2p

)
δ(2Ek − 2Ep) = φin(p)

(2π)2Ep

iM
8E2p

. (2.22)

Therefore, using eq. (2.17), the non-trivial part of the outgoing wavefunction can be

obtained by

Φout(x) ≡ 〈0|φ′(x1)φ′(x2)|φ〉out = 2
∫

dpp2

(2π)2Ep
φin(p)

iM
8E2p

eipx . (2.23)

In the case of the φ4 theory, we see that nothing much happens. Choose φin(p) to

be a polynomial in p times a gaussian so that the integral converges. Then Φin(x) is

concentrated at x = 0. Since iM∼ g, at time t = 0, the outgoing wavefunction will

also be concentrated at x = 0. Therefore, there are no large time delays. Using the

free equations of motion, we find that at later times the wave-packet is concentrated

at x = 2t and so the outgoing particles separate in the far future.

Consider now the effect of space/time non-commutativity.

[t, x] = iθ . (2.24)

The theory is defined by replacing the ordinary product by a ∗-product given by
φ1 ∗ φ2(x, t) = ei θ2 [∂y0∂z1−∂y1∂z0 ]φ(y)φ(z)|y=z=(x,t) . (2.25)

The φ4 lagrangian contains now an infinite number of time derivatives from the

interaction term

gφ ∗ φ ∗ φ ∗ φ . (2.26)
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Therefore the theory is not local in time. It is not clear that such a theory has a

well defined hamiltonian. One plus one-dimensional Lorentz invariance however, is

undisturbed by the non-commutativity. This is easily seen from the fact that the

defining commutation relation has the form

[xµ, xν ] = iθεµν . (2.27)

The effect of the ∗-product is to produce phases in the interaction vertex that
depend on the energies of the particles. The tree-level scattering amplitude is now

given by

iM∼ g
[
cos(p1 ∧ p2) cos(p3 ∧ p4) + 2↔ 3 + 2↔ 4

]
, (2.28)

where p1, p2, p3, p4 are the 2-momenta of the particles satisfying

p1 + p2 + p3 + p4 = 0 . (2.29)

Here p ∧ k = θ(p0k1 − k0p1). Note that we have used conventions with all particles
taken to be incoming in the vertices; i.e. energies of outgoing particles are negative.

In the center of mass frame with the incoming particles (and outgoing) having equal

and opposite spatial momenta, the amplitude becomes

iM∼ g
[
cos(4p2θ) + 2

]
. (2.30)

The pattern is similar in more general non-commutative theories but depending on

the spins and polarizations of the particles the periodic functions may be sines in

place of cosines.

We remark that such a theory fails to be unitary at the 1-loop level [9]. However,

let us just consider tree-level scattering amplitudes and in particular the effect of

non-commutativity on the outgoing wave-packets. We choose for the incoming wave-

packet φin(p) a gaussian function:

φin(p) ∼ Ep

(
e−(p−p0)

2/λ + e−(p+p0)
2/λ
)
. (2.31)

(The extra factor of Ep is added to simplify the integrals but does not change the

qualitative behavior of our results.) Using eq. (2.19), we can find the outgoing

wavefunction

Φout(x) ∼ g

∫
dp
[
cos(4p2θ) + 2

] (
e−(p−p0)

2/λ + e−(p+p0)
2/λ
)
eipx. (2.32)

To compute the integral, we need to calculate the following Fourier transform:∫
dpe4ip

2θe−(p−p0)
2/λeipx ∼ e−p

2
0/λ

1√
1/λ− 4iθe

(2p0/λ+ix)2
1

4(1/λ−4iθ) = (2.33)

=
1√

1/λ− 4iθ exp
[
−λ (x+ 8p0θ)2
4(1 + 16θ2λ2)

]
exp

[
−iθλ2 (x− p0

2λ2θ

)2
1 + 16θ2λ2

]
exp i

p20
4λ2θ

.
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We take p0 � λ1/2 � 1/p0θ, and also assume that λθ� 1. Then, eq. (2.33) simplifies
as follows:

1√−4iθ e
− (x+8p0θ)2

64θ2λ e−i
(x− p0

2λ2θ
)2

16θ ei
p20
4λ2θ ≡ F (x; θ, λ, p0) . (2.34)

Then the outgoing wavefunction is given by

Φout(x) ∼ g
[
F (x;−θ, λ, p0) + 4

√
λe−λx

2/4eip0x +

+ F (x; θ, λ, p0)
]
+ (p0 → −p0) . (2.35)

We see that the wave-packet splits into three parts, one concentrated at x = 8p0θ,

one at x = 0 and the other at x = −8p0θ. The width of the first and third packet
is given by 8λ1/2θ while the one concentrated at x = 0 has width 2/λ1/2. Therefore,

the packets are well separated for p0 � λ1/2 � 1/p0θ. The separation of the two
displaced packets is proportional to p0 which is the energy of the particles. The

bigger the energy is the bigger the separation.

The packet at x = 0 oscillates with frequency p0. The other two packets os-

cillate with phases exp[i(x + p0/2λ
2θ)2/16θ] and exp[−i(x − p0/2λ

2θ)2/16θ]. Lo-

cally, near the maxima at x = ±8p0θ the phases in the other two packets become
exp[ip0(1+1/16λ

2θ2)∆x] and so they oscillate with frequency p0 since λθ� 1. This
was expected from energy conservation.

All three wavepackets propagate towards x→∞. They correspond to particles
3 and 4 moving apart. In our conventions, particle 4 has momentum opposite to

that of particle 1. We can think of it as particle 1 back-scattered. The first packet

is an advanced wave. It appears at x = 0 at some time before the incoming wave

arrives at the origin. The phase responsible for the acausal behavior is e−4iθp2. The
third packet is delayed. The opposite phase causes the delay. Similarly the terms we

get from p0 → −p0 are waves moving towards x→ −∞. It is easy to check that the
advanced wave is again produced by the phase e−4iθp

2
.

Thus the collision is described as follows: the center of mass back scattering is

isomorphic to bouncing off a wall. An incoming wave packet of spatial width λ−1/2

is arranged to arrive at the wall at time t = 0. The outgoing wave consists of three

terms. One term appears to originate from the wall at time t = 8p0θ, well after the

incoming packet reached the wall. It is odd that the wave is delayed for so long a time

as the energy increases but it is not acausal. A second term is neither significantly

delayed or advanced. We will ignore it.

The other term is an “advanced” wave which appears to leave the wall before

the incoming packet arrived. What is worse, the effect increases with energy so that

the advance is proportional to the energy. This certainly seems acausal.

In itself, an advance does not violate causality. A simple non-relativistic model

illustrates the point. Picture the incoming particles as rigid rods of length L. Assume

the rod reflects when its leading end strikes the wall. In this case the center of mass
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of the rod will appear to reflect before it reaches the wall. In a newtonian world a

physicist measuring an advance would conclude that the scattering objects resembled

rigid rods.

The problem with such rigid rods is that they conflict with the combined con-

straints of causality and Lorentz invariance. In fact the required properties of the

rod are completely at variance with the usual expectations of special relativity. For

example one usually assumes that perfectly rigid bodies can not exit. The reason is

that by suddenly displacing one end of a rod, the signal would instantly appear at

the other end. Since such a rod is spacelike, this is usually thought to lead to action

at a distance, nonlocality and violation of causality.

Equally peculiar is the behavior of the rods under boost. Suppose the momentum

is increased. The conventional expectation is that the rod will Lorentz contract thus

decreasing the advance. This is precisely the opposite of what space/time non-

commutativity implies. The rod seems to expand as its momentum increases.

Another phenomenon predicted by eq. (2.35) is that the outgoing packet is much

broader than the incoming. Let the incoming packet be of spatial width λ−1/2. By
contrast, the outgoing packet has spatial width λ1/2θ. In the limit we study of large

λθ this is broader than the incoming packet. How is this explained?

To understand this effect we return to the rod model. The advance is of order

the rod size L. If we take L = pθ then the uncertainty in the rod size is

∆L = θ∆p = θλ1/2 . (2.36)

This means that the advance is also uncertain by the same amount. This obviously

broadens the outgoing packet by the required amount.

All three terms in eq. (2.35) can be interpreted in terms of the rod model. Each

of the incoming rods has two ends, a leading and a trailing end. The advanced

term is due to the scattering of the two leading ends while the retarded contribution

originates from the interaction of the trailing ends. The interaction of a leading and

a trailing end contributes the second term in eq. (2.35).

What are we to make out of this behavior? The most obvious response is to dis-

miss it as pathological and declare space/time non-commutativity to be unphysical.

Our opinion is that this is prematurely pessimistic. The main reason is that some of

the properties of the amplitude largely follow from the uncertainty principle implied

by eq. (2.24)

∆t∆x ≥ θ . (2.37)

This uncertainty principle has the same form as the stringy uncertainty principle [10,

11, 12]

∆t∆x ≥ α′ . (2.38)
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It therefore behooves us to inquire into the structure of string theory amplitudes to

see if they produce any behavior similar to what we find in theories with space/time

non-commutativity.

3. Scattering in open string theory

In this section, we analyze tree level scattering amplitudes of open strings on branes

in the presence of a background electric Bµν field. In the presence of a background

electric field the underlying spacetime is non commutative. It is interesting to ask

how scattering experiments similar to those studied in the previous example can

probe the space/time non-commutativity. In particular we would like to investigate

whether the acausal behavior we found in the simple field theory model is present. As

we shall see, the amplitudes produce causal behavior and exhibit large time delays

proportional to the momentum. The later phenomenon persists even without the

electric field. The reader may think of the problem in a (1 + 1)-dimensional context

by considering open string scattering on a stack of D1-branes [13, 14]. Throughout

this section, we denote by gs, ls the string coupling constant and length scale.

At the level of disc amplitudes the inclusion of the electric field is simple. All we

need is to start with the amplitudes at E = 0, replace the metric ηµν by the effective

open string metric Gµν , gs by Gs and multiply the answer by the phase factors with

non-commutativity parameter θ. In terms of the electric field these parameters are

given by [4]

Gµν = (1− Ẽ2)ηµν , µν = 0, 1 , Gµν = δµν , µν 6= 0, 1 ,

θ01 = 2πl2s
Ẽ

1− Ẽ2 , Gs = gs(1− Ẽ2)1/2 . (3.1)

Here, Ẽ = E/Ecr ≤ 1. The critical electric field is given by Ecr = 1/2πl2s .
Let us consider the Veneziano amplitude describing massless open string scat-

tering. In terms of open string parameters the amplitude has the following form:

A4 ∼ Gs
(
Kste

i(p1∧p2+p3∧p4) +K ′ste
i(p1∧p4+p3∧p2)) Γ(−2sl2s)Γ(−2tl2s)

Γ(1 + 2ul2s)
+

+Gs
(
Ksue

i(p1∧p2+p4∧p3) +K ′sue
i(p1∧p4+p2∧p3)) Γ(−2sl2s)Γ(−2ul2s)

Γ(1 + 2tl2s)
+

+Gs
(
Ktue

i(p1∧p3+p2∧p4) +K ′tue
i(p1∧p3+p4∧p2)) Γ(−2tl2s)Γ(−2ul2s)

Γ(1 + 2sl2s)
. (3.2)

The amplitude A4 is obtained by integrating four vertex operators around the disc.

We denote the two incoming particles by 1 and 2 and the two outgoing particles

by 3 and 4 and let all momenta be incoming. Using Mobius invariance the vertex

operators of particles 1, 2 and 3 can be put at three fixed points on the boundary
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of the disc-mapping it to the upper half plane these are usually taken to be z1 = 0,

z2 = 1 and z3 = ∞, respectively. The location of the vertex operator of particle
number 4, z4, is then integrated over the real axis. Since a Mobius transformation

does not change the cyclic ordering of the vertex operators, we need to add another

piece obtained from fixing z4 = 1 and integrating the location of particle number

2. The three terms in the answer correspond to −∞ < z4 < 0, 1 < z4 < ∞ and
0 < z4 < 1, respectively and similarly for 2↔ 4. Here p ∧ k = θ01(p0k1 − k0p1).
The kinematic factors K in (3.2) involve momenta, pi, polarization vectors, ξi,

and also traces over Chan Paton factors λi. The quantities s, t, u are the Mandel-

stam variables

s = 2p1p2 , t = 2p1p4 , u = 2p1p3 (3.3)

satisfying the mass shell constraint s+t+u = 0. Scattering in the backward direction

is defined by u = 0. In eq. (3.3) we used the open string metric to contract the indices.

For the case of backward scattering, u = 0, the kinematics are such that only the

first term corresponding to the s-channel exchange gets multiplied by phases. One

phase occurs when particles 1, 2 and 3 are placed at z1 = 0, z2 = 1 and z3 = ∞,
respectively and the location of particle 4 is integrated from −∞ < z4 < 0. The

opposite phase occurs when 2 ↔ 4. No phases multiply the other two terms. One
of the two phases, e−2πiẼsl

2
s , caused the appearance of the advanced waves in the

non-commutative field model.

Setting u to zero, the first term in the amplitude takes the form

Ast ∼ Gs

(
Kste

2πiẼsl2s +K ′ste
−2πiẼsl2s

)
Γ(−2sl2s)Γ(2sl2s) . (3.4)

Using the identity

yΓ(y)Γ(−y) = − π

sin(πy)
, (3.5)

we can write this as follows:

Ast ∼ Gs

(
Kste

2πiẼsl2s +K ′ste
−2πiẼsl2s

) 1

s sin(2πsl2s)
. (3.6)

The kinematic factors K are also simple in this case. They are proportional to s2

times products of polarization vectors and traces over Chan Paton factors. Therefore,

Ast ∼ Gss
(
a1e

2πiẼsl2s + a2e
−2πiẼsl2s

) 1

sin(2πsl2s)
, (3.7)

where the constants a1 and a2 are independent of s.

This term has poles at s = n/2l2s with n being an integer. The divergence

of the amplitude at the poles is an essential physical feature of the amplitude, a

resonance corresponding to the propagation of an intermediate string state over long

spacetime distances. To define the poles we use the correct ε prescription replacing

s → s + iε. This has the effect of shifting the poles off the real axis. Then the
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function 1/ sin(2πsl2s) can be expanded as a power series in y = e
2iπsl2s−ε. In all, this

term in the amplitude takes the form

Ast ∼ Gss
∑

n>0 odd

a1e
2πi(n+Ẽ)sl2s + a2e

2πi(n−Ẽ)sl2s +O(ε) . (3.8)

Comparing with eq. (2.30), we see that the amplitude looks similar to the case

of a non-commutative field theory. We get a sum of phases with the identification

θ′n = 2π(n± Ẽ)l2s , n > 0 , odd . (3.9)

What is interesting is that the non-commutativity parameter θ gets modified by

stringy oscillator effects. In fact the phases persist even in the absence of the electric

field. We see that θ′n are positive for all positive odd integers.
In contrast with the field theory case, here we get phases that cause time delays

only. The “acausal” phase, e−2πiẼs, gets multiplied by powers of y from the Gamma
functions. The net effect is to produce phases which, for Ẽ < 1, or for E < Ecr,

cause time delays. Evidently, even in the presence of a background electric field,

string scattering amplitudes produce causal behavior only. The acausal behavior

due to the non-commutativity parameter θ is cancelled by phases from the Gamma

functions. It seems that the oscillators are crucial for the causal behavior of the

theory. The effects of the non-commutativity are always mixed with the effects of

the string oscillators. We see another reason why space/time non-commutative field

theories cannot be obtained as limits of string theory in background electric fields,

as was found in [4, 5]. Such theories show pathological acausal behavior and are not

unitary. What is interesting, however, is that the onset of the acausal behavior we

found occurs as the electric field approaches its critical value.

The other two terms in formula (3.2) can be analyzed in a similar way. It is

easier to write

Asu + Atu = Gs(A1 + A2) , (3.10)

where

A1 ∼ (Ksu +Ktu)
(
Γ(−2sl2s)Γ(−2ul2s)
Γ(1 + 2tl2s)

+
Γ(−2tl2s)Γ(−2ul2s)
Γ(1 + 2sl2s)

)
(3.11)

and

A2 ∼ (Ksu −Ktu)
(
Γ(−2sl2s)Γ(−2ul2s)
Γ(1 + 2tl2s)

− Γ(−2tl
2
s)Γ(−2ul2s)

Γ(1 + 2sl2s)

)
. (3.12)

Then we can analyze the sum and differences of the two combinations of Gamma

functions that appear in (3.2) as u → 0. Again, no Moyal phases multiply these
two terms.
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Setting u = 0, we find that

A1 ∼ a3s
cos(2πsl2s)

sin(2πsl2s)
. (3.13)

Shifting s→ s+ iε, we can expand 1/ sin(2πsl2s) in powers of y. Thus we find

A1 ∼ a3s
(
1 + e4πisl

2
s

) ∑
n≥0 even

e2πinsl
2
s . (3.14)

The first term in the series is just proportional to s and produces no large time delays.

The other terms are phases responsible for time delays. The phases in this term are

independent of θ. They are present even in the absence of a background field. Ordi-

nary scattering of open strings shares features with scattering in non-commutative

field theory with effective non-commutativity parameter the string length squared.

However the amplitude produces only causal behavior.

The other term produces a pole at u = 0. We have that

A2 ∼ a4s
1

ul2s + iε
. (3.15)

The pole in u corresponds to the exchange of a massless particle and we will ignore

it. This term has no oscillations in s.

The effect on the outgoing wave-packet is similar to the previous example except

that the advanced waves are absent. Let us consider the case of no electric field

for simplicity. Then θ′n = 2πnl
2
s and the open string metric Gµν = ηµν . If we use

eq. (2.23) for the same φin(p) given in eq. (2.31), we find for a typical phase in

the amplitude

Φout(x) ∼ Gs

∫
dpp2e4iθ

′
np
2
(
e−(p−p0)

2/λ + e−(p+p0)
2/λ
)
eipx . (3.16)

For p0 � λ1/2 � 1/2πp0l2s , this is proportional to

Φout(x) ∼ Gs
d2

dx2
F (x; θ′n, λ, p0) + (p0 → −p0) (3.17)

with F (x; θn, λ, p0) given by eq. (2.34).

We see that the outgoing wave-packet splits into a series of packets, one localized

at x = 0, and a series at x = 8p0θ
′
n n > 0. The advanced waves are absent. Only

delayed waves are present. Each delayed packet has width given by 8λ1/2θ′n. The
packets are not overlapping for p0 � λ1/2 � 1/2πp0l2s . The n-th packets are more
spread. After the derivatives are performed we find that the contributions to the

sum are dominated by the small n packets. The amplitude of the packets falls like

n−5/2. Again the time delays are proportional to the energy p0. It is interesting that
the large time delays persist even in the absence of the electric field.

12



J
H
E
P
0
6
(
2
0
0
0
)
0
4
4

The interpretation is different than before. The scattering is causal. We would

like to suggest the following to explain the series of time delays. As the two strings

come together, an intermediate stretched string state is formed. The string state has

total energy p0. The state is oscillating from small size to a large size proportional

to p0. To see this we write

p0 =
L

l2s
+
N

L
, (3.18)

where N is some oscillation number. We see that this is minimized for L ∼ p0l
2
s .

The state begins from small size and grows to a string of maximal size of order

p0l
2
s , storing the energy as potential energy. This repeats itself periodically. With

each oscillation there is an amplitude for the string to split. Thus there is an in-

finite sequence of delayed wave packets. The delay is proportional to L since the

string ends move with the speed of light. The intermediate state has size propor-

tional to the energy p0. This is a manifestation of the stringy uncertainty rela-

tion.

In the case of a background electric field we find time delays (in closed string

units) proportional to

∆t =
p0l
2
s

1− Ẽ2 . (3.19)

The time delays are proportional to 1/Teff , where Teff = (1 − Ẽ2)/l2s is the effec-

tive tension of the open strings in the presence of the electric field. The effect of

the electric field is to reduce the tension of the strings [4, 14]. As the electric field

approaches its critical value, the time delays become longer. The extent of the inter-

mediate state in space is also bigger. However, we note that as the field approaches

its critical value, the effective coupling constant Gs tends to zero and the amplitudes

are suppressed.

We have illustrated the violations of causality in space/time non-commutative

field theory and its restoration in string theory by considering the evolution of wave

packets. Evidently the scattering amplitudes of the field theory violate some princi-

ple of S-matrix theory that string theory preserves. In fact it is not difficult to see

what principle is involved. Macroscopic causality is usually assumed to follow from

two properties of amplitudes. The first involves the location of singularities in the

Mandelstam s variable; namely, the amplitude should be analytic in the upper half

plane. In the case of non-commutative field theory the amplitude in eq. (2.30) is an

entire function and satisfies this rule. In the case of the string theory tree diagrams

there is an infinite sequence of poles on the real axis. However with the conven-

tional iε prescription the poles are displaced to the lower half plane and lead to no

violation of causality. The second requirement is that the amplitudes should not

exponentially diverge along any direction in the upper half plane in order to insure
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that certain contours of integration can be closed. This is what is violated in the

non-commutative field theory. The cosine term in eq. (2.30) exponentially diverges

in the upper half plane. By contrast the non-commutative Moyal phases in string

theory are compensated for by the factor 1/ sin (2πsl2s) in formulae like eq. (3.7) as

long as the electric field is smaller than critical.

4. Conclusion

Space/time non-commutativity is a more subtle phenomenon than its space/space

counterpart. If we define the space/time non-commutative deformation of a theory by

multiplying its tree diagrams by space/time Moyal phases then an ordinary quantum

field theory becomes acausal as well as non unitary. The acausality is easily seen in

the scattering of wave packets by the appearance of an outgoing signal that originates

before the incoming particles reach each other.

By contrast, the space/time non-commutative deformation of open string theory

is not acausal. The theory does not have a limit in which stringy effects disappear.

These stringy effects conspire to shift the Moyal phases so that they become causal.

Thus the peculiar advanced effects found in the field theory should not be though of

as the signature of non-commutativity.

The delayed effects of non-commutativity in a collision process are also interest-

ing. The space/time non-commutativity manifests itself by time delays which grow

linearly with increasing momentum. As we have seen in section 3 the time delay of

the leading delayed wave is governed by a parameter θ′± = 2π(1 ± Ẽ)l2s . Nothing

special seems to happen to θ′ as the electric field is turned off. However θ′− vanishes
at the critical electric field. One possible interpretation of this is that open string

theory exhibits the signature of space/time non-commutativity without any electric

field. Indeed this interpretation is suggested by the well known space/time uncer-

tainty principle [10, 11, 12], i.e. it appears like the string grows in the longitudinal

direction to a length of order pl2s .
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