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1. Introduction

The cosmological constant problem is one of the central challenges in quantum grav-

ity, and it continues to provoke novel and interesting ideas.1 In some approaches,

the cosmological ‘constant’ becomes a dynamical variable: it is locally constant but

has a continuous range of allowed values, with the effective value in our universe

determined by some dynamical principle.

There are several mechanisms by which the cosmological constant can become a

dynamical variable. One is through the existence of a four-form field strength [3, 4, 5].

The equation of motion requires that such a field strength be constant, so it has no

local dynamics but contributes a positive energy density, which can cancel a cos-

mological constant coming from other sourcs if the latter is negative. A second
1For a classic survey of various approaches see Weinberg’s review [1]. A brief survey of recent

ideas is given in ref. [2].
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mechanism is fluctuations of the topology of spacetime (wormholes). Under a plausi-

ble interpretation of the path integral for quantum gravity these convert all constants

of Nature into dynamical variables [6, 7], though there is serious doubt as to whether

this effect exists in a real theory of quantum gravity. A third mechanism is the

existence of naked singularities in compactified dimensions [8, 9], where the unde-

termined boundary conditions at the singularity become a variation of the effective

four dimensional lagrangian.

In this paper we will discuss certain aspects of the four-form idea, though at the

end we will note that very similar considerations may apply to the naked singularity.

Our first point is that the four-form field strength, although usually assumed to

take continuous values, is in fact quantized. This quantization might be evaded in a

purely four-dimensional theory, but is certainly necessary when gravity is embedded

in a higher-dimensional theory such as M-theory. The size of the quantum is fixed

by microscopic physics, and so the spacing of energy densities is enormous compared

to the actual value, or bound, on the cosmological constant. Therefore the four-form

cannot play the assumed role of producing a small cosmological constant.

This is discouraging, but there is a variant of the four-form idea which has some

interesting features. Typical M-theory compactifications have extra four-form field

strengths, arising from nontrivial three-cycles in the compactification. If there are

several four-form field strengths, with incommensurate charges, then the allowed cos-

mological constants may form a closely spaced ‘discretuum’, with one or more values

in the experimentally allowed range. The universe can reach such a value, starting

from a larger density, through a series of domain wall nucleations. This resembles an

idea of Brown and Teitelboim [10, 11], but has some unique and attractive features.

In particular, there is a plausible mechanism for heating the universe after nucleation

produces a small cosmological constant.

A second complication is that in higher dimensional theories there are in general

moduli, and the four-form does not produce a constant energy density but rather

a potential for the moduli. The analysis of the four-form flux therefore cannot be

separated from the consideration of the stability of the compactification. This is a

difficult issue for a number of reasons, and aside from a brief discussion will sidestep

it by working in an artificial, model where the charges are frozen in incommensu-

rate ratios. Although this is rather optimistic, it may be that some features of the

cosmology that we find will survive in more realistic circumstances.

In section 2 we review the physics of four-form fluxes and explain how a gener-

alized Dirac quantization condition constrains the value of the four-form flux. We

then investigate the level spacing in a theory of many four-forms, as generally arise

in M-theory compactifications. We find that the discretuum is sufficiently dense if

there is a membrane charge of order 10−1 and a large number of fluxes, say 100.
The large dimension scenario [12] produces much smaller charges, and can lead to a

sufficiently dense discretuum for as few as four fluxes.

2



J
H
E
P
0
6
(
2
0
0
0
)
0
0
6

In section 3 we discuss the resulting cosmology. We review the Brown-Teitelboim

scenario, in which a cosmological constant is neutralized by nucleation of membranes.

We then extend this to multiple four-forms. If the flux density is initially large, so

that the cosmological constant is positive, then one obtains a picture much like

eternal inflation, where the cosmological constant takes different values in different

expanding bubbles. De Sitter thermal effects provide a natural solution to one of

the serious problems of the Brown-Teitelboim idea. The inflaton can be stabilized

in the inflationary part of its potential until the nucleation reduces the cosmological

constant to near zero, at which point it begins to roll. This is possible because with

multiple four-forms the individual jumps in the cosmological constant can be quite

large. In the end the observed cosmological constant is small for anthropic reasons,

but in the weakest sense: we have a universe with different cosmological constants

in different regions, and with galaxies only in regions of small cosmological constant.

In many respects our picture resembles an idea of Banks [13]. Another example of a

discretuum is the irrational axion [14, 15]. While this work was being completed we

learned that Feng, March-Russell, Sethi, and Wilczek are also considering extensions

of the mechanism of Brown and Teitelboim.

2. Four-form quantization

2.1 Four-form energetics

We first review the basic physics of four-form field strengths. For antisymmetric

tensor fields, the language of forms is used when convenient; this is indicated by

bold face (F4). Normal fonts are used for index notation, or when index notation is

implied, e.g. F 24 = FµνρσF
µνρσ.

The action for gravity with a bare vacuum energy λbare plus four-form kinetic

term is

S =

∫
d4x
√−g

( 1
2κ24
R− λbare − Z

2 · 4!F
2
4

)
+ Sbranes , (2.1)

where F4 = dA3. We include a general normalization constant Z in the kinetic term

for later convenience. Certain boundary terms must be added to this action. They

do not affect the equations of motion and will not be prominent in the remainder of

this paper. However, they are crucial for the correct evaluation of the on-shell action

when physical quantities are measured on an equal time hypersurface Σ. The usual

Gibbons-Hawking term [16] is given by

SGH =
1

κ24

∫
Σ

d3x
√
hK . (2.2)

For the four-form field the following boundary term must be included to obtain

stationary action under variations that leave F fixed on the boundary [17]:

SDJ =
Z

3!

∫
d4x ∂µ

(√−gF µνρλAνρλ) . (2.3)
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On shell its value is negative twice the F 2 contribution in the volume term of the ac-

tion. This removes the apparent discrepancy [18] between the cosmological constant

in the on-shell action and in the equations of motion.

Ignoring the brane sources (we will consider them shortly), the four-form equa-

tion of motion is ∂µ (
√−g F µνρσ) = 0, with solution

F µνρσ = cεµνρσ , (2.4)

where εµνρσ is the totally antisymmetric tensor and c is any constant. Thus there is

no local dynamics. One has F 24 = −24c2, and so the on-shell effect of the four-form
is indistinguishable from a cosmological constant term. The hamiltonian density is

given by

λ = λbare − Z
48
F 24 = λbare +

Zc2

2
. (2.5)

Only λ is observable: λbare and the four-form cannot be observed separately

in the four-dimensional theory. Therefore, the bare cosmological constant can be

quite large. For example, it might be on the Planck scale or on the supersymmetry

breaking scale. In order to explain the observed value of the cosmological constant,

λbare must be very nearly cancelled by the four-form contribution.

2.2 Four-form quantization

In the original work [5], and in many recent applications, it as assumed that the

constant c can take any real value, thus cancelling the bare cosmological constant

to arbitrary accuracy. However, we are asserting that the value of c is quantized.

Since this is somewhat counterintuitive, let us first discuss two things that the reader

might think we are saying, but are not.

First, if there is a gravitational instanton, a euclidean four-manifold X, then it

is natural to expect that the integral of the euclidean four-form over X is quantized,∫
X

F4 =
2πn

e
, n ∈ Z . (2.6)

This is the generalized Dirac quantization condition [19, 20, 21, 22]. It arises from

considering the quantum mechanics of membranes, which are the natural objects to

couple to the potential A3,

S = e

∫
W

A3 , (2.7)

with e the membrane’s charge and W its world-volume. The condition that mem-

brane amplitudes be single-valued then implies the quantization (2.6). This is true,

but we are asserting something in addition: that the actual value of F4 (or, more

precisely, c) is quantized, in addition to the integral.
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Of course, the inclusion of membranes means that c is no longer globally constant,

as the membranes are sources for F4. The value of c jumps across a membrane,

∆c =
e

Z
. (2.8)

The total change in c due to nucleation of any number of membranes is then a

multiple of e/Z.

However, it is not this change that we are asserting is quantized, but the actual

value:

c =
en

Z
, n ∈ Z . (2.9)

This may seem surprising, but in fact is quite natural. String theory has the satisfying

property that for every gauge field there exist both electric and magnetic sources.

This implies a quantization condition both for the field strength and its dual. The

dual of a four-form is a zero-form,

∗F4 = F0 . (2.10)

A zero-form is naturally integrated over a zero-dimensional manifold, which is to

say that it is evaluated at a point. The generalized Dirac condition is that this be

quantized, which is precisely eq. (2.9):

F0 =
en

Z
, n ∈ Z . (2.11)

The quantizations (2.6) and (2.11) are in just the usual relation [22] for n-form and

(d− n)-form field strengths in d spacetime dimensions.
Although natural, it is not clear that the quantization of F0 is necessary. The

quantization of F4 arises from the consistency of the quantum mechanics of 2-branes,

but that of F0 would come from the quantum mechanics of (−2)-branes, and it is
not clear what this should be. Further, there is the example of the Schwinger model,

where the non-integer part of F0 is just the θ-parameter, which can take any real

value.

Nevertheless, the quantization condition (2.11) is necessary when the four-dimen-

sional theory is embedded in string theory.2 Consider for example the compactifi-

cation of M-theory on a seven-manifold K. We begin with the eleven-dimensional

action

S = 2πM911

∫
d11X

√−g11
(
R− 1

2 · 4!F
2
4

)
+ Sbranes , (2.12)

where we omit the Chern-Simons and fermion terms, which will play no role. With

this normalization the M2-brane tension and charge are 2πM311, and the M5-brane

2This observation grew out of ref. [23], where quantization of a top-form (or zero-form) field

strength first appeared.
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charge and tension are 2πM611.
3 The M5-brane couples to A6,

2πM611

∫
W

A6 , (2.13)

where W is the M5 world-volume, and

dA6 = F7 = ∗11F4 , (2.14)

where a subscript is used to distinguish the dual in eleven-dimensions from that in

four dimensions. By the generalized Dirac quantization it follows that

2πM611

∫
K

F7 = 2πn , n ∈ Z . (2.15)

Now reduce to four dimensions. The eleven dimensional F4 reduces directly to

a four dimensional F4, with action

S = V72πM
9
11

∫
d4x
√−g

(
R − 1

2 · 4!F
2
4

)
+ Sbranes , (2.16)

where V7 is the volume of K. Further, the condition (2.15) becomes

F0 =
n

M611V7
, n ∈ Z . (2.17)

That is,

(2κ24)
−1 = Z = 2πM911V7 . (2.18)

The quantization (2.17) matches that found in eq. (2.11) with e = 2πM311, which is

just the M2-brane tension.

2.3 Discussion

The quantization that we have found rules out the precise cancellation of the cos-

mological constant that has been assumed in many discussions. Brown and Teitel-

boim [10, 11] considered the approximate neutralization of the cosmological constant

by a field strength taking discrete values (see also Abbott [25] for a closely related

idea). In order that this be natural, the spacing between allowed values of λ must be

of order the observational bound. Since dλ/dn = 2ne2/Z and nfinal ≈
√|λbare|Z/e,

the final value of λ will lie within observational bounds only if

e|λbare|1/2Z−1/2 < 10−120κ−44 . (2.19)

Using the results above for e and Z, the left-hand side (dropping 2π’s) is

|λbare|1/2κ1/34 V −1/37 ∼ |λbare|1/2κ4M311 . (2.20)

3For a review see ref. [24].
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The step size is minimized in the low-energy string scenario [12], where λbare and

M11 are both TeV-scale, but even in this case it is far too large, 10
−75κ−44 .

This is the ‘gap problem’: the Brown-Teitelboim mechanism requires an energy

spacing which is infinitesimal compared to the scales of microphysics. In the next

subsection we will consider compactification with multiple four-forms, which can

reduce the step size to an acceptable value.

Because the compactification volume V7 is a dynamical quantity and not a fixed

parameter, the four-form energy density is not a constant but a potential for V7. In a

realistic compactification this must be stabilized, and the energetics of the four-form

fluxes will enter into the stabilization.4 Thus the volume V7 itself depends on n,

and so the effective cosmological constant has additional n-dependence beyond that

included above. For convenience we will in the rest of this paper ignore this effect,

treating the geometry as fixed.

It should be noted that the allowed flux actually depends additively on the val-

ues of flat background gauge potentials5 — these are just stringy generalizations

of the Schwinger model θ-parameter. As these backgrounds vary the flux can take

arbitrary real values. This does not, however, restore the original continuously vari-

able cosmological constant, because these background potentials are moduli and not

parameters. As with the compactification geometry, these background moduli must

eventually be stabilized and so the fluxes will in fact take discrete values.

2.4 Multiple four-forms

General compactifications actually give rise to several four-form fluxes, and this can

solve the gap problem. Let there be J such fluxes, with

λ = λbare +
1

2

J∑
i=1

n2i q
2
i . (2.21)

The question is whether there exists a set of ni such that

2|λbare| <
J∑
i=1

n2i q
2
i < 2(|λbare|+∆λ) , (2.22)

where ∆λ corresponds to the observational bound, roughly 10−120 in Planck units.
This can be visualized in terms of a J-dimensional grid of points, spaced by qi and

labeled by ni (see figure 1).

Consider a sphere of radius r = |2λbare|1/2 centered at ni = 0. If one of the points
(n1, n2, . . . , nJ) is sufficiently close to the sphere, the field configuration corresponding

to this point will lead to an acceptable value of the cosmological constant.

4See for example the discussions [26, 27].
5We thank E. Witten for pointing this out.
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n q

n q

2 2

1 1

q2

1/2
bareΛq1

Figure 1: The allowed values of the four-form energy density are given by the radius-

squared of points in the grid, whose dimension is the number of four-forms J . The spacing

in direction i is qi. The negative of the bare cosmological constant corresponds to a (J−1)-
dimensional sphere, and cancellation is possible if there is at least one grid point sufficiently

close to the sphere.

More precisely, one should think of a thin shell, whose width encodes the width

of the observational range,

∆r = |2λbare|−1/2∆λ . (2.23)

We need at least one point to lie within the shell. As we will discuss, there may be

large degeneracies — let the typical degeneracy be D. The volume per D grid points

must then be less than the volume of the shell, ωJ−1rJ−1∆r, where the area of a unit
sphere is ωJ−1 = 2πJ/2/Γ(J/2). Thus

J∏
i=1

qi .
ωJ−1
D
|2λbare|J/2−1∆λ , (2.24)

or
D

ωJ−1

J∏
i=1

qi

|2λbare|1/2 .
∆λ

|2λbare| . (2.25)

In other words, the typical spacing of the spectrum of the cosmological constant in

a model with given J , ei, and λbare will be given by

∆λmin =
D
∏J
i=1 qi

ωJ−1|2λbare|J/2−1 . (2.26)
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An important feature of this result is that that the qi need not be exceedingly

small if there are more than two four-form fields. In order to achieve a small λ, it

is sufficient that there be a discrepancy between the magnitude of λbare and that of

the charges. For fixed charges, the task of cancellation actually becomes easier, the

larger the bare cosmological constant. This can be understood from figure 1. The

larger the shell, the more points it will contain.6 The results (2.24) to (2.26) treat the

ni as essentially continuous, and break down if any of the qi exceed J
−1/2|2λbare|1/2.

In this case the flux associated with qi should simply be ignored.

For illustration suppose that λbare is at the Planck scale, (
√
2κ4)

4λbare ∼ 1, that
the number of four-forms is 100, a number which is large but not unrealistic, and

that D is small. Then the inequality (2.25) implies that the typical charge must be

of order 10−1.6 in Planck units; note that qi is a mass-squared, so we should perhaps
measure the smallness by the square root, 10−0.8 ∼ 1/6. However, the assumption of
no degeneracy is rather optimistic, as we will discuss in the next subsection.

2.5 M-theory compactification

Consider the compactification of M-theory on a general manifold K. The total

number of fluxes is J = N3 + 1, where N3 is the number of nontrivial three-cycles of

K. For each nontrivial three-cycle Ci there is a harmonic three-form ω3,i, and the

seven-form field strength can be expanded

F7 =
1

M311

N3∑
i=1

F4,i(x) ∧ ω3,i(y) + ∗F4,N3+1(x) ∧ ε7(y) . (2.27)

Here ε7 is the volume form on K, so that F4,N3+1 is the flux discussed previously,

obtained simply by reduction of the eleven-dimensional flux. Coordinates have been

labeled as follows:

(X0, . . . , X11) = (x0, . . . , x3, y1, . . . , y7) ≡ (xµ, ym) . (2.28)

Associated to each flux F4,i is a four-dimensional domain wall (membrane), obtained

by wrapping three legs of the M5-brane on Ci.

Let us illustrate this by a simple model, in which K is simply a seven-torus

with flat internal metric δmn, and with y
m identified with period 2πrm; then V7 =∏7

m=1(2πrm). There is one three-cycle Ci for each unordered triplet (mi, m
′
i, m

′′
i ), or

(7
3
) = 35 in all. The volume and three-form associated with Ci are

V3,i = (2π)
3rmirm′irm′′i , ω3,i =

1

V3,i
dymi ∧ dym′i ∧ dym′′i . (2.29)

6Note, however, that the radius of the shell in figure 1 represents not |2λbare|, but the square
root of |2λbare|. This is why one cannot recognize in figure 1 the need for the charges qi to be
incommensurate, a fact that is immediately clear from eq. (2.21). It is also the reason why increasing

|λbare| has no beneficial effect in the case of J = 2. For fixed ∆λ, the shell gets thinner as one
increases its radius. If J = 2, this precisely compensates for the increase of the shell radius, and

the volume remains constant.
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The four-dimensional action is

S =

∫
d4x
√−g

(
1

2κ24
R − λbare − 1

2 · 4!
N3+1∑
i=1

ZiF
2
4,i

)
+ Sbranes . (2.30)

Here

Zi =
2πM311V7
V 23,i

(i ≤ N3) , 1

2κ24
= ZN3+1 = 2πM

9
11V7 . (2.31)

The bare cosmological constant has been added by hand in this model. In a real

compactification, negative energy density can arise from positive scalar curvature or

an orientifold plane, for example. The tension of a membrane wrapped on Ci is

τi = 2πM
6
11V3,i (i ≤ N3) , τN3+1 = 2πM

3
11 . (2.32)

Its coupling to the j’th three-form potential is

ei,j = eδij , e = 2πM311 . (2.33)

The quantization condition is

F0,i =
eni

Zi
, (2.34)

and the effective cosmological constant is

λ = λbare +

N3+1∑
i=1

e2n2i
2Zi
, (2.35)

so that

qi = eZ
−1/2
i . (2.36)

Thus,

qi =
(2π)1/2M

3/2
11 V3,i

V
1/2
7

(i ≤ N3) , qN3+1 =
(2π)1/2

M
3/2
11 V

1/2
7

. (2.37)

Note that q2i = 2κ
2
4τ
2
i for all i.

If the radii are appropriately incommensurate then so are the charges. However,

the degeneracy D is still nontrivial, 2J , from ni → −ni for each i (note that in the
J = 100 model this reduces q

1/2
i , but only by

√
2). This can be reduced to D = 2

by skewing the torus, which couples the different ni. However, if the stabilization

respects the symmetries of the torus there will be an even larger degeneracy: per-

mutations of the axes, obviously, and much more — the full E7(7) U -duality [28].

The resulting D could significantly change the density of levels. A less symmetric

compactification will have a much smaller duality group, but we do not know how

to estimate a reasonable degeneracy. This effect becomes less important with fewer

fluxes.
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2.6 Small charges from large dimensions

From eq. (2.24) one finds that a Planck-size cosmological constant can be cancelled

in a model with j = 100 types of membranes with q
1/2
i of order 1/6 in Planck units.

If only a few four-forms are present, much smaller charges will be required. For

examples, with j = 6 and D small one would need q
1/2
i ∼ 10−10 in Planck units.

However, these are not small quantities compared to other numbers in elementary

particle physics. Indeed, small membrane charges can be related to the gauge hi-

erarchy, if the latter arises by confining the gauge fields to a three-brane living in

eleven dimensions and taking some of the extra dimensions to be large, as proposed

in ref. [12].

The large internal dimensions will play a double role here. They are the origin

of the gauge hierarchy. But in addition, they will lead to small membrane charges,

if membranes arise by wrapping a five-brane as described in the previous subsection.

This amounts to reducing the gauge hierarchy problem and the cosmological constant

problem to the single problem of stabilizing large radii.

In such models the fundamental scale M11 is assumed to be near a TeV. The

reduction (2κ24)
−1 = 2πM911V7 then determines V7 to be large in fundamental units.

For illustration, consider again the seven-torus, with k large dimensions of size

2πrl =
1

M11
(V7M

7
11)
1/k , l = 1, . . . , k , (2.38)

and 7− k dimensions of radius 1 in fundamental units:

2πrl =
1

M11
, l = k + 1, . . . , 7 . (2.39)

(In general, of course, the radii could have a range of different sizes. It is trivial to

extend this discussion accordingly.) Recalling the charges

qi =
(2π)1/2M

3/2
11 V3,i

V
1/2
7

(i < J) , qJ =
(2π)1/2

M
3/2
11 V

1/2
7

, (2.40)

it is most favorable to consider only qJ plus those qi for which all the dimensions are

small. For these, of which there are J0 = (
7−k
3
) the charges qi = qJ .

We will consider a more general compactification with the same number and

sizes of dimensions, but not be restricted by the J0 attainable on the torus. The

condition (2.24) that the charges qi allow for a sufficiently dense spectrum for λ

becomes

ωJ ′−1
D
|2λbare|J ′/2−1∆λ &

J∏
i=1

qi = (2π)
J ′/2M

−3J ′/2
11 V

−J ′/2
7 = (2π)J

′/2M3J
′

11 κ
J ′
4 , (2.41)

where J ′ ≡ J0 + 1.
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What is the bare cosmological constant in models with large extra dimensions?

It receives contributions from the tension of the three-brane, λbrane, and from the

bulk vacuum energy, λbulk (as usual, all contributions from quantum field theory are

taken to be subsumed in these quantities) [26, 27]:

λbare = λbrane + V7λbulk . (2.42)

The most natural value for the brane tension is

λbrane ∼ 2πM411 . (2.43)

(This value does not follow uniquely from the fundamental theory. The factor of 2π

has been included to mimic the form of the M2- and M5-brane tensions.) It is natural

(but not necessary) to assume that λbulk is generated by supersymmetry breaking on

the brane. This suppresses the vacuum energy by a factor of the compact volume:

λbulk ∼ 2πM411/V7, so that both terms in eq. (2.42) will be of order 2πM411. (Indeed,
the cosmological constant problem in these models amounts to the assumption that

the two terms cancel — an assumption that obviously will not be made here.) Su-

persymmetry breaking in the bulk could lead to a higher value for |λbulk|; ultimately,
the only constraint comes from bulk stability [27], which is weaker. Recall however

that the cancellation mechanism becomes more accurate, the larger the magnitude

of λbare. We can therefore work with the value of eq. (2.43).

The condition on the charges now becomes

(2−1/2κ4M11)J
′+4 . 10−120ωJ ′−1

πD
. (2.44)

For the extreme low-dimension picture, where M11 is of order 1TeV, this allows the

very modest value J ′ = 4, independent of the number k of large dimensions. This
assumes that D is not enormous, as is reasonable for a small value of J ′. If we
increase J ′ to 5 then M11 can increase to 30TeV.
If we take the value κ4M11 ∼ 10−1.5 that is appropriate to the Witten GUT

scenario [29], then we need a large number of fluxes, again of order 100 (the precise

number is sensitive to uncertain numerical factors, for example in λbare). Note also

that this requires a cosmological constant of order the GUT scale; a weak-scale

cosmological constant cannot be cancelled by our mechanism in this case.

3. Cosmology

In the previous section we showed that multiple four-form strengths arise in most

M-theory compactifications, and that these could lead to a spectrum of effective cos-

mological constants sufficiently finely spaced that some would lie in the observational

range. We must now ask why the cosmological constant that we see actually takes

such a small value.
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3.1 The Brown-Teitelboim mechanism

There are two possible approaches. One could attempt to use the framework of

quantum cosmology to argue that the universe was created with λ equal to the

smallest positive value in the spectrum [5, 18, 17]. The other possibility is to identify

a dynamical mechanism by which an appropriate value of λ is obtained.

We will not follow the quantum cosmology approach. It has the disadvantage

that the creation of a space-time from nothing (as opposed to the quantum creation

of objects on a given background) is not well understood and possibly ill-defined.

The wave-function of Hartle and Hawking [30] would indeed be sharply peaked at

the smallest possible value for the cosmological constant. But this would include

the effective cosmological constant from any inflaton potential V (φ), so that there

would not be any period of inflation in generic models. The proposals of Linde [31]

and Vilenkin [32], on the other hand, would give preference to a large effective

cosmological constant, which could come from any combination of contributions from

the four-forms and the inflaton. To cancel the cosmological constant one would then

need a dynamical effect anyway.

Thus we will employ a dynamical mechanism based on the creation of mem-

branes. This is the approach followed by Brown and Teitelboim (BT) [10, 11], who

considered the first model discussed in section 2, with a bare cosmological constant

and a single four-form field strength. We will review the dynamics of this case before

we generalize the mechanism to multiple four-forms.

BT take λbare to be negative and n large and positive, so that λ > 0. Thus

the universe will initially be described by de Sitter space. On this background,

membrane bubbles can nucleate spontaneously. They appear at a critical size and

then expand. This is a non-perturbative quantum effect. Its semi-classical amplitude

can be estimated from the euclidean action of appropriate instanton solutions [10, 11].

Inside the membrane, the value of n will be lower or higher by 1, and correspondingly

the cosmological constant changes by (±n+ 1/2)q2.
Increase of n occurs though a dominantly gravitational instanton. It has no

equivalent in non-compact spaces, as follows immediately from energy conserva-

tion. The instanton for a decreasing cosmological constant is similar to the Cole-

man instanton for false vacuum decay in flat space [33], with a small correction

from gravity. Consequently, the amplitude for increasing the cosmological con-

stant is vastly more suppressed than that for decrease, and one may neglect in-

crease.

Starting from a generic, large value of λ, repeated membrane creation thus pro-

duces de Sitter regions with smaller and smaller cosmological constant. The nu-

cleation rate decreases with λ. For a certain range of parameters, membrane cre-

ation becomes infinitely suppressed by gravitational effects [34] once λ is no longer

positive.
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The BT process is analogous to the neutralization of an electric field (an F2)

wrapped around a circle in a (1+1)-dimensional world. The Schwinger pair creation

of (zero-dimensional) charged particles decreases the field until it has too little energy

to nucleate another pair.

BT identified two problems with this scenario. One is the ‘empty universe prob-

lem’, which we will address in section 3.2. The other is the ‘gap problem’, that in

order for some values of the cosmological constant to lie within the observational

window one needs membrane charges that are enormously small compared to the

ordinary scales of microphysics. We have shown that this problem may be absent in

a theory with multiple four-forms.

Let us therefore extend the BT mechanism to the case of J four-forms. In the

simplest models one can take ni ≥ 0 without loss of generality. For the initial
configuration (n1,initial, . . . , nJ,initial) we only need to assume that the corresponding

cosmological constant is positive:

λbare +
1

2

J∑
i=1

n2i,initialq
2
i > 0 . (3.1)

This condition is generic, in the sense that it excludes only a finite number of con-

figurations. In particular, if the unification scale is high and J ∼ 100, the charges
qi can be large (∼ 10−1) and the inequality will be satisfied with ni,initial ∼ 1. If the
unification scale is lower, the initial fluxes must be greater. But in such models large

fluxes are often needed in any case to stabilize the internal dimensions.

It will be convenient to assume the slightly stronger initial condition that ni,initial
≥ ni,obs for all i, where (n1,obs, . . . , nJ,obs) denotes some configuration that lies in
the observational window. This will permit us to neglect the strongly gravitational

instantons responsible for increasing the ni.

On the initial de Sitter background, J different types of membranes can be nucle-

ated through appropriate BT instantons. Inside a membrane of the i’th type, the flux

ni is lowered by 1, and the cosmological constant is lowered by (ni−1/2)q2i . Although
membranes expand at the speed of light, they typically never collide [35], because

they are embedded in de Sitter space and cannot catch up with its expansion. Thus

the ambient de Sitter space perdures eternally, harboring all types of membranes

for which ni > 0. The same applies iteratively to the de Sitter regions with lower

cosmological constant within each bubble. Thus, all combinations (n1, . . . , nJ) with

ni ≤ ni,initial and λ > 0 are attained, including those with λ in the observational
range.

In the grid picture, figure 1, the initial configuration corresponds to a grid point

some distance outside the sphere, in the ni > 0 quadrant. When a membrane of the

i’th type is nucleated, the configuration in its interior corresponds to the neighboring

grid point in the negative ni direction. Nested membranes correspond to a random
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walk in the grid. Since each membrane bubble harbors all other types of membranes

(at least as long as λ > 0), all such paths through the grid are realized in the universe.

Overall, the membrane dynamics corresponds to diffusion through the grid. Every

point is populated via many different paths.

3.2 The empty universe problem

3.2.1 Inflation and reheating

The BT process involves spontaneous membrane nucleation in a prolonged de Sitter

phase. One would expect this to lead to an empty universe. Particles are produced

when a slow-roll field reaches a minimum of its potential and starts to oscillate.

By this process, known as reheating, slow-roll inflation avoids the empty universe

problem of old inflation. Because membrane nucleation is highly suppressed, it takes

an exponentially long time to attain a suitable flux configuration. All fields will reach

their vacua long before. Particles may be produced, but they will be wiped away by

the remaining phase of the de Sitter expansion. In the end, it appears, we may have

achieved too much of nothing: a (nearly) vanishing cosmological constant, but also

vanishing entropy.

We will now discuss how this problem may be resolved. If any slow-roll field

exists at all, one can argue that the problem does not occur in multiple four-form

models with unification at the GUT scale or above, because the high temperature

of de Sitter space before the final membrane nucleation kicks the inflaton out of its

minimum. Moreover, if the inflaton potential contains a false vacuum, inflation and

reheating can also occur in multiple four-form models with low unification scale.

With an inflaton field included, the effective cosmological constant is given by

λeff(φ) = λbare +
1

2

J∑
i=1

n2i q
2
i + V (φ) . (3.2)

We take the inflaton potential V (φ) to have a stable minimum at φ = 0. By absorp-

tion into λbare we can arrange V (0) = 0. The criterion for a suitable configuration

(n1, . . . , nJ) is that the cosmological constant be small for φ = 0: λeff(0) = λ ≈ 0.
For φ 6= 0 one obtains a positive effective cosmological constant, λeff(φ) = V (φ), at
least temporarily.

Slow-roll inflation with λ = 0 is described as follows. An inflaton field φ rolls

down in a potential V (φ). During this time, the universe expands exponentially, like

de Sitter space with an effective cosmological constant λeff(φ) = V (φ). Quantum

fluctuations during this era freeze when they leave the horizon, forming seeds for

density perturbations. When φ reaches the bottom of the potential, it oscillates,

inflation ends, and the universe is reheated.

The inflaton potential must be very flat. We will not address the difficult problem

of how such potentials may arise from a fundamental theory; we note merely that
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they must exist if inflation is the correct explanation for homogeneity and density

perturbations. For inflation to last long enough, one must require that the initial

value of the inflaton field, φ0, is sufficiently far from the minimum of V (φ):

φ0 ≥ φ∗ , (3.3)

where φ∗ corresponds to sixty e-foldings of de Sitter-like expansion. This is realized,
for example, if the inflaton field is initially trapped in a false vacuum far enough

from the true minimum at φ = 0. More generically, suitable domains will exist if one

assumes chaotic initial conditions in the early universe [36]. In the scenario we have

described, however, one must worry that any inflaton field will reach its minimum

when λ is still large, because membrane creation takes an exponentially long time.

Consequently, φ would no longer be available to perturb and reheat the universe

when the flux configuration corresponding to λ ≈ 0 is reached.

3.2.2 Kicking the inflaton

The evolution of φ is actually a combination of classical slow-roll and brownian

motion [37, 38]. The latter can be understood as a random walk induced by the

Gibbons-Hawking temperature [39] of de Sitter space:

T (φ) =
H(φ)

2π
, (3.4)

where the Hubble parameter is given by7

H(φ)2 =
λeff(φ)

3M2Pl
. (3.5)

The characteristic time scale in de Sitter space is the Hubble time, ∆t = H−1. A
typical quantum fluctuation of the field φ, during the time ∆t, is given by [40]

|δφ| = √2T (φ) = H(φ)√
2π
. (3.6)

The classical decrease |∆φ| of the inflaton field can be estimated from the restor-
ing force, −V ′(φ):

|∆φ| ≈ 1
2
V ′(φ)(∆t)2 =

V ′(φ)
2H(φ)2

. (3.7)

A prime denotes differentiation with respect to φ. We neglect velocity effects because

they are small during slow-roll and average to zero in brownian motion. The random

walk dominates over classical evolution if |δφ| > |∆φ|, or√
2

3

1

3π
λeff(φ)

3/2M−3Pl > V
′(φ) . (3.8)

7We use the ‘reduced’ Planck mass, MPl = (8πGN)
−1/2 = κ−14 = 2.43 · 1018GeV.
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We are interested in the temperature of the universe just before a final membrane

is nucleated. Consider a flux configuration (n1, . . . , nj−1, nj +1, nj+1, . . . , nJ), where
(n1, . . . , nj−1, nj, nj+1, . . . , nJ) corresponds to a cosmological constant in the obser-
vational window. If the charges qi are large, the penultimate cosmological constant,

λpen =

(
nj − 1

2

)
q2j , (3.9)

will be large. Since λeff,pen(φ) ≥ λpen > 0, eq. (3.8) will be satisfied for a range of
values of φ including φ = 0. Therefore the inflaton will take random values within a

(finite or infinite) neighborhood of φ = 0.

When the final membrane is nucleated, the temperature in its interior suddenly

vanishes. Then the inflaton no longer experiences significant brownian motion and

rolls to its minimum. The question is whether this period of inflation is sufficient.

(Less ambitiously, one could ask only whether φ will be large enough to reheat the

universe.) One would like the width of the random distribution of φ to be a few

times larger than φ∗, the value required for 60 e-foldings. Then it will be likely that
φ ≥ φ∗ at the time of the final membrane nucleation.
From eqs. (2.31), (2.39), and (2.40) one obtains

q2j ≈ 8π2
(
M11

MPl

)6
M4Pl . (3.10)

The inequality, eq. (3.8), will be satisfied if

(2nj − 1)3/2
√
2

3

8π2

3

(
M11

MPl

)9
M3Pl > V

′(φ) . (3.11)

One may take as examples the polynomial potentials V (φ) = 10−12M2Plφ
2/2 and

V (φ) = 10−14φ4/4, and note that φ∗ ≈ 15MPl in both cases. Then eq. (3.8) must
be satisfied with V ′ & 10−10M3Pl for sufficient inflation (φ > φ∗) to be likely. The
condition becomes

M11

MPl
& (2nj − 1)−1/6 · 10−1.3 . (3.12)

Thus the universe will undergo a normal period of inflation if the unification scale is

1017GeV or higher.

The nj-dependent factor does not contribute much since J is large and the flux

numbers will be of order one. Because of the (M11/MPl)
9 suppression in eq. (3.11),

this mechanism rapidly becomes inefficient for lower unification scale.

3.2.3 Trapping the inflaton

There is an alternative approach to the empty universe problem. It is less generic, but

has the advantage that it can work in models with low unification scale,M11 ≥ 1TeV.
Assume that the potential of the inflaton field (or of any other field with suitable
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coupling to the inflaton) contains a false vacuum. During the long de Sitter era

before the λ ≈ 0 flux configuration is attained, this vacuum will of course decay by
Coleman-De Lucia tunnelling [34]. As we discussed earlier, Guth and Weinberg have

shown that bubbles do not percolate in de Sitter space [35]. Because the bubbles do

not all collide, we need not fear that the entire universe will be converted to the true

vacuum. In the ambient metastable space, the BT mechanism proceeds as before.

Eventually, it produces regions where λ ≈ 0 while λeff is given by the energy density
of the false vacuum. Only then will we be interested in the decay of the false vacuum.

After tunnelling, the field emerges on the other side of the barrier. For a wide class of

potentials, the field configuration at this point will still be far from the true vacuum.

The fields can then roll to the minimum, thus inflating and reheating the universe.

The understanding of the cosmology of models with large internal dimensions

is still being developed. This makes a detailed implementation of the generalized

BT mechanism difficult. We should caution that there are important constraints on

inflationary models that operate after radius stabilization [41].

In this subsection it has been assumed that the effective potential V (φ) is the

same before and after the final membrane nucleation. However, there can be im-

portant corrections from the high temperature before the final transition [42]. They

will typically make the potential steeper but also shift its minima. Thus, after the

final nucleation, the inflaton field will not be in a local minimum and can roll down.

Moreover, one would expect coupling constants of the effective field theory to depend

on the fluxes. This also contributes to the flux-dependence of the effective potential

and generically to a shift of its minima when a membrane is nucleated.8

3.3 Vacuum selection

In the BT scenario the universe generically develops a large number of different,

exponentially large regions with every value of the cosmological constant in the dis-

cretuum, including large values. Why are we located in one of the regions with a

small cosmological constant?

Most regions will not contain structure such as galaxies. Observers are necessar-

ily located where structure does form, which restricts us to regions in the Weinberg

window [43],

−10−120M4Pl < λ < 10−118M4Pl . (3.13)

The upper bound is about 100 times larger than the observed λ. It is obtained

by demanding that the cosmological constant must not dominate the evolution of

the universe before a redshift of about 4, so that gravitational clustering operates

long enough for galaxies to form. The lower bound follows because the universe

must not recollapse while stars and galaxies form. Its magnitude is comparable

to the observed cosmological constant, but it has opposite sign. Much work has

8We thank L. Susskind and S. Thomas for pointing this out to us.
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been devoted to strengthening these constraints by more careful astrophysical and

statistical arguments (see, e.g., [44, 45, 46, 47] and references therein).

Such considerations may be distasteful to some but should not be viewed as an

easy fix. They cannot be applied unless the fundamental theory satisfies a number

of rather non-trivial conditions: it must admit different values of the cosmological

constant; they must contain at least one value in the observational range; and there

must be a dynamical mechanism that allows some regions to attain such a value.

The aim of this paper has been to present evidence that all of these conditions may

be satisfied in compactified 11D supergravity.

3.4 Stability

In order for our picture to be satisfactory we need the rate of bubble nucleation

from a phase with small cosmological constant to be small on the scale of the age

of our universe. The tunnelling amplitude is proportional to e−B, where B is the
normalized action of the corresponding instanton [10, 11]. A sufficient condition is

B & 103.
We consider a single membrane, which changes the flux j from nj to nj−1. The

domain wall tension is τj , given in eq. (2.32), and the change in the cosmological

constant is

δλ = −
(
nj − 1

2

)
q2j = −2M−2Pl

(
nj − 1

2

)
τ 2j . (3.14)

For nj � 1, gravity has negligible effects and the action is given by

B =
27π2

2 (nj − 1/2)3 (2M−2Pl qj)2
. (3.15)

To estimate the ni we assume approximate equipartition of the energy among the

fluxes so that
n2i q

2
i

2
≈ 2πM

4
11

J
. (3.16)

For the nonzero fluxes in section 2.6, τi = 2πM
3
11, and q

2
i = 8π

2(M11/MPl)
2M411. We

obtain

B ≈ 27π3/2J3/2

16
√
2(M11/MPl)3

. (3.17)

In the large dimension case B is of order 1046 and so the tunneling is negligible. Even

for the Witten GUT scenario, where J ∼ 100, it is of order 108 and again tunneling
is negligible.

At higher unification scales, for which M11/MPl > 10
−1.5, one finds J > 100.

Then eq. (3.16) yields ni < 1 and thus breaks down. Almost all relevant configura-

tions will have ni ∈ {0, 1} for all i ∈ {1, . . . , J}. We can therefore assume nj = 1. In
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this case the additional suppression due to gravity is significant, although it is never

total for our parameters. One finds

B =
1728π2

(2M−2Pl qj)2
= 54

(
M11

MPl

)−6
. (3.18)

Tunnelling will be negligible for M11/MPl < 0.6. Therefore vacuum stability is not

a significant constraint on our mechanism. A stronger constraint on M11/MPl is

obtained from eq. (2.41) by requiring a realistic number of three-cycles, say J < 103.

4. Conclusions

Compactifications of M-theory generally give rise to multiple four-form field str-

engths. We showed that such theories have vacua with discrete but closely spaced

values for the cosmological constant. In the Witten GUT scenario, the spectrum will

contain values of λ in the observable range if the number of four-forms is of order 100.

(This requires that the cosmological constant to be cancelled is of GUT scale, not

weak scale). In models with large internal dimensions, four or five four-forms suffice,

and a weak-scale cosmological constant can be cancelled. By repeated membrane nu-

cleation, flux configurations with λ ≈ 0 arise dynamically from generic initial condi-
tions. We argued that entropy and density perturbations can be generated in such re-

gions, and showed that the amplitude for the decay of the λ ≈ 0 vacuum is negligible.
An attractive feature of this proposal is that it simultaneously addresses two

questions that are usually treated as distinct. The first question is: why is the

cosmological constant not huge? One would expect a vacuum density λ of order

M4Pl, or at least TeV
4 with supersymmetry. Until recently this was the only cos-

mological constant problem. It appeared to require a symmetry ensuring the exact

cancellation of all contributions to the cosmological constant. This is difficult be-

cause contributions are expected to come from many different scales. The second

question is: Why is the cosmological constant not zero? Recent evidence9 points

to a flat universe with Ωm ≈ 0.3 and Ωλ ≈ 0.7. The favored value for the vacuum
energy is λ ≈ 10−120M4Pl ≈ (0.003 eV)4. In particular, a flat universe with vanishing
vacuum energy has been ruled out. But if it is difficult to explain λ = 0, a small

non-zero cosmological constant seems to pose an even greater theoretical challenge.

The mechanism we propose has limited accuracy because of flux quantization, so

that a residual cosmological constant is inevitable.

Our proposal has certain features of the Brown-Teitelboim idea, and also certain

features of eternal inflation [38]. Previously, however, both of these ideas have been

difficult to realize with a plausible microphysics. Our proposal allows both to be

realized within string theory. For the Brown-Teitelboim idea, the main problem

9A review of these observations can be found in ref. [48].
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was the very small energy scale needed in the discretuum; we see that this can be

obtained from a normal hierarchy with multiple fluxes. Eternal inflation with generic

polynomial potentials requires scalar field expectation values strictly larger than the

Planck scale. In string theory the scale of the field manifold is the string scale,

which is no larger than the Planck scale. The manifold is actually noncompact, but

the asymptotic regions generally correspond to decompactification of spacetime, and

in this region the effective potential generally ceases to be flat. We have realized a

version of eternal inflation that does not require such a large scalar, and uses elements

already present in string theory.10 Moreover, if the membrane charges are large, the

high temperature of de Sitter space before the final membrane nucleation induces

brownian motion of the inflaton field, thus preparing suitable initial conditions for

chaotic inflation after the transition.

The main problem with realizing our picture is the stabilization of the compact

dimensions, which is of course a ubiquitous problem in string theory. A positive bulk

cosmological constant is a useful ingredient [26, 27], but it is not clear that this can

be realized in string theory.

It is interesting that the naked singularity proposal [8, 9] appears to lead in the

end to a very similar picture. The free parameters that correspond to boundary con-

ditions at a naked singularity in a compact space will become, in a four-dimensional

effective lagrangian, variable coupling constants. In the original proposal these were

assumed to be continuous and constant in time, but in ref. [50] it was argued that

they are discrete and can change across a domain wall, just as for the fluxes con-

sidered here. In the example [50] there was a potentially large number of states, of

order e
√
N where N is at Ramond-Ramond charge of the singularity. Note, however,

that a charge of order 105 is needed to produce a discretuum sufficiently dense to

account for the smallness of the cosmological constant. In ref. [50] the main focus

was on supersymmetric states, which were all degenerate, but with supersymmetry

breaking there will again be a spectrum for λ. Again, stabilization will be an issue.

The appearance of the anthropic principle, even in the weak form encountered

here, is not entirely pleasant, but we would argue that it is necessary in any approach

where the cosmological constant is a dynamical variable. That is, a small value for

the present cosmological constant cannot be obtained by dynamical considerations

alone. The point is that we can follow cosmology at least back to nucleosynthesis,

when the present cosmological constant contributed only a fraction 10−30 to the
energy density of the universe, and so was dynamically irrelevant. At earlier times,

including the point where the cosmological constant is to have been determined, the

fraction would have been even smaller.11

10A precursor to the idea of four-form-driven eternal inflation was presented in ref. [49].
11One exception is the wormhole idea [51], where the value of the cosmological constant in our

universe is determined by the presence of other, empty, universes. At least one of the authors

retains a certain wary fondness for this possibility.
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