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There is a massive version of the ten dimensional type IIA supergravity due to

Romans [1] and it has long been a mystery as to whether it has an eleven dimensional

origin, in which the mass might arise from an explicit mass in eleven dimensions, or

from a parameter in the dimensional reduction ansatz, as in Scherk-Schwarz dimen-

sional reduction in which the fields have non-trivial dependence on the coordinates of

the internal dimensions [2]. In [3], it has been argued, subject to certain assumptions,

that no covariant massive deformation of 11-dimensional supergravity is possible, which

would mean that the massive IIA supergravity cannot come from a conventional reduc-

tion of such a massive theory. Dimensionally reducing the Romans theory on a circle

gives a massive 9 dimensional theory which can also be obtained from the type IIB the-

ory by a Scherk-Schwarz reduction [4], but the Romans theory cannot be obtained by

a Scherk-Schwarz reduction of 11-dimensional supergravity; a different 10-dimensional

massive supergravity theory, for which there is no action, was proposed in [5], and ob-

tained via a Scherk-Schwarz reduction of 11-dimensional supergravity in [6]. In [7], the

Romans supergravity was lifted to a massive deformation of 11-dimensional supergrav-

ity where the terms in the 11-dimensional action depending on the mass parameter

m also depend explicitly on the Killing vector used in the dimensional reduction to

10-dimensions, and so this 11-dimensional theory is not fully covariant.

The IIA supergravity is the field theory limit of the IIA superstring, and the strong

coupling limit of the IIA superstring is M-theory, which has 11-dimensional super-

gravity as its field theory limit. There is a massive version of type IIA string theory

[8] whose field theory limit is the Romans supergravity theory (see for instance [4]),

and the question arises as to how this massive IIA string theory arises from M-theory.

Our purpose here is to argue that although the Romans supergravity theory may not

be derivable from 11-dimensional supergravity, or any covariant massive deformation

thereof, the massive IIA superstring, whose low energy limit is the Romans theory, can

be obtained from M-theory.

The type IIB supergravity theory also cannot be obtained from 11-dimensional

supergravity, but the type IIB string theory can be obtained from M-theory by com-

pactifying on a 2-torus and taking a limit in which the area of the torus tends to zero

while the modulus τ tends to a constant, the imaginary part of which is the string

coupling constant of the IIB string theory [9]. The massive IIA string theory compact-

ified on a circle of radius R is T-dual to a Scherk-Schwarz compactification of the IIB

superstring on a circle of radius 1/R, with mass-dependent modifications of the usual

T-duality rules [4]. Thus the massive IIA string can be obtained from M-theory by first

reducing on a 2-torus that shrinks to zero size to obtain the IIB string, and then using

a ‘twisted’ T-duality to obtain the massive IIA string, by making a Scherk-Schwarz

reduction on a circle and then shrinking the radius to zero size. Moreover, we shall

argue that the Scherk-Schwarz compactification of the IIB superstring has a natural

formulation in terms of F-theory. The Scherk-Schwarz reduction of the IIB string the-

ory can then be obtained from a limit of a compactification of M-theory, using the

relation between F-theory and M-theory, and it will be shown that the massive IIA
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string can be obtained by reducing M-theory on a torus bundle over a circle and taking

a limit in which the bundle shrinks to zero size, with all three radii tending to zero. It

will be seen that this relates the D8-brane, which only occurs in the IIA string with

non-vanishing mass, to a brane-like solution of M-theory, which might be thought of

as an M9-brane, and to a related 12-dimensional F-theory ‘solution’.

The Scherk-Schwarz mechanism and its generalisations [2, 10, 11, 12, 13, 14, 15, 16]

introduces mass parameters into toroidal compactifications of supergravities and string

theories. If the original theory has a global symmetry G acting on fields φ by φ →
g(φ), then in a generalised Scherk-Schwarz reduction or twisted reduction the fields

are not independent of the internal coordinates, but are chosen to depend on the torus

coordinates y through an ansatz

φ(xµ, y) = gy(φ(x
µ)) (1)

for some y-dependent symmetry transformation gy = g(y) inG. In many cases this leads

to a spontaneous breaking of supersymmetry [2], while in others it results in the gauging

of certain symmetries of the conventionally reduced theory, and the introduction of a

scalar potential and cosmological constant [13, 14, 16]. Here, we will restrict ourselves

to compactifications on a circle, with periodic coordinate y ∼ y + 1. For example, for
reducing a theory with a linearly realised U(1) symmetry on a circle, a massless field

φ of charge q can be given a y dependence φ(x, y) = e2πiqmyφ(x), so that the field φ(x)

is given a mass of qm.

The map g(y) is not periodic, but has a monodromy

M(g) = g(1)g(0)−1 (2)

for someM in G. We will consider here maps of the form

g(y) = exp(My) (3)

for some Lie algebra element M , so that the monodromy is

M(g) = expM . (4)

Then

M = g−1∂yg (5)

is proportional to the mass matrix of the dimensionally reduced theory and is indepen-

dent of y [16].

The next question is whether two different choices of g(y) give inequivalent theories.

The ansatz breaks the symmetry G down to the subgroup preserving g(y), consisting of

those h in G such that h−1g(y)h = g(y). Acting with a general constant element k in G
will change the mass-dependent terms, but will give a D−1 dimensional theory related
to the original one via the field refinition φ→ k(φ). This same theory could have been
obtained directly via a reduction using k−1g(y)k instead of g(y), so two choices of g(y)
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in the same conjugacy class give equivalent reductions (related by field-redefinitions).

As a result, the reductions are classified by conjugacy classes of the mass-matrix M .

The map g(y) is a local section of a principal fiber bundle over the circle with

fibre G and monodromyM(g) in G. Such a bundle is constructed from I ×G, where
I = [0, 1] is the unit interval, by gluing the ends of the interval together with a twist

of the fibres by the monodromyM. Two such bundles with monodromy in the same
G-conjugacy class are equivalent. Only those monodromiesM that can be written as

eM for some M arise in this way, and for those monodromies that are in the image

of the exponential map, there are in general an infinite number of possible choices of

mass-matrix. Indeed, if M,M ′ are two such mass matricies for a given monodromy
such that eM = eM

′
= M, then eMe−M ′ = 1 and so there is a λ satisfying eλ = 1

such that M −M ′ − 1
2
[M,M ′] + . . . = λ. The general solution of eM =M is then of

the form M = M ′ + λ + 1
2
[M ′, λ] + ... where M ′ is a particular solution and λ is any

solution of eλ = 1. The algebra elements λ with eλ = 1 fall into adjoint orbits, as, for

any group element g, λ′ = gλg−1 satisfies this condition if λ does. The set of all Lie
algebra elements λ with eλ = 1 is given by the adjoint orbits of all points in the dual

of the weight lattice of the maximal compact subalgebra H of G, sometimes called the

integer lattice.

Of particular interest are the D-dimensional supergravity theories with rigid duality

symmetry G and scalars taking values in G/H [17, 18], which can be Scherk-Schwarz-

reduced on a circle to D − 1 dimensions. The reduction requires the choice of a map
g(y) of the form (3) from S1 to G, which then determines the y-dependence of the

fields through the ansatz (1), and any choice of Lie algebra element M is allowed. In

the quantum theory, the symmetry group G is broken to a discrete sub-group G(Z)

[19]. A consistent twisted reduction of a string or M-theory, whose low-energy effective

theory is the supergravity theory considered above, then requires that the monodromy

be in the U-duality group G(Z). (In the classical supergravity theory, any element of G

can be used as the monodromy.) Then the choice of M is restricted by the constraint

that eM should be in G(Z). As before, if M = kM ′k−1 where k is in G, the theories
are related by field redefinitions. However, only if k is in G(Z) will the redefinition

preserve the charge lattice [19]. Once the conventions for the definitions of charges are

fixed, it is necessary to restrict to conjugation by elements of G(Z), and so reductions

are specified by G(Z) conjugacy classes of maps (3) with monodromy (4) in G(Z).

Here we will concentrate on the examples relevant to the massive IIA superstring.

The type IIB supergravity theory has G = SL(2,R) global symmetry and any element

M of the SL(2,R) Lie algebra can be used in the ansatz (1),(3) to give a Scherk-Schwarz

reduction to 9-dimensions to obtain a class of massive 9-dimensional supergravity the-

ories. Such reductions for particular elements of SL(2,R) were given in [4, 15, 6], and

the general class of SL(2,R) reductions of IIB supergravity was obtained in [16]. Note

that this ansatz does not allow the monodromy to be an arbitrary SL(2,R) group

element, but requires it to be in the image of the exponential map. Acting with an

SL(2,R) transformation leaves the mass-independent part of the theory unchanged
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but changes the mass matrix by SL(2,R) conjugation, and so there are three distinct

classes of inequivalent theories, corresponding to the hyperbolic, elliptic and parabolic

SL(2,R) conjugacy classes, represented by monodromy matrices of the form

(
a 0

0 a−1

)
,

(
cos θ sin θ

− sin θ cos θ
)
,

(
1 a

0 1

)
, (6)

respectively. The details of the reduction of the bosonic sector of the supergravity

theory for general M were given in [16].

In the quantum theory, only an SL(2,Z) symmetry remains [19]. The quantum-

consistent Scherk-Schwarz reductions of this theory to 9 dimensions are those for which

the monodromy is in SL(2,Z), and are defined up to SL(2,Z) conjugacy. The fact that

the monodromy must be in SL(2,Z) implies a quantization of the masses.

The IIB supergravity scalars take values in SL(2,R)/U(1) and can be represented

by a complex scalar τ = C0 + ie
−Φ transforming under SL(2) by fractional linear

transformations, so that g ∈ SL(2) acts as

g =

(
a b

c d

)
: τ → τg = aτ + b

cτ + d
, (7)

The Scherk-Schwarz ansatz, τ(x, y) = τ(x)g(y), gives a complex scalar τ(x)g(y) of the

reduced theory and for fixed x, τ(x)g(y) depends on y and is a section of the bundle over

the circle with fibre SL(2,R)/U(1) obtained as a quotient of the principle SL(2,R)

bundle by U(1).

For the IIB string theory, the monodromy must be restricted to lie in SL(2,Z). If

g(y) has SL(2,Z) monodromy, the local section τ(y) = τg(y) can be used to construct a

torus bundle over the circle in which τ is the T 2 modulus, and depends on the position

on the circle. The total space of the torus bundle is a 3-dimensional space B with

metric

ds2B = R
2dy2 +

A

Im(τ)
|dz1 + τ(y)dz2|2 , (8)

where the fibre is a T 2 with real periodic coordinates z1, z2, zi ∼ zi + 1, constant
area modulus A and complex structure τ(y), which depends on the coordinate y of the

circular base space, and this has circumference R. The Scherk-Schwarz reduction of the

IIB superstring with an ansatz τ(y) = τg(y) associated with a particular torus bundle

B is precisely what is meant by F-theory compactified on the three dimensional total

space B [20, 21, 22, 23].

This generalises; for theories in which the global symmetry is G = SL(n,R) with

quantum symmetry SL(n,Z), a twisted reduction on an m-torus in which all mon-

odromies are in SL(n,Z) corresponds to a torus bundle with fibres T n over a base Tm.

For m = 1, this gives a T n bundle over a circle. Certain torus bundles over a circle

are also circle bundles over a torus, and the latter was the interpretation used in [6].

However, the torus bundle over a circle is both more general and more useful, as it

has an F-theory interpretation. For example, the 7-dimensional maximal supergravity
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theory has G = SL(5,R) symmetry, while the 7-dimensional type II string theory has

SL(5,Z) U-duality. The general twisted reduction from 7 to 6 dimensions would in-

volve a map g(y) : S1 → SL(5,R) with SL(5,Z) monodromy, which is also the data
for a T 5 bundle over S1. Then the general SL(5) Scherk-Schwarz reduction can be

re-interpreted as a reduction of the F ′-theory of [23] on a T 5 bundle over S1. (The
F ′-theory is an analogue of F-theory, also in 12 dimensions, which can be compactified
on spaces admitting a T 5 fibration [23].)

Any twisted reduction of the IIB string to 9 dimensions can be recast as the reduc-

tion of F-theory on a bundle B which is a T 2 bundle over S1. One can also consider

compactifications of M-theory on B, and the two are related by fibre-wise duality as

follows. For M-theory compactified on B in which the T 2 fibres have a constant area

A, the limit A → 0 keeping the modulus τ(x, y) fixed gives F-theory compactified on
B with fixed torus area A = 1, say. For a trivial bundle, this follows from the fact that

M-theory compactified on T 2 becomes, in the limit in which the torus shrinks to zero

size, the IIB string theory, and the generalisation to non-trivial bundles follows from

the adiabatic argument [24].

Consider the Scherk-Schwarz reduction using the map S1 → SL(2,R)

g(y) =

(
1 my

0 1

)
, M =

(
0 m

0 0

)
, (9)

so that (1) leads to the linear ansatz

τ(x, y) = τ(x) +my . (10)

The monodromy is

M =
(
1 m

0 1

)
(11)

and in the quantum theory this must be in SL(2,Z) so that m must be an integer,

and the mass is quantized, as it is proportional to m. This is precisely the reduction

studied in [4], and is T-dual to the massive IIA string theory, with mass parameter m,

conventionally compactified on S1. The bundle B has a metric given by (8),(10), which

takes the simple form

ds2 = dy2 + (dz1 +mydz2)
2 + dz22 (12)

if τ0 = i, A = R = 1. This 3-space B is also a circle bundle over a 2-torus with fibre

coordinate z1, base-space coordinates y, z2 and connection 1-form A = mydz2 [6].

The massive IIA string theory arises from M-theory as follows. Let B(A,R) be the

the torus bundle over a circle of radius R, where the torus has modulus τ depending

on the S1 coordinate y through

τ = τ0 +my (13)

for some constant τ0, and y-independent area A. Compactifying M-theory on B(A,R)

and taking the limit A → 0 gives F-theory compactified on B(1, R), or equivalently

5
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the Scherk-Schwarz reduction of the IIB string on a circle of radius R using the ansatz

(10). This is T-dual to the massive IIA string with mass parameter m compactified

on a circle of radius 1/R, and so the uncompactified massive IIA string is obtained by

taking the limit R → 0. Putting this together, we obtain the massive IIA string by
compactifying M-theory on B(A,R) and taking the zero-volume limit A → 0, R → 0.
The bundle also depends on τ0 and m, and is trivial if m = 0, in which case B is a

3-torus, and M-theory on a 3-torus indeed gives, in the limit in which the torus shrinks

to zero size, the massless IIA string theory or M-theory, depending on the value of the

string coupling. The IIB string coupling constant gB is given by the imaginary part of

τ0, gB = 1/Im(τ0), and the coupling constant gA for the T-dual IIA theory is related

to this by gA = gB/R, so that

gA =
1

Im(τ0)R
. (14)

Then if Im(τ0)→∞ as R→ 0 so that Im(τ0)R remains fixed, the massive IIA theory
at finite string coupling (14) is obtained. The massive IIA string theory can also be

obtained from F-theory on B(1, R) by taking the limit R→ 0, keeping Im(τ)R fixed.
The massive IIA supergravity theory doesn’t have a Minkowski or (anti) de Sitter

solution, and there is no maximally supersymmetric solution. There is a D8-brane

solution which preserves half of the supersymmetries, however [4]. The string-frame

metric is

ds2 = H−1/2dσ28,1 +H
1/2dx2 , (15)

where dσ2p,1 is the p + 1 dimensional Minkowski metric on R
p,1. There is an 8+1

dimensional longitudinal space and a one-dimensional transverse space with coordinate

x. The function H(x) is harmonic, H ′′ = 0, and the solution

H =

{
c+m′|x| for x < 0
c+m|x| for x > 0 (16)

for some constant c represents a domain wall at x = 0, separating regions with two

different (integer) values of the mass parameter, m and m′. If one of the longitudinal
coordinates, y say, is made periodic, a T-duality in the y-direction leads to the circularly

symmetric IIB D7-brane solution of [4], with string-frame metric

ds2 = H−1/2dσ27,1 +H
1/2(dx2 + dy2) (17)

and

e−φ = H, C ′0 = H
′ , (18)

where φ is the dilaton and C0 is the RR scalar. In Einstein frame, the metric is

ds2 = dσ27,1 +H(dx
2 + dy2) (19)

Dimensional reduction in the y direction of the D8-brane (15) or D7-brane (17) leads

to the 7-brane solution [13] of the massive 9-dimensional theory (obtained by twisted

reduction of the IIB theory using (10)) with metric

ds2 = H−1/2dσ27,1 +H
1/2dx2 . (20)
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Conventional dimensional reduction of 11-dimensional supergravity on a 2-torus

gives massless 9-dimensional type II theory with scalars in the coset space R+ ×
SL(2,R)/U(1), which is the moduli space of the torus [25]. A Scherk-Schwarz reduction

of this to 8-dimensions using the ansatz (10) for the complex scalar in SL(2,R)/U(1)

gives a massive type II supergravity in 8-dimensions [13] and this theory has a 6-brane

solution [13] with metric

ds2 = H2/3
(
H−1/2dσ26,1 +H

1/2dx2
)
. (21)

However, this massive 8-dimensional theory arises directly from reduction from 11-

dimensions on the torus bundle B, and we will now check that the 6-brane solution

arises from an 11-dimensional solution reduced on the torus bundle B. The moduli

τ, A,R of the bundle become scalar fields in the dimensionally reduced theory, and for

the 11-dimensional oxidation of the solution (21), these moduli can be expected to be

functions of transverse coordinate x. The 11-dimensional oxidation of (21) was given

in [13, 6, 26], with metric

ds2 = dσ26,1 +Hdx
2 +H(dy2 + Adz22) + AH

−1(dz1 +mydz2)2 , (22)

where A is a constant that can be absorbed into a rescaling of z1, z2. This can be

rewritten in the form

ds2 = H1/2
(
H−1/2dσ26,1 +H

1/2dx2
)
+ ds2B , (23)

where ds2B is a B-metric of the form (8),(10), but where the moduli τ, R depend on x

as well as y:

R = H1/2, τ = my + iH . (24)

The metric is of the form R6,1 ×M4 where M4 is of the form R× B with coordinates
x, y, z1, z2 and Ricci-flat metric

ds2 = Hdx2 + ds2B , (25)

with the moduli of B given by (24). The 11+1 dimensional space R7,1 ×M4 is Ricci-
flat and is the F-theory ‘solution’ that gives rise to the Einstein-frame 7-brane solution

(19), which can be reduced further to the 9-dimensional 7-brane (20). Note that for

domain walls separating regions of mass m,m′, as in (16), then there are two different
bundles B,B′ arising on either side of the wall, one with monodromy (11) and one with
monodromy given by (11) with m replaced by m′.
Now taking the limit in which the total spaces B,B′ shrink to zero size, the solution

(23) becomes the D8-brane solution of the massive IIA string, while taking the limit

in which the T 2 fibres shrink to zero size (A → 0) gives the circularly symmetric D7-
brane (17). This can be seen in a number of ways. For example, first dimensionally

reducing in the z1 direction and Weyl rescaling to obtain the IIA string-frame metric,

(22) becomes the D6-brane solution

ds2 = H−1/2dσ26,1 +H
1/2(dx2 + dy2 + Adz22) , (26)
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where the harmonic function depends only on x, so that this can be thought of as a D6-

brane ‘smeared’ over the y and z2 directions. Thus regarding B as a circle bundle over

T 2 with fibre coordinate z1, we can shrink the fibre to obtain the smeared D6-brane

solution of the IIA theory with charge proportional to m. Now the limit A → 0 is
obtained by T-dualising in the z2 direction, using the rules of [25], gives the circularly

symmetric D7-brane (17) of the IIB theory. A further T-duality in the y direction gives

the D8-brane solution (15). Then taking the limit of (22) in which the T 2 fibres are

shrunk is given by first reducing on z1 to obtain (26) and then T-dualising in the z2
direction to obtain the D7-brane (17), while the limit in which the total space shrinks

is given by making a further T-duality in the y direction to obtain the D8-brane (15).

In [27], it was argued that there should be an ‘M9-brane’ that gives rise to the

D8-brane of the IIA theory, arising as a domain wall in M-theory, and in [28, 29], such

branes were considered further. In particular, in [29] it was shown that such branes

could not be SO(9, 1) invariant, but that one of the directions was special, in the

same way that the KK monopole solution giving rise to the D6-brane is not SO(7, 1)

invariant, and has a special compact direction corresponding to the Taub-NUT fibre.

The solution (22) is a domain wall solution of M-theory that gives the D8-brane of

the massive IIA theory in the limit in which the 3-space B shrinks to zero size, and so

might be thought of as a type of M9-brane, with three special compact directions.
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1981.

[19] C.M. Hull and P.K. Townsend, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167].

[20] C. Vafa, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022].

[21] D. Morrison and C. Vafa, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114]; Nucl. Phys.
B 476 (1996) 437 [hep-th/9603161];
A. Sen, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150];
R. Friedman, J. Morgan and E. Witten, Comm. Math. Phys. 187 (1997) 679
[hep-th/9701162];
M. Bershadsky, A. Johansen, T. Pantev and V. Sadov, Nucl. Phys. B 505 (1997) 165
[hep-th/9701165].

[22] A. Sen, hep-th/9802051.

[23] A. Kumar and C. Vafa, Phys. Lett. B 396 (1997) 85 [hep-th/9611007].

[24] C. Vafa and E. Witten, Nucl. Phys. 46 (Proc. Suppl.) (1996) 225 [hep-th/9507050].

[25] E. Bergshoeff, C.M. Hull and T. Ortin, Nucl. Phys. B 451 (1995) 547 [hep-th/9504081].

[26] E. Bergshoeff, M. de Roo, E. Eyras, B. Janssen and J. P. van der Schaar, Class. and
Quant. Grav. 14 (1997) 2757 [hep-th/9704120].

[27] C.M. Hull, Nucl. Phys. B 509 (1998) 216 [hep-th/9705162].

[28] E. Bergshoeff and J.P. van der Schaar, On M-9-branes, hep-th/9806069.

[29] C.M. Hull, JHEP 07 (1998) 018 [hep-th/9712075].

9

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C75%2C4724
http://xxx.lanl.gov/abs/hep-th/9510017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C46%2C30
http://xxx.lanl.gov/abs/hep-th/9508154
http://xxx.lanl.gov/abs/hep-th/9508143
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB84%2C83
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB245%2C45
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB326%2C162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB237%2C553
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB310%2C355
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB318%2C75
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB206%2C25
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB486%2C49
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB486%2C49
http://xxx.lanl.gov/abs/hep-th/9608173
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB413%2C70
http://xxx.lanl.gov/abs/hep-th/9707130
http://xxx.lanl.gov/abs/hep-th/9803006
http://xxx.lanl.gov/abs/hep-th/9806120
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB80%2C48
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB159%2C141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB438%2C109
http://xxx.lanl.gov/abs/hep-th/9410167
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB469%2C403
http://xxx.lanl.gov/abs/hep-th/9602022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB473%2C74
http://xxx.lanl.gov/abs/hep-th/9602114
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB476%2C437
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB476%2C437
http://xxx.lanl.gov/abs/hep-th/9603161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB475%2C562
http://xxx.lanl.gov/abs/hep-th/9605150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C187%2C679
http://xxx.lanl.gov/abs/hep-th/9701162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB505%2C165
http://xxx.lanl.gov/abs/hep-th/9701165
http://xxx.lanl.gov/abs/hep-th/9802051
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB396%2C85
http://xxx.lanl.gov/abs/hep-th/9611007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C46%2C225
http://xxx.lanl.gov/abs/hep-th/9507050
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB451%2C547
http://xxx.lanl.gov/abs/hep-th/9504081
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C14%2C2757
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C14%2C2757
http://xxx.lanl.gov/abs/hep-th/9704120
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB509%2C216
http://xxx.lanl.gov/abs/hep-th/9705162
http://xxx.lanl.gov/abs/hep-th/9806069
http://jhep.sissa.it/stdsearch?paper=07%281998%29018
http://xxx.lanl.gov/abs/hep-th/9712075

