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1. Introduction and discussion

It has been suggested by ’t Hooft [1] and Susskind [2] (see also [3]) that any consistent

quantum theory of gravity must be holographic, i.e. the number of degrees of freedom

in any spatial domain is finite, proportional to the area of the boundary of the domain

in Planck units. This is unlike standard local quantum field theories in two respects.

First, the number of degrees of freedom of quantum field theory is proportional to the

volume of the system rather than the area of its boundary. Second, continuum quantum

field theories have an infinite number of degrees of freedom per unit volume. The latter

difference is presumably responsible for the finiteness of string theory, and appears like

a built-in cutoff. The first is more surprising. It basically states that the degrees of

freedom in a certain region “live” on the boundary of the region rather than in the

interior. Equivalently, in any generally covariant theory it is difficult to define local

observables, and therefore it is natural to assume that there are no such observables.

The only observables should exist on the boundary.

In some vague sense this reduction by one dimension is quite familiar in string

theory. It is widely believed that string theory, as a theory which describes all particles

and interactions, has only on-shell information. The theory cannot be probed by sources

which are not within the theory itself, and hence we cannot probe it off-shell. Therefore,

in string theory we usually compute S-matrix elements rather than Green functions. In

d+1 space-time dimensions the on-shell momenta have only d independent components

while the off-shell momenta have d + 1 components. This suggests that an on-shell
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theory like string theory in d + 1 dimensions can be equivalent to an off-shell theory

in d dimensions. In particular, Polyakov suggested that a field theory like QCD in d

dimensions can be equivalent to a d+ 1 dimensional string theory [4].

Recently these ideas have been made much more concrete. String theory and M-

theory in anti-de-Sitter space [5] beautifully demonstrate holography [6]. The theory

on the boundary is in this case a local quantum field theory, whose observables are

correlation functions of local operators. In the bulk theory they describe the response

of the theory to disturbances at infinity [7, 8].

The purpose of this note is to study a class of string backgrounds which exhibit

holography but whose boundary dynamics is in general not local. Specifically, we will

discuss linear dilaton backgrounds which asymptote, as a space-like coordinate φ→∞,
to spacetimes of the formM× IRd,1 whereM is a compact space and φ is one of the

coordinates in IRd,1. The string frame metric and string coupling asymptote to

ds2string = dx2 + dφ2 + ds2(M)
g2s = e−Qφ ,

(1.1)

where x is a coordinate on IRd−1,1 and the string metric on M is independent of x

and φ. We will also comment on the case where some of the coordinates of IRd−1,1 are
compactified on a torus.

We propose that any string background that behaves asymptotically as (1.1) is

equivalent to a lower dimensional off-shell theory without gravity whose observables live

at the boundary φ → ∞. Off-shell physical observables in the “boundary” theory are
identified with on-shell physical excitations in the string background (1.1). Note that

this proposal is in agreement with a known property of string vacua which asymptote

to (1.1) [9]: the profiles of physical string excitations, e.g. those described on the

worldsheet by BRST invariant vertex operators, are non-normalizable and supported

(typically exponentially in φ) at φ→∞.
Green functions in the off-shell boundary theory are identified, as in the AdS/CFT

correspondence, with on-shell amplitudes in string theory. Perturbatively they are given

by worldsheet correlation functions of the corresponding physical vertex operators. It is

well known that generic worldsheet correlation functions are sensitive to the spacetime

background at finite φ and not just to the asymptotic form (1.1). On the worldsheet

this is the statement that higher genus contributions to correlation functions become

more and more important as φ→ −∞. In spacetime this can be seen by analyzing the
metric (1.1) in the Einstein frame,

ds2Einstein = e
βφ(dx2 + dφ2 + ds2(M)) , (1.2)

where the positive number β depends on Q, d and the dimension of M. As φ → ∞
the distances between points at fixed x in IRd−1,1 diverge, as in the AdS examples.
Therefore, disturbances on the boundary have to propagate to the bulk before they can

interact. This is a necessary condition for holography [10]. Equivalently, in the string
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frame the distances remain finite but the string interactions vanish as φ→∞. Again,
signals have to propagate to the bulk in order to interact.

To summarize, the description of the bulk theory (1.1) is useful near φ ≈ ∞,
where the string theory is weakly coupled and excitations, such as BRST invariant

vertex operators and D-branes, can be studied using worldsheet methods. Holography

relates these excitations to observables in the boundary theory. To compute correlation

functions some information about the strong coupling region φ→ −∞ is needed.
There are several known classes of string vacua which asymptote to (1.1). Different

vacua utilize different mechanisms for regulating the divergences in the strong coupling

region. In Liouville theory (for reviews see [9, 11, 12]) a tachyon condensate, a potential

on the worldsheet, makes it harder for the strings to propagate to the strong coupling

region. In the two dimensional black hole [13, 14], which is the SL(2, IR)/U(1) coset

theory, the spacetime topology at finite φ is modified and the string coupling is bounded.

Finally, as we will see below, in the theory of NS5-branes the resolution of the strong

coupling singularity cannot be understood using worldsheet methods. String duality

can be used to show that in some cases the low energy theory becomes weakly coupled

in other variables.

When some of the coordinates x in (1.1) are compactified on a torus, the underlying

string theory enjoys a T-duality symmetry, implying a symmetry between momentum

and winding modes. Therefore, the notion of locality in the boundary theory becomes

confusing. Furthermore, because of this T-duality the boundary theory cannot have a

unique energy momentum tensor. Such arguments were used in [15] to argue that the

theory of NS5-branes (“little string theory”) is not a local quantum field theory. Here

we see that this is a common feature of the boundary theories of all backgrounds of the

form (1.1) (with sufficiently large d).

As mentioned above, our discussion applies to some string backgrounds that were

studied in the past. One example is the “old matrix model” (for a review see [12]), which

has several interpretations. It describes the quantum mechanics of N ×N matrices in
the limit N → ∞. It can also be thought of as a theory of two dimensional gravity.
A third interpretation arises from interpreting the two dimensional gravity theory as

the worldsheet dynamics of a string. This leads to string theory in a 1+ 1 dimensional

spacetime with the Liouville field φ playing the role of a space coordinate. The dilaton

of this spacetime theory is linear in φ.

In modern language we can say that the equivalence of the large N matrix model

to two dimensional gravity coupled to c = 1 matter (or equivalently 1 + 1 dimensional

string theory) is an example of the holography proposed above. The matrix model

gives a holographic description of two dimensional string theory.1 The observables of

the theory can be described in terms of the matrices and we can compute their Green

functions. These are related to the S-matrix elements of the bulk spacetime theory

which can be computed using standard worldsheet methods (vertex operators).

1This was suggested by T. Banks several years ago.
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The equivalence of the matrix model and 1 + 1 dimensional string theory provides

a rather simple example of holography. The arguments above regarding non-locality of

the “boundary” theory are inapplicable here because of the low spacetime dimension;

indeed the boundary theory is standard matrix quantum mechanics. Similarly, this

example is not well suited for studying the relation between a bulk theory of gravity

and a boundary theory without gravity since the gravitational sector of the bulk theory

(which consists of certain “discrete states”) essentially decouples from the dynamics.

A richer set of holographic theories of the sort discussed here was constructed in

[16]. In the notations of (1.1), the compact manifoldM in the specific case discussed in
[16] is a circle2 and the dimension of the boundary d can take the values d = 2, 4, 6. The

strong coupling singularity at φ → −∞ is removed as in Liouville theory by turning
on a worldsheet superpotential. Consider for example the theory with d = 4. It is

invariant under eight supercharges which anticommute to translations in x, but not in

φ (of course, translations in φ are not a symmetry) or along the circle. It is natural

to conjecture that the full string theory which is naively six dimensional in this case is

equivalent to a four dimensional off-shell theory without gravity with N = 2 SUSY.
A possible candidate for the “boundary” theory is the decoupled theory of an NS5-

brane with worldvolume IR3,1 × Σ with Σ a Riemann surface that can be obtained as
follows. Start with a configuration of N D4-branes suspended between two parallel

NS5-branes in type IIA string theory (see [17] for a review of the physics of such

configurations). We can for example take all the branes to be infinite in (x0, x1, x2, x3);

the fivebranes are further extended in (x4, x5) and the fourbranes are suspended between

them along the x6 axis. This configuration preserves eight supercharges and describes at

low energies a four dimensional N = 2 SYM theory with gauge group SU(N). Taking
the IIA string coupling to infinity, the above brane configuration turns into an M5-

brane in eleven dimensions with worldvolume IR3,1 × Σ where Σ has been determined
in [18]. If we now compactify one of the coordinates x7, x8, x9 on a small circle we

get a similar configuration in IIA string theory. The resulting theory on the NS5-brane

with worldvolume IR3,1 × Σ is not a local QFT,3 however it reduces in the infrared to
N = 2 SYM with gauge group SU(N).
This theory has a few features in common with the d = 4 theory constructed in [16].

The global symmetries of both are naively U(1)×U(1). In the theory of the NS5-brane
one U(1) corresponds to rotations in the (x4, x5) plane while the other is the SO(2)

subgroup of rotations of (x7, x8, x9) unbroken by the construction above. The second

SO(2) symmetry is enhanced to SO(3) in the extreme infrared limit of the theory on

the fivebrane. In the construction of [16] the U(1) × U(1) symmetry corresponds to
momentum and winding on the circle. One of the U(1) factors is actually broken in

both theories. In the theory of the fivebrane it is broken by quantum effects (i.e. at

finite QCD scale Λ). In the theory of [16] it is broken by the worldsheet superpotential

2There are many possible generalizations of the models of [16] for which the manifoldM is different.
3A similar construction is described in [19].
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that stops the theory from running to strong coupling. Thus we are led to identify

the worldsheet cosmological constant with the QCD scale, Λ. The other U(1) remains

unbroken in both theories (and as mentioned above should be enhanced to SU(2) in

the extreme IR).

Another possibility for regulating the strong coupling singularity at φ→ −∞ in the
theories of [16] is to replace the cylinder IR×S1 with a Liouville-like superpotential by
the supersymmetric SL(2)/U(1) coset, which changes the topology to that of a cigar

and removes the strong coupling region. The symmetry structure of the resulting string

theory is the same as that discussed above.

In the remaining sections we will focus on the specific example of string theory in

the near-horizon geometry of parallel NS5-branes in type II string theory,4 that was

studied by Callan, Harvey and Strominger (CHS) [20]. We will argue that the the-

ory with vanishing asymptotic string coupling is dual to the non-local six dimensional

theory without gravity that governs the dynamics of NS5-branes at vanishing string

coupling [15]. Section 2 contains rudiments of the relevant classical supergravity solu-

tion. Section 3 contains an analysis of some dynamical issues in this background. In

particular we identify the set of short representations of the NS5-brane theory with

vertex operators in the weakly coupled string theory regime (the tube of the CHS the-

ory). These are given by primaries of the affine SU(2) on the string worldsheet. It

is known that the NS5-brane theories have an A−D − E classification. Our analysis
extends the explanation of [21] of the A−D−E classification of affine SU(2) modular
invariants.

2. The near-horizon limit of NS5-branes in string theory

The decoupled theories on NS5-branes in type II string theory were first discussed in

[15], motivated by the study of compactifications of Matrix theory on high dimensional

tori [22]. In [15] it was argued that the theory on N NS5-branes5 decouples from the

bulk in the limit

gs → 0 , Ms = fixed, (2.1)

because the effective coupling on the NS5-brane isMs, while the coupling to bulk modes

behaves as gs. A DLCQ description of this theory further supported the existence of a

consistent theory that is decoupled from the bulk [23, 24].

The existence of a decoupled theory of NS5-branes seemed to be in conflict with

previous analyses of this system [20, 25]. In particular, it was pointed out [26] that for

an energy density that is finite in string units there is finite Hawking radiation to the

CHS tube region of the 5-brane solution, suggesting that the theory does not decouple

from the fields in this region.

4Our analysis can be easily generalized also to other six dimensional theories, such as the heterotic

5-brane theory.
5We take N ≥ 2 for reasons that will be clarified in the next section.
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The proposal in [5] can be used to reconcile the two points of view.6 According to

this conjecture a d dimensional theory without gravity, such as our theory for d = 6,

may be dual to a higher dimensional theory with gravity. In our case, string or M-theory

in the background of the 5-brane solution in the limit (2.1), including the CHS tube,

is conjectured to be dual to the decoupled theory on the NS5-branes. In particular,

the fields in the tube which arise in the Hawking radiation [26] are interpreted as part

of this decoupled theory. Correlation functions of observables in this theory may be

defined by setting appropriate boundary conditions at the weak coupling boundary of

the CHS background.

In this section we will discuss the classical supergravity solution which arises in the

limit (2.1) of the metric of NS5-branes. M theory in this background is conjectured to

be dual to the decoupled NS5-brane theory. Parts of this section overlap with [27, 28].

2.1. IIA and M theory 5-branes

We start by discussing NS5-branes of type IIA string theory, which may be viewed as

M-theory 5-branes localized on the eleven dimensional circle. Thus, they are described

by the metric for N M5-branes at a point on a transverse circle. M-theory has a scale lp,

and the radius of the circle asymptotically far away from the 5-branes will be denoted

by R11 (we will not be careful about numerical factors). The (asymptotic) string scale

is given by R11l
2
s = l

3
p. We are interested in taking the limit (2.1) in which lp and R11 go

to zero with ls kept fixed. ls will then be the dimensionful parameter of the decoupled

theory on the NS5-branes [15]. The near-horizon metric for N overlapping 5-branes in

this configuration is given by :

ds2 = H−1/3[dx26 +H(dx
2
11 + dr

2 + r2dΩ23)] , (2.2)

where

H =
∞∑

n=−∞

Nl3p
(r2 + (x11 − nR11)2)3/2 , (2.3)

x11 is periodic with period R11, and dx
2
6 is the metric on IR

5,1. This is the metric for N

overlapping 5-branes – the generalization to 5-branes located at different x11 positions

is straightforward. The supergravity solution involves also a 4-form field strength with

N units of flux, which we will not write explicitly.

In the limit (2.1) the natural coordinates to define are such that the tension of a

string arising from an M-theory membrane stretched between 5-branes at distances r

or x11 remains constant. Thus, we choose U = r/l3p and y11 = x11/l
3
p. Both of these

coordinates have dimensions of mass squared, and the coordinate y11 has a periodicity

of R11/l
3
p = 1/l

2
s . In terms of these variables the metric is:

ds2 = l2pH̃
−1/3[dx26 + H̃(dy

2
11 + dU

2 + U2dΩ23)] , (2.4)

6Similar ideas have also been suggested by various people, including C. V. Johnson, J. Maldacena

and A. Strominger.

6



J
H
E
P
1
0
(
1
9
9
8
)
0
0
4

with

H̃ =
∞∑

n=−∞

N

(U2 + (y11 − n/l2s)2)3/2
. (2.5)

Except for an overall factor of l2p in front of the metric, it remains finite in this limit.

As in the case of a similar factor in the AdS5 × S5 metric [5], this lp will drop out

of any physical computations. Below we will study the conjecture that M-theory on

the manifold (2.4) is equivalent (“dual”) to the six dimensional theory of N NS5-

branes in type IIA string theory. Both theories have (2, 0) six dimensional SUSY (four

supercharges in the 4 of Spin(5, 1)) and a global SO(4) R-symmetry.

There are two regions where the metric (2.4) simplifies considerably. It is known

that distances that are large compared to
√
Nls in the six dimensional theory of NS5-

branes correspond to the (2, 0) SCFT, the extreme IR limit of the NS5-brane theory.

Equivalently, we can approach this low-energy limit by taking ls → 0, which corresponds
in (2.4) to small values of U and y11 (compared to 1/l

2
s). In this limit the sum in (2.5)

is dominated by the contribution from n = 0, and the metric (2.4) becomes the metric

for AdS7×S4, as in [5], which is indeed believed to be dual to the (2, 0) SCFT. The six
dimensional Poincare symmetry is enhanced to the conformal group, and the SO(4)

global R-symmetry is enhanced to SO(5).

The second interesting limit is large U . For U � 1/l2s , the sum in (2.5) can be
approximated by an integral, and the result is

ds2 = l2p
U2/3

(Nl2s)
1/3
[dx26 +

Nl2s
U2
(dU2 + dy211) +Nl

2
sdΩ

2
3] . (2.6)

For U � √
N/l2s the theory becomes weakly coupled type IIA string theory. The

quantity in the square parentheses (without the dy211 term) is exactly the type IIA

string metric, and the IIA string coupling is

g2s(U) =
N

l4sU
2
. (2.7)

Furthermore, for large N the curvatures are small (either in the eleven dimensional

metric or in the ten dimensional metric) for any value of U , so we can use the low-energy

supergravity to compute some properties of the type IIA NS5-brane theories.

We will sometimes find it useful to work, in the weakly coupled string theory regime,

with a new coordinate φ which is

Ul2s/
√
N = eφ/

√
Nls . (2.8)

This brings the metric to the more familiar linear dilaton form

ds2string = dx
2
6 + dφ

2 +Nl2sdΩ
2
3 , g2s(φ) = e

−2φ/√Nls . (2.9)
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2.2. Energy scales in the theory of type IIA NS5-branes

There are several energy scales that could be important in the discussion of the decou-

pled theory of type IIA NS5-branes. The first scale is 1/
√
Nls, which is the scale that

appears explicitly in the metric in the linear dilaton region. This scale also appears

in previous computations of various properties of the NS5-brane theories; for instance,

their Hagedorn temperature is T = 1/
√
Nls.

We can find additional energy scales in the problem by examining cross-over regions

as we change U . Naively we would interpret a position in the U coordinate as corre-

sponding to an energy scale U ∼ E2. However, because there is another dimensionful

parameter in our problem, ls, we can also relate effects happening at some position U

to physical processes at energies E ∼ √Uf(Ul2s) for some function f . To be precise
one must define the process of interest first, and the scale U may in principle appear

in different ways in different processes.

As we change U , we can identify the following cross-over scales where the behavior

of the theory changes :

1. One special point is where gs = 1 ⇒ U ∼ √N/l2s . At this scale we go over
from weakly coupled type IIA string theory to a strongly coupled theory (i.e.

M-theory).

2. Another scale is the place where the radius of the y11 circle is of the same order

as the radius of the S3, naively indicating a crossover to an AdS7 × S4 regime of
the theory. In the metric written above this happens at U ∼ 1/l2s . At this scale U
is of the same order as the periodicity in y11, and we can no longer approximate

the sum over n in (2.5) by an integral.

2.3. The type IIB NS5-brane

The behavior of type IIB NS5-branes in the limit (2.1) is similar to the IIA solution in

the linear dilaton regime, but it is very different close to the 5-branes, as in the limit

(2.1) the IIB solution becomes singular close to the 5-branes.

The behavior of the metric in different regimes is analyzed in [27]. The string metric

far from the branes is the same as the one in (2.6), but now it is more natural to define

the U coordinate as U = r/gsl
2
s which is the mass of a D-string stretched between two

NS5-branes, and from it define φ as in (2.8). In terms of this coordinate the string

metric and coupling are as in (2.9). As we decrease U , we encounter the first crossover

scale at U ∼ √N/ls, where gs ∼ 1. At this scale the string coupling becomes large, but
the curvatures (in the Einstein metric) are still small, so we can go over to an S-dual

picture [27]. In the dual picture the string metric is the same as above, multiplied by

1/gs ∼ U , and the coupling behaves as g̃2s = 1/g
2
s ∼ l2sU

2/N . In this new description,

the string coupling becomes smaller and smaller as we decrease U , but the curvature

(for example of the S3) becomes larger and larger. The curvature becomes Planckian

8
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at the scale U ∼ 1/√Nls, so beyond this scale we can no longer trust supergravity.
This agrees with our expectations, since the low-energy gauge coupling is given by

g2YM = l2s , so we expect perturbation theory to be valid whenever the dimensionless

coupling g2YMNU = Nl2sU is small (interpreting U as an energy scale in the SYM

theory). Thus, we can interpret this scale as corresponding to the breakdown of the

SYM perturbation theory [27].

3. Observables and correlation functions of the NS5-brane the-

ories

The six dimensional NS5-brane theory has a scale, ls. In the dual description this scale

appears in the metric, e.g. as in (2.4), (2.5) for the IIA case. As discussed above, to

study the long distance behavior of the theory we have to analyze it in the limit ls → 0,
where it is governed by a local QFT, the (2, 0) SCFT for IIA fivebranes and the IR

free SYM with sixteen supercharges for IIB. If the fivebrane theory had been a local

QFT for all energy scales, the short distance behavior would have been governed by a

UV fixed point. This fixed point would have been studied by taking ls → ∞ in (2.4),
(2.5). In our case this limit leads to the linear dilaton geometry (2.9).

Because string theory in the linear dilaton geometry (2.9) cannot describe a field

theoretic UV fixed point, the NS5-brane theory is not a local QFT. However, we do

expect the fivebrane theory to have the property that, as in local QFT, observables

are defined in the UV region (2.9). Therefore, as a check of the duality, we next

discuss the spectrum of excitations of string theory in the linear dilaton vacuum and

compare it to the set of observables of the NS5-brane theory. We mainly focus on short

representations of supersymmetry, since the complete list of those is independently

known in the fivebrane theories.

To find these short representations, recall that “little string theories” with sixteen

supercharges have an A − D − E classification. In the usual description the different
theories may be obtained by studying decoupling limits of type II string theory on K3

with A − D − E type singularities. In the CHS limit (2.9) they correspond to the

A−D −E classification of modular invariants of SU(2) WZW models [21].
The global symmetry of these theories is SO(4). The moduli spaces of vacua are

(S1 × IR4)r/W for the type IIA theory and (IR4)r/W for the type IIB theory, where
r is the rank of the A − D − E group and W is its Weyl group. The global SO(4)
symmetry acts on the IR4 factors. This suggests that the special chiral representations

are correlated with W-invariant products of scalars, which are the natural coordinates
on the moduli space. In the type IIB theory they are easily identified as the gauge

invariant polynomials in the scalars in the gauge multiplets; i.e. they are identified with

the Casimirs of the gauge group. Their SO(4) representation is a traceless symmetric

tensor whose order is the order of the corresponding Casimir.

9



J
H
E
P
1
0
(
1
9
9
8
)
0
0
4

A similar result is expected in the IIA theory. This can be shown by compactifying

it to five dimensions, where the low energy theory is an A − D − E gauge theory.

Therefore, the representations are traceless symmetric SO(5) tensors whose orders are

those of the Casimirs. For the An theories the same conclusion can be reached by using

their DLCQ7 formulation [29]. For the A, D models with large N one can also use the

M-theory duals of the relevant SCFTs [30, 31, 32, 33]. Of course, only an SO(4) out

of the SO(5) R-symmetry of the (2, 0) SCFT is visible at large U .

In the next subsection we discuss string theory in the linear dilaton CHS background

(2.9) and show that the spectrum of short representations of supersymmetry is identical

to that described above.

3.1. Worldsheet aspects of six dimensional string theory

The CHS background (2.9) is:

IR5,1 × IR× S3N . (3.1)

IR5,1 is the six dimensional spacetime of the (2, 0) theory; the remaining four dimensions

parametrize the space transverse to the fivebranes. The second factor in (3.1) is the

radial direction φ or U (2.8). It is described on the worldsheet by a free field whose

stress tensor has an improvement term,

Tφ = −1
2
(∂φ)2 − Q

2
∂2φ ; Q =

√
2

N
. (3.2)

The three-sphere S3N of radius
√
Nls describing the angular coordinates corresponds to

an SU(2) WZW model with level k = N − 2 (note that this requires N ≥ 2).
In addition to the above bosonic worldsheet fields, the theory also has free world-

sheet fermions. The worldsheet fields Xµ(z, z̄) (µ = 0, 1, 2, · · · , 5) parametrizing the six
dimensional spacetime are accompanied by left and right moving superpartners χµ(z),

χ̄µ(z̄); the worldsheet superpartners of φ and the SU(2) WZW are ψ0(z), ψ̄0(z̄) and

ψi(z), ψ̄i(z̄) (i = 1, 2, 3), respectively.

The SO(4) ' SU(2)R × SU(2)L isometry of the three-sphere in (3.1) acts on the
worldsheet fields as follows. The bosonic SU(2)k WZWmodel contains (anti-) holomor-

phic currents J iB(z), J̄
i
B(z̄) which generate an SU(2)×SU(2) symmetry. The fermions

ψi(z), ψ̄i(z̄) transform in the adjoint of an SU(2)×SU(2) symmetry, generated by the
level two currents

J iF =
1

2
εijkψjψk ; J̄ iF =

1

2
εijkψ̄jψ̄k . (3.3)

The total currents

J i = J iB + J
i
F ; J̄ i = J̄ iB + J̄

i
F (3.4)

generate the above SO(4) symmetry. The total level of the currents J i, J̄ i is (N −2)+
2 = N .
7The extension to the Dn, En theories leads to predictions about the cohomology with compact

support of the moduli spaces of Dn and En instantons on IR
4.
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The spacetime supercharges of the CHS near-horizon string theory are a subset

of those of the full IIA string theory. Denoting by α ∈ 4, ᾱ ∈ 4̄ and a ∈ 2, ā ∈ 2̄
spinor indices of SO(5, 1) and SO(4), respectively, the thirty two supercharges of IIA

string theory transform as Qαa, Qᾱā, Q̄αā, Q̄ᾱa (Q, Q̄ arise from left, right movers

on the worldsheet, respectively). By using the form of the gauged worldsheet N = 1
superconformal generators:

T = −1
2
(∂Xµ)2 − 1

2
ψµ∂ψµ + Tφ − 1

N
J iJ i − 1

2
∂ψaψa

G = ψµ∂Xµ + ψ0∂φ +

√
2

N
(ψiJ i + ψ1ψ2ψ3 − ∂ψ0)

(3.5)

and the similar formulae for the other worldsheet chirality, one can show that the

physical supercharges in the background (3.1) are Qαa, Q̄αā, which generate (2, 0) six

dimensional SUSY.

Note that we could have studied the CHS limit of NS5-branes in type IIB string

theory as well. In that case the surviving SUSY would have been (1, 1) and we would

have obtained the other six dimensional string theory discussed in [15]. The low energy

limits of the (2, 0) and (1, 1) string theories are very different. While the former flows

in the infrared to the non-trivial (2, 0) field theory, the latter reduces at low energies to

the (infrared free) six dimensional SYM. From the point of view of the string theory in

the tube limit (3.1), this difference has to do with the different ways the IIA and IIB

theories treat the strong coupling region at small φ.

The following general features are clear from the above description.

1. The NS5-brane theory has a stress tensor. In the (dual) string theory of the

CHS tube this is the statement that the theory has six dimensional gravitons

(generalizing the identification of the graviton with the energy-momentum tensor

in the AdS/CFT correspondence [7, 8]).

2. Upon compactification on tori, the NS5-brane theory has T-duality [15]. In our

description this arises from the T-duality of the dual IIA or IIB string theory.

Thus, it cannot be a local QFT. In particular, upon compactification the iden-

tification of the graviton is not unique (since it varies when we T-dualize), cor-

responding to the non-uniqueness of the energy momentum tensor in the six

dimensional theory [15].

We next turn to the spectrum of physical operators of the string theory in the CHS

tube. We will focus on short representations of the relevant SUSY algebra. As a first

example consider the A series of six dimensional string theories, which is conjectured

to be dual to the theory with the A modular invariant of SU(2) in the tube limit. The

only primaries of SU(2)R × SU(2)L that appear in the A modular invariant of SU(2)k
are Vj,j with spin j for both SU(2)’s, with 2j = 0, 1, 2, · · · , k (recall that the level k
is related to the number of fivebranes N via k = N − 2). Each such primary gives
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rise to a short representation. As is clear from our previous comments on the global

symmetries, the state with spin j transforms as a traceless symmetric tensor with 2j

indices under SO(4).

To obtain the bounds on j we need to describe the physical states slightly more

precisely. The lowest component of each representation is a scalar under six dimensional

Lorentz. The corresponding vertex operator takes the form (in the −1 picture)

ψψ̄Vjje
βjφ . (3.6)

The fermions ψ, ψ̄ transform as the (3, 1) and (1, 3) of SU(2)L × SU(2)R; βj = j
√
2
N
.

The indices under each SU(2) are contracted between the fermions and Vjj to form

representations with spin j − 1, j and j + 1. One can show that the representation
with spin j is unphysical, while that with spin j+1 gives rise to the lowest component

of a short representation. The states with spin j − 1 are descendants in this repre-
sentation. Thus, one finds short multiplets in the SU(2)R × SU(2)L representations
of spin (j + 1, j + 1) with 2j = 0, 1, 2, · · · , N − 2 as above. In SO(4) language these
are traceless symmetric tensors with 2j+2 = 2, 3, · · · , N indices. This agrees with our
general expectation in terms of the Casimirs of AN−1. Note that in our description
we can explicitly see the truncation of the chiral operators at 2j + 2 = N , which is

generally obscure in the AdS/CFT correspondence. This provides further evidence for

the validity of the bulk/boundary correspondence for finite values of N .

Returning to the SO(4) vs. SO(5) issue, we expect (just like in type IIA string

theory in flat spacetime) the symmetric tensors of SO(4) to be extended to symmetric

tensors of SO(5) with non-perturbative states in the CHS string theory, i.e. D-branes.

The missing states are exactly the D0-brane states, which indeed exist only for type

IIA. Adding these states we find, for large N , the full spectrum of the low-energy

SCFT. We have not shown that for finite N the spectrum of states involving D0-branes

truncates at the appropriate value of j.

The D-series models exhibit some new features. Recall that D-series modular invari-

ants in SU(2) WZW CFT exist only for even k and they have the following spectrum

of primary operators:

1. Operators Vj,j with equal left and right spins which are both integer (and as usual

bounded from above by k/2).

2. A single additional operator Vj,j with j = k/4.

3. A series of operators Vj1,j2 with j1 =
k
4
+ n and j2 =

k
4
− n with integer n.

The corresponding low energy theory is an SO(2N) gauge theory with sixteen super-

charges for type IIB, and theDN (2, 0) SCFT (which is dual to M-theory on AdS7×RP 4
[30]) for type IIA (the relation between k and N is in this case k = 2(N−2)). The first
kind of operators in the tube string theory above are interpreted as before in the two

low energy theories. The operator (2) above is also easy to interpret: it corresponds
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to the Pfaffian operator in the SO(2N) gauge theory that appears for type IIB, and to

a similar operator of dimension ∆ = 2N in the (2, 0) SCFT for type IIA. In M-theory

on AdS7×RP 4 this operator corresponds to an M2-brane wrapped around an RP 2 in
RP 4 (as in [34]).

The operators (3) are interesting. Since their worldsheet left and right scaling

dimensions differ by an integer they are similar to Dabholkar-Harvey [35] states in

toroidal compactifications of string theory and, just like the above, they give rise to a

large number of “medium” multiplets. It would be interesting to understand whether

supersymmetry is sufficient to guarantee their appearance in the low energy theory,

and, if the answer is yes, to identify them in the low energy IIA and IIB theories.

One can also study the E6, E7 and E8 six dimensional string theories. These

theories have the following structure in the tube limit. The bosonic WZW model

contains operators with SU(2)R × SU(2)L spin (j, j) with the following values of 2j:

E6 : 2j = 0, 3, 4, 6, 7, 10

E7 : 2j = 0, 4, 6, 8, 10, 12, 16

E8 : 2j = 0, 6, 10, 12, 16, 18, 22, 28.

(3.7)

Each of these gives rise, as in the A, D series above, to short multiplets in the six

dimensional string theory. At low energies the spectrum of chiral primaries should be

compared to the six dimensional IR free gauge theory with sixteen supercharges and

En gauge group for type IIB, and to the En (2,0) SCFT for IIA. The latter cannot

be described by eleven dimensional supergravity since the curvature of the relevant

eleven manifold is large in Planck units, but our general considerations above suggest

that again the special representations are traceless symmetric SO(5) tensors with the

number of indices related to the order of the En Casimir. It is easy to see that the

results predicted by (3.7) are indeed correlated with these Casimirs in the right way.

The analysis of [21] gave an explanation of the origin of the A−D−E classification
of affine SU(2) modular invariants. The results here explain another aspect of this

classification which is not obvious from purely conformal field theory considerations.

It clarifies why the spinless primaries are correlated with the Casimirs of A − D − E
and, therefore, why their number is given by the rank of the A−D − E group.
The En theories, just like the Dn ones, have states Vjj̄ with j 6= j̄. Thus the issue

of the existence of medium representations in the infrared theory raised in that context

must be understood here as well.

3.2. Branes in the near-horizon geometry

In addition to the observables described in the previous subsection, branes can also

propagate in the backgrounds described above. It is interesting to analyze the brane

spectrum in the geometry we find, and to interpret it in terms of the dual NS5-brane

theory.
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Let us start with the small U limit of the IIA case, where the theory goes over to

the AdS7 × S4 compactification of M-theory, which is conjectured to be dual to the

(2, 0) 6D SCFT. The interesting branes in this limit seem to be the membrane and

the M-theory 5-brane wrapped around S4. The membrane tension does not depend

on the U coordinate; the U coordinate is defined so that the mass of a membrane

stretched in the U direction is linear8 in U . This enables us to look at configurations

of membranes ending on some surface at the boundary of AdS (large U); the energy of

these configurations is linearly divergent in U , and they may be identified with “Wilson

surface” observables of the (2, 0) SCFT.

On the other hand, a 5-brane wrapped on S4 cannot exist on its own, like the

wrapped 5-branes in the AdS5 × S5 background [34]. This is because the background
4-form field acts as a source of 2-form charge in the 5-brane, which must be balanced by

N M theory membranes ending on such a 5-brane in the AdS7 (note that the wrapped 5-

brane is a string in the AdS7). These membranes must have another boundary, so they

must stretch to the boundary of AdS (or to another 5-brane with opposite orientation);

thus this configuration behaves like a baryon which contributes to the product of N

“Wilson surface” observables.

Both types of branes described above exist also in the full background described in

the previous section. In the linear dilaton region, the membrane becomes a D2-brane

of type IIA string theory, whose tension (in 11D Planck units) is still independent of U .

These membranes/D2-branes may be used to define “Wilson surface” observables of

the type IIA NS5-brane theories, by analyzing configurations with D2-branes stretching

to infinity in the U direction. At large distances (measured in string units) these

observables will go over to the “Wilson surface” observables of the low-energy (2, 0)

SCFT [36].

Similarly, the 5-brane wrapped on S4 becomes a D4-brane wrapped on S3. The

background NS 3-form field induces a magnetic charge in the 4-brane field theory,

which must be balanced by N D2-branes, as before. So, this state still behaves as a

generalized baryon vertex.

We will not discuss here the most general possible branes, but it is interesting to

analyze D-branes which stretch only in the IR5,1 directions (in the linear dilaton region).

The mass of such D-branes behaves (in string units) like 1/gs, so they are not stable

objects but instead tend to fall into the strong coupling region. This agrees with the

expectation [15] that D-branes in IR5,1 will form bound states with the NS5-branes;

we can interpret the branes falling in to small values of U as a bound state of the

D-branes with the NS5-branes, which tends to spread out in the IR5,1 directions (using

the interpretation of U as an inverse distance scale).

The analysis is similar for the type IIB theory. In this theory the D1-brane has (by

construction) finite tension for large U , and can be used to define Wilson line operators

(which go over to Wilson lines in the 6D SYM theory at large distances). A D3-brane

8Note that the coordinate U we use here is the square of the coordinate U in [5].
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wrapped around the S3 serves as a baryon vertex, since N D-strings have to end on such

a D3-brane. D-branes in IR5,1 can be interpreted as in the previous paragraph. For very

small values of U it should be possible to interpret the fundamental string (stretching

in the IR5,1 directions) as an instanton of the SYM theory, and the U coordinate as the

scale size of this instanton (this is similar to the interpretation of D-instantons in the

AdS5 × S5 background [37, 38, 39]), but it is not clear if such an interpretation makes
sense also for large U .

3.3. Holographic computation of a scalar correlator in the IIA NS5-brane

theory

In this subsection we will discuss some aspects of the Euclidean 2-point function of

a scalar field in the theory of the IIA NS5-branes. We will do the computation in

low-energy supergravity, implying the following limitations:

1. The momentum has to be well below the string scale p � 1/ls. Otherwise there
could be large corrections to the supergravity analysis.

2. We require that N be large so that the various curvatures in the solution are small.

Even under these restrictions there are two distinct regimes of momenta, compared

to the scale 1/
√
Nls. At low momenta compared to this scale we will reproduce the

results of the low-energy (2, 0) SCFT, whereas for p > 1/
√
Nls (but still much smaller

then 1/ls) we will start seeing the effects of the “little string theory”.

Note that we do not really have a scalar field in the problem (which is a scalar in

11D), but this simpler computation should have the same qualitative features as the

correlation functions of other fields in the theory (such as the graviton, which is related

to the six dimensional energy momentum tensor).

We will follow the procedure of [7] for computing 2-point functions of scalar fields.

We should start by finding the solution to the equation of motion for a scalar field in

the background (2.4). Assuming no dependence on the S3 coordinates, and an eip·x

dependence on the IR5,1 coordinates, the equation of motion is

[∂U (U
3∂U) + U

3∂211 − H̃U3p2]Φ(U, y11) = 0 , (3.8)

where H̃ was defined in (2.5).

We have not been able to solve (3.8) exactly, but dimensional analysis of this equa-

tion reveals much of its physical content. The factor of N appears only in the last

term, hence the dependence of the solution on p and on N will be via the combination

p2N . Furthermore, if we rescale U and y11 by l
2
s , making them dimensionless, then

the differential operator in (3.8) depends only on Nl2sp
2. This is true in all the regions

of the SUGRA background. If we are interested in momenta below 1/
√
Nls, then we

may hold p fixed and take ls → 0, in which case the differential equation becomes that
of a scalar field on AdS7 × S4 and we will reproduce the results of the (2, 0) SCFT.

When ls is not strictly zero, the correlator will deviate from that of the SCFT, and

this deviation will be governed in momentum space by powers of Nl2sp
2. Thus, eleven

15



J
H
E
P
1
0
(
1
9
9
8
)
0
0
4

dimensional supergravity can be used to analyze the behavior of the NS5-brane theory

away from the IR fixed point, for 1/
√
Nls < p� 1/ls.

In the low momentum regime p � 1/√Nls we can make the computation more
explicit. This will also serve to show that the dependence on the UV cutoff (which one

takes to infinity only at the end of the computation of a correlator) does not invalidate

the conclusion of the previous paragraph. In the large U region the radius of the y11
direction vanishes and therefore ∂11Φ = 0. Thus, we get the equation

[∂U (U
3∂U )−Nl2sp2U ]Φ(U) = 0 , (3.9)

which has two independent solutions, Φ± ∼ Uβ± , where β± = −1±
√
1 +Nl2sp

2.

In the small U, y11 region (the (2, 0) SCFT region) the metric looks like AdS7×S4,
so we have the standard solution for a scalar field in AdS7. The solution on this space

which is regular at U = 0 is

Φ0(U, y11) = (
√
Np2z)3K3(

√
Np2z), (3.10)

where z = (U2+y211)
−1/4 and K3 is a Bessel function. In particular, the solution in this

regime has an asymptotic expansion in
√
Np2z, of the form

Φ0(z) ∼ 1 + a1Np2z2 + a2(Np2z2)2 + a3(Np2z2)3(log(Np2z2) + a4) + · · · (3.11)

for some constants ai. This asymptotic expansion can be used when both
√
Np2z �

1 and U � 1/l2s , which implies that p2 � 1/Nl2s , so we are at very low momenta where
we expect the result to be similar to the result for the (2, 0) SCFT.

As in [7], we will set a cutoff U0 for the theory, and compute the 2-point function

with this cutoff, taking U0 → ∞ at the end. For U0 � 1/l2s , the solution near U0 will
be some linear combination of the solutions Φ± described above, which is determined
by the fact that it should go over to Φ0 for small U . Thus, the solution for large U will

be of the form

Φ(U) ∼ a+(p)U
β+ + a−(p)Uβ−

a+(p)U
β+
0 + a−(p)U

β−
0

, (3.12)

where a±(p) are some functions which are determined by the form of the exact solution,
and we normalized the solution so that Φ(U0) = 1 (as in [7]).

As in [7], we would now like to evaluate the action for the scalar field. It reduces

to a boundary term at U = U0, which is of the form F (p) ∝ U3Φ∂UΦ (evaluated at

U = U0). Substituting in the solution (3.12), we find that for large U0 this behaves like

F (p) ∝ U20 (β+ + (β− − β+)
a−(p)
a+(p)

U
β−−β+
0 + · · ·) . (3.13)

The two point function in position space will be given by the Fourier transform of

the leading non-analytic term in F (p) (in the U0 → ∞ limit). The expansion (3.11)
suggests that we can expand the whole solution in an asymptotic expansion in p2, for
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which the leading non-analytic term would be at the order p6 log(p2), with additional

non-analytic terms of the form p6(p2Nl2s)
n log(p2)k (times some function of U). This

was shown to be true for the solution in the full 3-brane metric which interpolates

between AdS5× S5 and flat Minkowski space in [40], and we expect a similar behavior
here. Thus, the function a−(p)/a+(p) should have a similar asymptotic expansion, so
that the leading non-analytic term in (3.13) is of the order of p6 log(p2) (note that

this leading term is independent of U0), leading to a 2-point function which behaves

like 1/|x − y|12. This is exactly the behavior we expect for a dimension 6 operator
(corresponding to a massless scalar field in supergravity) in the low-energy SCFT. The

procedure above enables us to compute also the first corrections to this low-energy

expression, and we immediately see that they will depend on Nl2s/|x−y|2, as expected.
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