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1 Introduction

The dynamics of D-particles in the presence of D8-branes and orientifold planes plays

an important part in type I’ superstring theory [1], which is the compactification of

M-theory on a cylinder [2]. Several features of the associated (8,0) supersymmetric quan-

tum mechanics1 were introduced in [3, 4, 5, 6] and further discussed in the context of

heterotic/type-I duality and of the matrix conjecture in [5, 7, 8, 9, 10, 11, 12, 13, 14].

In this paper several aspects of the dynamics of this system will be considered in more

detail. Particular care will be taken with issues relating to normal ordering, the Gauss

law constraints on physical states and the effect of the anomalous creation of fundamen-

tal strings [15, 16, 17, 18, 19, 20] when a D-particle crosses a D8-brane. Several of our

conclusions differ from those in the previous papers on this subject. We will be lead to

a rather subtle pattern of level crossing as the moduli of the system are varied. This

will elucidate the mechanism responsible for binding D-particles to orientifold planes, as

required by heterotic-type I duality. The expected enhanced symmetries of the type I’

theory [1] at strong coupling arise explicitly at points where certain bound-state masses

vanish.
1The notation (8, 0) defines the number of left-moving and right-moving supersymmetries in the T-

dual (1 + 1)-dimensional field theory describing strings in the presence of D9-branes.
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In section 2 we will review the quantum mechanical formulation of the dynamics of D-

particles in the type IIA superstring theory in the presence of a D8-brane. The quantum-

mechanical approximation to the full dynamics should be good for slowly-moving D-

particles and is motivated by explicit string calculations. A D8-brane acts like a domain

wall and separates regions of space in which the mass parameter, m, of the IIA theory

differs by one unit. We will see that the value of m is correlated, via Gauss’ law, with

the number of strings joining the D-particle to the D8-branes, which is in accord with

the picture that a string is created or destroyed when a D-particle passes through a D8-

brane. The fact that these strings have a unique BPS ground state which is fermionic

leads, via a chain of dualities, to an understanding of the s-rule of Hanany and Witten

[21, 22, 23, 24]. This rule states that a configuration with more than one D3-brane joining

a NS-fivebrane and a D5-brane, and extending in all space-time dimensions, cannot have

a quantum state with unbroken supersymmetry.

Our considerations are extended in section 3 to type I’ D-particle quantum mechanics,

which is a projection of the type IIA theory. This is again motivated by string calcula-

tions, now in nine dimensions and in the presence of two orientifold planes and sixteen

parallel D8-branes with their mirror images. The presence of states of non-zero winding

restrict the region of moduli space in which it is consistent to use the quantum mechanical

truncation of this system. This is the region in which one of the orientifold planes is at

the origin in the transverse direction with half the D8-branes close by while the other

orientifold and the remaining D8-branes are taken to infinity. A single D-particle in this

background is necessarily stuck to the orientifold plane and generically has sub-threshold

BPS bound states with masses that are easy to determine. We will also discuss the states

of a probe D-particle and its mirror as they move in the transverse directions. Gauss’

law again leads to strong constraints on the pattern of strings joining the D-particle to

the various branes and again there are explicit sub-threshold BPS bound states of the

D-particle pair with the orientifold plane with easily calculable masses.

In section 4 we will see that the masses of these type I’ BPS sub-threshold bound states

have precisely the values expected on the grounds of heterotic/type I duality. We will first

discuss symmetry enhancement involving only one orientifold and its nearby eight D8-

branes, which can be studied consistently within the quantum mechanical approximation

to the system. We will find agreement with the predictions of duality. The description of

symmetry enhamcement in the region of moduli space in which the two orientifold planes

are at finite separations typically requires the inclusion of string winding modes and falls

outside the range of validity of the simple quantum mechanical approximation to type I’

dynamics. Nevertheless, it is straightforward to determine the physical ground states in

this region by continuing from the region in which quantum mechanics is valid for each

orientifold independently. An example of such an enhancement is the point at which the

symmetry becomes E8×E8×SU(2)×U(1). This is the symmetry of the nine-dimensional

heterotic string compactified to its self-dual radius in the absence of any Wilson lines.

We will find this symmetry arising in the type I’ picture when seven D8-branes (and their

mirrors) coincide with each orientifold plane and the remaining two D8-branes coincide at
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a point in between the orientifold planes (with similar coincidence of their mirrors). The

symmetry enhancement to SU(18)× U(1) can be likewise seen to arise when all sixteen

D8-branes coincide half-way between the two orientifold planes. Another special example

is the point at which all D8-branes coincide with one orientifold plane and the symmetry

is enhanced to SO(34)× U(1) at a particular value of the coupling.

2 D-particles and D8-branes

In this section we will reconsider the dynamics of D-particles interacting with a D8-brane.

Although many of our considerations only depend on the low-energy quantum-mechanical

degrees of freedom arising from the string ground-state degrees of freedom, it is essential

for some purposes to bear in mind that the complete string theory also contains winding

states and oscillator excitations.

2.1 (8,8) Quantum mechanics

Consider first a cloud of n isolated type-IIA D-particles moving slowly in the ten-

dimensional IIA vacuum. They are described at sub-stringy energies by the usual su-

persymmetric U(n) quantum mechanics [25, 26, 27] with lagrangian

L =
1

2
tr
(
DYjDYj +

g2

2
[Yi, Yj]

2 + i SADSA + g SA(Γ0Γj)AB[Yj, SB]
)
, (2.1)

which is invariant under the (8,8) supersymmetry transformations,

δY j = iξA(Γ0Γj)ABSB

δA0 = −iξASA

δSA = DYj(Γ
0Γj)ABξB +

ig

4
[Yi, Yj][Γ

i,Γj]ABξB.

(2.2)

The covariant derivative of any of the hermitian n×n matrices, Yj, SA and A0, is defined

by DM = Ṁ + ig[A0,M ]. Under the SO(1, 9) Lorentz group i, j = 1, .., 9 are spatial-

vector indices, and A,B = 1, .., 16 are Weyl-Majorana spinor indices. The ten-dimensional

Γ-matrices are purely imaginary and satisfy the algebra {Γµ,Γν} = −2ηµν with metric

signature (−+ ...+). The matrix coordinates appearing in the lagrangian and the detailed

form of the above expressions originate from the supersymmetric Yang–Mills theory that

describes the ground states of the (00) strings joining pairs of D-particles.

Canonical quantization in the A0 = 0 gauge leads to the commutation relations

[Πrs
i , Y

tq
j ] = −i δijδ

rqδst

{SrsA , S
tq
B } = δABδ

rqδst ,
(2.3)

where Πj = Ẏj. The supercharges and the hamiltonian read

QA = (Γ0Γj)AB tr(ΠjSB) +
ig

4
[Γi,Γj]AB tr([Yi, Yj]SB)

H =
1

2
tr
(
Π2
j −

g2

2
[Yi, Yj]

2 − g SA(Γ0Γj)AB[Yj , SB]
)
,

(2.4)
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while Gauss’ law is the matrix equation

G = −
δL

δ(gA0)
= i [Πj , Yj]− SASA − n 1 = 0 . (2.5)

The supersymmetry algebra that follows from (2.4) is given by

{QA, QB} = 2δABH− 2g(Γ0Γi)AB tr(YiG) , (2.6)

and reduces to standard form in the subspace of physical states, < phys′|G|phys >= 0.

An important fact about these expressions is that they are free from operator-ordering

ambiguities. This is manifest for the supercharges QA. The potential ambiguity in the

hamiltonian would have to be linear in Y i and is therefore forbidden by Lorentz invariance.

Closure of the algebra then uniquely fixes the ordering in Gauss’ law to be the one of

equation (2.5). The piece proportional to the identity in this expression arises because

there are nine bosonic and sixteen fermionic terms that need to be rearranged in δL/δA0.

The addition of a Chern–Simons term,
∫

trA0, is not allowed by the supersymmetries of

the problem. In any case its presence would lead to another inconsistency. The canonical

commutation relations imply the operator identity

tr G = 0 , (2.7)

which is consistent with the fact that there are no states charged under the abelian U(1)

factor of U(n). The addition of a Chern–Simons term in the action would lead to an

additional term proportional to the identity in this equation which would then have no

solutions. As a result there are no ambiguous operator-ordering parameters in this system

of isolated D-particles.

2.2 Adding a D8-brane

Let us now introduce a D8-brane transverse to the ninth direction. This breaks the

rotational symmetry from SO(9) to SO(8). Henceforth we will reserve the indices i, j for

SO(8) vectors only. A ten-dimensional Weyl-Majorana spinor decomposes as 8s ⊕ 8c. In

this basis

Γ1...Γ8 = ±Γ0Γ9 =

(
1 0

0 −1

)
,

where the ten-dimensional chirality is + for SA and ξA, and − for QA (in order that ξ̄Q

be non-zero). More explicitly, the matrix supercoordinates of the cloud of D-particles are

(Yi, Y9) and (Sa, Sȧ) ,

where Sa (Sȧ) has positive (negative) chirality under the broken SO(1, 1) that mixes the

ninth coordinate and time.2 The supersymmetry algebra (2.6) can be similarly decom-

2The SO(1, 1) symmetry can be formally restored by compactifying the ninth coordinate on a circle

of vanishing radius. Under a T-duality this configuration is equivalent to a system of n parallel, infinite

D-strings inside a nine-brane. This background is however inconsistent, because the nine-brane flux has

nowhere to escape.
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posed as

{Qa, Qb} = 2δab ( H + g tr(Y9G) )

{Qȧ, Qḃ} = 2δȧḃ ( H− g tr(Y9G) )

{Qa, Qḃ} = 2g γi
aḃ

tr(YiG) ,

(2.8)

where the γi
aḃ

are the real matrices defined in [28].

Consider next the (08) fundamental strings which stretch between the D8-brane and

the D-particles. Such strings have eight Neumann-Dirichlet coordinates xi, one DD co-

ordinate x9, and one NN coordinate x0. The super Virasoro constraints can be used to

eliminate the oscillator excitations of x0, x9 and of their fermionic world-sheet partners.

In the Ramond sector the states are built from half-integer moded oscillators xi
n+ 1

2

and

ψi
n+ 1

2
, acting on a vacuum which is a spinor of SO(1, 1), but a singlet of the SO(8) rota-

tion group. When the D-particle coincides with the D8-brane, the mass of this Ramond

ground state is zero. The GSO projection fixes the product of the SO(1, 1) chirality

times the world-sheet fermion parity. We will choose a convention in which this sign is

negative. In the Neveu-Schwarz sector physical states are built with oscillators xi
n+ 1

2
and

ψin (n > 0) acting on a ground state of (Mass)2 = 1/2α′. The Neveu-Schwarz ground

state is a spinor of SO(8) but a scalar of SO(1, 1). The GSO projection now fixes the

product of the world-sheet fermion parity and of the chirality of the SO(8) spinor. The

first few low-lying states are listed in table 1.

(Mass)2α′ SO(8) rep. boson + fermion − fermion

0 1 |∅ >R

1/2 8 |∅ >NS ψi1
2
|∅ >R xi1

2
|∅ >R

1 8⊗ 8 xi1
2

|∅ >NS ψi1
2

xj1
2

|∅ >R xi1
2

xj1
2

|∅ >R ; ψi1
2

ψj1
2

|∅ >R

Table 1: Spectrum of (08) strings. The mass does not include the contribution from the

length of the stretched strings. The states are classified as bosons, + fermions and − fermions,

according to their transformation properties under SO(1, 1). The GSO projection forces the

product of world-sheet fermion parity times the SO(1, 1) and SO(8) spinor chiralities to be

negative. We have not specified in this table which of the three possible eight-dimensional

representations of SO(8) correspond to each state, since supersymmetry transformations do not

commute with triality. The strings are oriented so all states are complex.
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When the D-particles are close to the D8-brane the light (08) strings are described

by a negative chirality fermion (χr) in the fundamental representation of U(n). The new

effective lagrangian,

L′ = L + iχ†Dχ− gχ†Y 9χ − gm tr(A0 + Y 9) , (2.9)

is invariant under half of the sixteen supersymmetries (2.2), namely those corresponding to

positive-chirality parameters ξa. The fermions χ do not transform. This is characteristic

of chiral supersymmetry in two dimensions. The hamiltonian, supercharges and Gauss

constraint read

H′ = H + gχ†Y 9χ + gm trY 9 (2.10)

Q′ȧ = Qȧ (2.11)

G′rs = Grs + χ†sχr +m δrs . (2.12)

They obey the supersymmetry algebra

{Q′ȧ, Q
′
ḃ
} = 2δȧḃ ( H′ − g tr(Y9G

′) ). (2.13)

Although the χ fermions do not enter in the expressions for the supercharges, the algebra

closes because their hamiltonian is cancelled by the Gauss-constraint term on the right-

hand-side [4]. All other states in table 1 are in long multiplets of the supersymmetry

algebra. The first excited level, for example, can be easily seen to form an irreducible

representation with the same content as a (8,8) vector multiplet. It is therefore a long

(8,0) multiplet. The only BPS states of the (08) string are those corresponding to the

fermion χ. For most of the considerations in this paper we will be concerned with the

low-energy limit in which it will be sufficient to consider the effective quantum mechanics

of these ground states.

Although we are not presenting the details here, it is very easy to motivate the quan-

tum mechanical hamiltonian, (2.10), from an exact string calculation in which the D-

particle potential is determined by a cylindrical world-sheet with one boundary on the

D-particle world-volume and the other on the D8-brane. This may be viewed as the par-

tition function for open strings with one end on each brane. As with other BPS systems,

this is equivalent to a one-loop open-string calculation in which only the BPS ground-

state fermions, χr, contribute so the expression coincides precisely with the energy in the

quantum mechanical problem described above. The standard stringy calculation of the

phase shift [29] shows on the other hand that the v2 force obtains contributions from ex-

cited states [3, 17], consistent with the fact that supersymmetry alone does not determine

the metric in the Y 9 direction.

A further important observation is that if the D-particles are changed to anti-D-

particles in the above discussion the sign of the GSO projection changes and hence

the sign of the chirality of the fermions χ also changes. However, the configuration is

still supersymmetric under the (0,8) supersymmetries corresponding to negative-chirality

parameters ξȧ. This should be contrasted with other supersymmetric combinations of
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Dp-branes and Dp’-branes, where changing the Dp-branes to anti Dp-branes breaks all

supersymmetries [30]. Of course, if D-particles and anti-D-particles are simultaneously

present in the D8-brane background all sixteen supersymmetries are broken.

2.3 Gauss’ law, string creation and the s-rule

One novel feature of the above system is the appearance of the arbitrary parameter m

and a corresponding Chern–Simons term which is compatible with (8,0) supersymmetry.

Closure of the algebra requires the same ordering for the χ’s in the hamiltonian and in

Gauss’ law. Since a common reordering can be absorbed by shifting the value of m there is

no independent operator-ordering ambiguity in this system.3 Furthermore, when two sets

of D-particles are separated in a direction parallel to the D8-brane, cluster decomposition

implies that m is independent of the number of D-particles, n. We will identify m with

the mass parameter of the type-IIA supergravity [31] in the region to the right of the

D8-brane [32, 33].

Let us now focus on a single D-particle in the Born-Oppenheimer approximation where

its position is slowly varying. The canonical anti-commutation relation for the ‘fast mode’,

{χ, χ†} = 1 , (2.14)

can be realized in a two-state space — the ‘vacuum’ defined by χ| 0 >= 0, and the

‘one-string’ state χ†| 0 >= | 1 >. The difference in energy, E1 − E0 = gY9, is positive

when the particle is on the right of the D8-brane and can be interpreted as the energy

of an (oriented) string stretching leftwards from the particle to the brane. However, as

the particle crosses to the other side of the D8-brane the roles of the two states are

exchanged: | 1 > becomes the new ground state of the system, while | 0 > should be

interpreted as a state with an oriented string stretching leftwards from the D8-brane to

the particle. Therefore, a fundamental string is created or destroyed when a D-particle

is moved adiabatically through a D8-brane. What makes this phenomenon inevitable is

the fact that both states cannot be physical at the same time. Gauss’ constraint,

(χ†χ+m) | phys >= 0 , (2.15)

is satisfied by the state | 0 > if m = 0, and by the state | 1 > if m = −1. In either case

the physical state is unique and cannot therefore change during the process.

In either case, furthermore, the physical D-particle feels no (velocity-independent)

force as it moves slowly through the D8-brane. This follows rather trivially from the

expression for the lagrangian, (2.9). Because of (8,0) supersymmetry, the position Y 9

only occurs in the combination (A0 + Y 9) so that Gauss’ law ∂L′/∂A0 = 0 implies that

the force on the D-particle also vanishes. Physically, we may interpret this result as coming

from the cancellation of two competing effects, both linear in the displacement Y 9: as the

D-particle moves leftwards through the D8-brane the mass of the type IIA supergravity

3Supersymmetry also allows an arbitrary Y 9-dependent kinetic term in the direction transverse to the

brane [3, 4]. This will not affect our discussion here.
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jumps by one unit, and there is a discontinuous change in the slope of the effective inverse

string coupling constant. The D-particle, whose effective mass is proportional to the

inverse coupling, therefore feels a force that apparently jumps discontinuously. However,

this discontinuity in the force is balanced precisely by the tension of the fundamental

string which is created or destroyed in the process [16, 17].

For m 6= 0,−1 neither of the two states of χ is physical. This apparent inconsistency

is an artifact of the quantum-mechanical truncation of the system. The full string theory

contains excited (08) strings, which can carry any (positive or negative) integer multiple

of the elementary U(1) charge, so that any integer value of m is allowed. Gauss’ law

fixes the net number of strings oriented towards the D-particle to equal m (or m + 1)

in the region to the right (left) of the D8-brane. The non-chiral excited strings can flip

their orientation as the D-particle traverses the D8-brane, while the chiral χ-string must

be either created or destroyed. The origin of the arbitrary parameter m can be traced

in string theory to the presence of extra D8-branes located at Y 9 → ±∞. Long strings

joining these distant D8-branes to the particle can break in the proximity of another

D8-brane, as we will see in some explicit examples in the sequel.

The general phenomenon of brane creation, which is an important ingredient of the

gauge-engineering constructions of field theory [21, 22], was viewed in [15] as the T-dual

of the anomaly inflow argument [34] applied to the intersection domain of a pair of branes

[35]. A similar reasoning clarifies the other ‘mysterious’ rule of gauge engineering, the

empirical ‘s-rule’ of Hanany and Witten [21]. The rule states that a configuration with

more than one D3-brane joining a NS-fivebrane and a D5-brane, and extending in all

space-time dimensions (an s-configuration), cannot have a quantum state of unbroken

supersymmetry. This rule resolves an apparent contradiction of string theory with the

field-theoretic fact that (2 + 1)-dimensional N=8 U(k) gauge theory with k > 1 has

no supersymmetric vacuum when one turns on a Fayet-Iliopoulos coupling. We will now

relate this s-rule to the Pauli-exclusion principle for the fermionic χ-strings of the previous

section. A very different argument for this rule has been presented in ref. [23].

The chain of dualities transforming the system of a D8-brane and a D-particle to the

Hanany-Witten configuration [16, 17] starts with three T-dualities that map the D8-brane

to a D5-brane and the D-particle to a D3-brane. A further S-duality maps the D5-brane to

a NS five-brane, while leaving the D3-brane invariant. Finally two extra T-dualities map

this to a configuration containing a NS five-brane and a D5-brane. The fundamental (08)

strings transform under this sequence of dualities to D3-branes suspended between the two

five-branes. The fact that only a single (08) string can be in its supersymmetric fermionic

ground state translates directly to the s-rule of Hanany and Witten. Notice that when

the transverse direction is compact the rule does not forbid a BPS state with multiple

suspended branes of different winding numbers.4 Furthermore, there is no restriction on

the number of (zero winding) suspended branes if all but one of them are in excited non-

4In this case the starting D8-brane configuration is inconsistent without the addition of orientifolds

but other dual configurations, such as two orthogonal D4-branes, for which flux can escape to infinity

are consistent.
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BPS states. Such configurations break supersymmetry but may nevertheless be stable

since the Pauli principle does not allow the excited branes to decay into their ground state.

At face value this accounts for the absence of a supersymmetric field-theoretic vacuum

state in the U(k) theories of [21, 22, 24] when k > 1, although the decompactification

limit of the T-dualized dimensions may be very subtle.

3 D-particles in type I’ string theory

As shown in [1] the orientifold projection on nine-dimensional type IIA superstring theory

that leads to the type I’ theory introduces two orientifold 8-planes. In addition, the

weakly-coupled type I’ vacuum state contains sixteen parallel D8-branes together with

their sixteen mirror images in the orientifold planes. We will here generalize the earlier

discussion to take into account the effect of this background on D-particle dynamics.

In order to justify the restriction to the quantum mechanical system we will consider

low-energy processes in which the effects of excited and/or winding strings can be ne-

glected. This can be achieved at weak type I’ coupling by taking one orientifold plane

together with half the D8-branes to infinity in the ninth direction, while leaving the first

orientifold with the remaining D8-branes within a sufficiently small (sub-stringy) neigh-

borhood of the origin. However, as is usual in BPS situations, some of our formulae

will continue to hold much beyond the range of parameters in which they would have

normally been expected to be valid. This will be confirmed explicitly in the following

section, where we will compare our results to the heterotic/type I duality predictions.

3.1 Effects of an orientifold plane

One effect of an orientifold is to project onto the symmetric parts of the supercoordinates

Yj and Sa, and the antisymmetric parts of Y 9, Sȧ and A0. To avoid confusion we will

denote these new matrix-coordinates by

Xrs
j = Y

{rs}
j , Θrs

a = S{rs}a (3.1)

and

Φrs = i(Y 9)[rs] , V rs
0 = iA

[rs]
0 , λrsȧ = iS

[rs]
ȧ , (3.2)

where { } and [ ] denote symmetrization or antisymmetrization. The world-line gauge

symmetry is thus truncated from U(n) to SO(n). The antisymmetric-matrix coordinate

Φ describes the displacements of mirror pairs of D-particles in the direction transverse

to the orientifold plane. Finally the chiral fermions χrI , describing strings that stretch

between the D-particles and the D8-branes, transform in the real (n, 2N) representation

of SO(n)× SO(2N), where 2N is the number of D8-branes (which will later be taken to

be sixteen).

The full string calculation of the potential felt by D-particles in this background now

includes non-orientable as well as orientable world-sheets. This means that, in addition to

the (88) and (08) cylinder diagrams that entered the IIA theory, Möbius strips must also
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be included. These describe the effect of the mirror images of the D-particles and imple-

ment the (anti)symmetrization described above. As before, the excited string states are

non-BPS degrees of freedom and decouple from the low-momentum processes that concern

us here. A potentially important effect arises from the fact that strings can wind around

the compact ninth dimension giving rise to a rich spectrum of BPS states. Even though

these winding states decouple in the limit of large separation of the orientifold planes and

will be largely irrelevant in the following, it proves very instructive to include them in

the evaluation of the complete string diagrams. The effect of the winding numbers on

the individual cylinder and Möbius strip diagrams is to introduce a quadratic dependence

on the positions of the D-particles, Y 9 (or Φ) into the potential. Such a dependence is

inconsistent with (8, 0) supersymmetry and, not surprisingly, cancels when all diagrams

are added together. This cancellation provides a powerful check on the consistency of the

calculation.

The quantum mechanical lagrangian for this system can be expressed as

L =
1

2
tr
(
DXjDXj +

g2

2
[Xi, Xj]

2 −DΦDΦ− g2[Φ, Xi]
2
)

+
i

2
tr
(
ΘaDΘa − gΘa[Φ,Θa]

− λȧDλȧ − gλȧ[Φ, λȧ] + 2gXiγ
i
aȧ{Θa, λȧ}

)
+ i

(
χ T
I DχI + g χ T

I ΦχI + gmIJ χ T
I χJ

)
.

(3.3)

This is the truncation of the previous lagrangian, eqs. (2.1) and (2.9), with two notable

differences. First there is an extra term proportional to the antisymmetric matrix mIJ ,

whose skew-symmetric eigenvalues are the positions of the D8-branes, relative to the

plane of the orientifold. Secondly, there is no Chern–Simons term since the orthogonal

gauge groups generally have no simple U(1) factors. Such a term may seem possible in the

special case n = 2, but it is actually forbidden by the requirement of cluster decomposition

for a system of more than two D-particles.

The hamiltonian, Gauss constraint and supersymmetry algebra can be derived simi-

larly with the result,

H =
1

2
tr
(
Π2
j − Π2

φ + g2[Φ, Xj ]
2 −

g2

2
[Xi, Xj]

2
)

+
ig

2
tr
(
λȧ[Φ, λȧ] + Θa[Φ,Θa]

−2Xjγ
j
aȧ{Θa, λȧ}

)
− ig

(
χ T
I ΦχI + mIJ χ T

I χJ
)
, (3.4)

G = [Πj , Xj]− [Πφ,Φ] + iΘaΘa − iλȧλȧ + iχIχ
T
I

∣∣∣∣
antisym

= 0 , (3.5)

and

{Qȧ, Qḃ} = 2δȧḃ
(
H− g tr(ΦG) + ig mIJ χ T

I χJ
)
, (3.6)

where the Gauss constraint is an antisymmetric-matrix equation. The matrix momenta

are given by Πj = Ẋj, and Πφ = Φ̇. For completeness we also give the canonical commu-

tation relations, suppressing the obvious SO(8) indices,

i[Πrs, Xpq] = {Θrs,Θpq} =
1

2
(δrpδsq + δrqδsp)

i[Πrs
φ ,Φ

pq] = {λrs, λpq} =
1

2
(δrpδsq − δrqδsp) (3.7)
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{χrI , χ
s
J} =

1

2
δIJδ

rs .

An important point is that SO(n) gauge invariance, together with the eight supersym-

metries, fix all operator-ordering ambiguities of this system. Both the supercharges Qȧ

and the Gauss-constraint operators, which must satisfy the SO(n) Lie algebra, are man-

ifestly free from ordering ambiguities. The supersymmetry algebra (3.6) then uniquely

fixes the order of operators in the hamiltonian. The extra term proportional to mIJ in this

algebra is central because the χ-fermions commute with the supercharges [4]. Note also

that (8,0) supersymmetry again allows an arbitrary kinetic term in the φ direction. Under

some mild assumptions this will not affect our discussion of slowly-moving, semi-classical

D-particles.

The simplest case (n = 1) corresponds to a single D-particle that is stuck on the

orientifold plane. Since the particle is stuck its transverse kinetic energy must vanish

and its total mass should be determined exactly by its potential energy. In order to

diagonalize the hamiltonian, we make a unitary change of basis χI ≡ UIJ χJ , such that

(UmU †)IJ = imIδIJ = diag (im1, ...imN ,−im1, ...− imN ) . (3.8)

We shall use the notation I ≡ (I, I), where I = 1, .., N labels eight independent D8-

branes and I labels their mirror reflections. This amounts to the decomposition 2N =

N ⊕ N under the U(N) subgroup of SO(2N), with the reality condition χI = χ†I . The

hamiltonian, eq. (3.4), of the D-particle takes the simple non-interacting form

H(n=1) =
1

2
Π2
j + gmI [χ†I , χI] , (3.9)

with implicit summation on the index I and with

{χ†I, χJ } =
1

2
δIJ . (3.10)

The total mass of the D-particle is then given by

M = M0 + gmI qI , (3.11)

where M0 is the ‘bare’ rest mass of D-particles and qI = (±1
2
... ± 1

2
) are the weights of

the SO(2N) spinor, which realizes the fermionic anitcommuation relations. A discrete Z2

remnant of the local symmetry, which changes the sign of the χ’s, forces this spinor to

have definite chirality. If 2Ñ D8-branes coincide with the orientifold, the stuck D-particle

will describe a degenerate spinor representation of SO(2Ñ). By realizing the algebra of

the Θa zero modes, the particle also carries a vector-supermultiplet representation of the

spatial SO(8).

The case N = 8 is special because in this case the theory in the bulk is massless type

IIA supergravity with freely-propagating gravitons. The bare mass M0 of D-particles,

which are Kaluza-Klein supergravitons, is therefore well defined far from the D8-branes.

Since the mass difference M − M0 in (3.11), which depends linearly on the positions
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of the D8-branes, can be negative, there exist sub-threshold bound states. Consider a

specific example that will be of relevance in the next section in which seven D8-branes

and their mirrors coincide with an orientifold plane (mI = 0) with a single mirror pair

located at ±m1. The space-time gauge symmetry associated with this configuration is

SO(14)×U(1). From (3.11) it follows that the states divide into two groups with positive

and negative binding energies and so they have masses

M± = M0 ±
1

2
gm1. (3.12)

There are therefore 26 degenerate sub-threshold bound states in this configuration which

fill out a (64,−1
2
) chiral spinor representation of SO(14) × U(1). Similarly, there is

a degenerate state consisting of an anti D-particle stuck on the orientifold plane that

describes a (64′, 1
2
) spinor of the opposite SO(14) chirality. Two D-particles in such a

state would not be able to leave the orientifold plane even if they happened to collide.

3.2 Bound states of a mirror pair

In order to further elucidate the mechanism responsible for binding the D-particles to

the orientifold, we turn now to the case n = 2 which allows for motion of a mirror pair

transverse to the orientifold plane. We are interested in the ‘Coulomb’ branch along

which φ is non-zero. We will work within a Born-Oppenheimer approximation, and focus

attention on the massive ‘fast’ coordinates, which are those charged under the SO(2) '

U(1) gauge symmetry on the world-line. The charges of the various fields are as follows.

Antisymmetric matrices are neutral, vectors have charge equal to one, while symmetric

matrices contain a neutral trace part and a charge-two complex component. Accord-

ingly, the symmetric matrices may be replaced by the charged creation and annihilation

operators,

1

2
(X22

j −X
11
j ) + iX12

j =
1
√

2
(aj + bj

†)

1

2
(Π22

j −Π11
j )− iΠ12

j =
i
√

2
(aj
† − bj) (3.13)

1

2
(Θ22

a −Θ11
a ) + iΘ12

a = θa,

and the (08) fermions may be complexified,

χ1
I + iχ2

I ≡ χI . (3.14)

The complex fermions, χI and χI, are now independent and have the same (negative)

U(1) charge. The canonical anticommutation relations are

[ai, aj
†] = [bi, bj

†] = δij , {θa, θ
†
b} = δab , {χI , χ

†
J} = δIJ . (3.15)

The string interpretation of these operators is exhibited in figure 1. The operators

a†j and θ†a create bosonic and fermionic strings joining the D-particle to its mirror image,
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χ

(b) (c)(a)

a

θ bj

j I

a

Figure 1: The four types of stretched strings along the Coulomb branch in the n=2 case, as

described in the text. Figures (a) and (b) depict the strings stretching between the D-particle

and its mirror, while (c) those between the particle and a D8-brane. The broken line is the

orientifold. The mirror image of the string in (c) does not contribute to the charge and energy,

and is drawn as a faint line. For a given point in the moduli space Gauss’ law fixes the net number

of arrows pointing towards the particle or its mirror image. The energy of these configurations

is proportional to the total (non-faint) string length.

and oriented towards the D-particles. The operator b†j creates a similar bosonic string,

but oriented away from the D-particle and its image. Finally, the operator χ†I creates

a fermionic string stretching away from the D-particle towards the Ith D8-brane if the

latter lies between the particle and its mirror image. Otherwise, χ†I annihilates a string

stretching from the D8-brane towards the D-particle. The orientation of these strings

reflects their chirality in the dual type I description, and fixes the sign of their U(1)

charge. Gauss’ constraint, eq. (3.5), reads

G21 = a†jaj + θ†aθa − b
†
jbj −

1

2
χ†IχI − (4−

N

2
) = 0 . (3.16)

The U(1) charges of the various strings, +1, +1, −1 and −1/2, are read off in the order

they appear. A mnemonic for Gauss’ law is that it fixes the net number of arrows

pointing towards the D-particle or its mirror image. The mirror images of χ-strings do

not contribute to this counting, nor to the total energy, and are thus drawn with faint

lines in the figurey.

We are now ready to discuss the dynamics of the mirror pair of D-particles. Consider,

without loss of generality, the point Φ21 = φ > 0 in moduli space. Neglecting interaction

terms, and performing a φ-dependent rescaling of the bosonic matrix coordinates, allows

us to express the hamiltonian of ‘fast’ modes as

Hn=2
fast ' 2gφ (a†jaj + θ†aθa + b†jbj) + (φ−mI)χ

†
IχI + gφ (8−N) . (3.17)

It is important that the order of operators, and the related subtraction term, is fixed

unambiguously in the expressions for G and H. In the type IIA theory we had the

freedom to choose the value of the mass parameter m in the far right asymptotic region,

by placing a number of D8-branes at infinity. Since the mass jumped precisely by one

unit at each D8-brane, its value everywhere else was fixed. In the present situation there

is no ambiguity whatsoever, because the value of the mass is fixed uniquely in the region

between the orientifold and the closest (mirror pair of) D8-branes. This is the physical

interpretation of the fact that SO(n) quantum mechanics does not allow for a Chern-

Simons term.
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In the region to the right of all D8-branes the lowest eigenstate of Hfast is the naive

‘vacuum’

(aj , bj , θa , and χI) |0 >= 0 . (3.18)

It satisfies Gauss’ law if and only if there are precisely N = 8 D8-branes (and their

mirrors), in which case Hfast|0 >= 0. This is consistent with the well-known fact [1]

that the dilaton tadpole cancels between an orientifold and eight D8-branes, so that

there is no dilaton gradient in the asymptotic region. Therefore, a distant D-particle

has ‘no strings attached’ to it and feels no static force. If all D8-branes coincide with

the orientifold, any bound states of the mirror pair of particles must be threshold bound

states. Heterotic/type-I’ duality predicts the existence of such bound states [5, 7], but

this fact is hard to establish independently.

The problem becomes simpler if at least one pair of D8-branes moves away from

the orientifold, in which case our discussion of stuck isolated D-particles suggest the

existence of sub-threshold bound states. As a particular explicit example consider again

the configuration in which all the D8-branes coincide with the orientifold plane apart from

one pair (m1 > 0, m2...8 ' 0). This breaks the SO(16) gauge group associated with (88)

open strings to SO(14)× U(1). It is energetically-favourable for a (pair of) D-particles

at position φ > m1 to be in the state |0 > with ‘no strings attached’ (figure 2a). As it

crosses the D8-brane a string is anomalously created ( figure 2b). However, in contrast to

the earlier discussion of an isolated D8-brane, the quantum mechanics now has a richer

spectrum of allowed states. These include the bosonic and fermionic states,

|j I〉 = a†j χ
†
1χ
†
I |0〉 , and |a I〉 = θ†aχ

†
1χ
†
I |0〉 , (3.19)

with I = 2, ...8 or 10, ...16. These are obtained by trading the string attaching the D-

particle to the right-most D8-brane for two strings — one that attaches it to its mirror

image, and the other to one of the D8-branes on its left (figure 2c).5 The net number

of arrows pointing to the D-particle and to its image is indeed conserved, in agreement

with our mnemonic for Gauss’ law. Put differently, these states can be created from the

‘vacuum’ by acting with the SO(n)-invariant operators

V j
1I ∼ tr(Xjχ1χ

T
I ) or V a

1I ∼ tr(θaχ1χ
T
I ) , (3.20)

where the χ’s are here SO(n) vectors. This guarantees their consistency with the Gauss

constraint. The quantum numbers of the states (3.19) are those of a ten-dimensional

vector supermultiplet, in the (14,−1) representation of the SO(14)× U(1) target-space

gauge group.

The energy of the fast modes in any of these states, Efast = g(4φ−m1), is proportional

to the length of stretched strings in figure 2c minus the length of the string in figure 2b,

which was annihilated by the action of the above operators on the naive vacuum. A (pair

5Positive-chirality strings stretching away from the orientifold transform under the (8,0) supersym-

metries, so that at φ 6= 0 these states are not supersymmetric. This is consistent with the fact that there

is a net force pushing the D-particles to the orientifold plane.
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(a) (b) (c)

Figure 2: A D-particle pair in the background of an orientifold plane (broken line) and eight

D8-brane pairs, as described in the text. Seven D8-brane pairs and their mirror pairs (bold and

faint thick lines) sit at the orientifold, while one pair is moved out to position ±m1. In (a) the

particle lies to the right of all D8-branes and has no strings attached. Crossing the outermost

D8-brane as in (b) leads to the creation of a string, in accordance with Gauss’ law. In (c) it has

become energetically favourable to trade this string for two others, one stretching to a D8-brane

on the left, and one stretching to the particle’s image. The latter carries two units of charge, so

the total charge of the state is conserved.

of) D-particles in one of these states will therefore feel a constant force attracting it to

the orientifold plane. To leading order at weak string coupling, the mass of the resulting

bound state is the total rest mass of the D-particles minus the energy at the bottom of

the potential well,

M ' 2M0 − gm1 . (3.21)

Corrections to this formula may come from the neglected interaction terms, the kinetic

energy of the D-particles, and other higher-dimensional operators. However, the fact that

the mass in (3.21) is precisely twice the mass of the spinor states in (3.12) suggests that

these subleading effects miraculously cancel. This observation is based on comparison

with the heterotic string where it is easy to see (as we will in the next section) that the

SO(14)× U(1) vector states are precisely twice as massive as the spinor states.

The transition from the naive vacuum to one of the states (3.19) involves the emission

of a massive SO(16) gauge boson, represented by an open string stretching between the

D8-brane on the right, and one of the fourteen branes at the orientifold. This is a local

interaction that occurs when the D-particle meets the orientifold plane. It is associated

with the operators V j
1I and V a

1I , which are the vertex operators for the emission of such

massive (super)gauge bosons in the heterotic matrix model. There is however one further

subtlety since the quantum-mechanical model also contains the fermionic zero-modes

λȧ and trΘa, whose Clifford algebra is realized by a 256-dimensional representation of

the Lorentz group. It would seem that this representation is carried by the ‘vacuum’

|0 >, consistent with the M-theory interpretation of D-particles as massive Kaluza-Klein

supergravitons in the bulk of the eleven-dimensional world [2]. Does this mean that the

above bound states transform in a 16 × 256-dimensional representation of the Lorentz

group? The answer is no, because the D-particles interact with massless supergravitons,

which are the massless closed strings in the bulk. They can carry away even-tensor

representations of the transverse SO(8) without changing the semi-classical energy of the
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system. The same is true for the massless SO(14) gauge bosons, which can be emitted

or absorbed freely when the D-particles coincide with the orientifold plane. Since these

effects cannot be accounted for within the Born-Oppenheimer treatment of the system

the quantum numbers of the bound states can be only fixed modulo emission of massless

supergravitons and massless super-gauge bosons.

One important fact should be stressed. What we have established is the existence

of states binding the mirror pair of D-particles to the orientifold plane. However, the

two particles could still escape to infinity along the orientifold directions Xj ∼ xjσ3, i.e.

along the Higgs branch of the corresponding moduli space. Comparing the mass formulae

(3.12) and (3.21) shows that the vector state is stable against this decay only if there is

a threshold bound state of two D-particles stuck on the orientifold. The existence of this

threshold bound state will follow from target-space gauge invariance as will be explained

in the following section.

3.3 Moving more D8-branes

First however we will consider the more general situation, in which more than one pair

of D8-branes is moved off the orientifold plane. To start with let us move two (pairs of)

D8-branes to positions m1 and m2, leaving all others at the orientifold. The open-string

gauge symmetry is broken down to SO(12)× U(1) × U(1). A single D-particle stuck at

the orientifold plane will carry a SO(12) spinor representation, and have a spectrum of

masses

M = M0 ±
1

2
gm1 ±

1

2
gm2 . (3.22)

The lightest stuck D-particles will therefore be in the representation (32,−1/2,−1/2).

The binding mechanism of a mirror pair in this background is illustrated in figure 3.

When the particle lies to the right of the D8-branes it has no strings attached to it as

usual (figure 3a). As the D-particle moves to the left, crossing the two D8-branes, two

strings oriented towards the D-particle are created (figure 3b). The total energy of the

fast modes in this configuration is still zero. The physical states of lowest energy, for

sufficiently small φ, are now

|j〉 = a†j χ
†
1χ
†
2 |0〉 , and |a〉 = θ†aχ

†
1χ
†
2 |0〉 . (3.23)

They are obtained by trading the two strings attaching the D-particle to the D8-branes

on its right for a single string attaching it to the particle’s image in the mirror (figure

3c). The energy of the fast modes in this configuration is Efast = g(4φ −m1 −m2), so

the rest mass of a bound state to (sub)leading order at weak coupling is

M ' 2M0 − gm1 − gm2 . (3.24)

This is again twice the mass of the lowest-mass state of a single D-particle that coincides

with the orientifold plane (3.12). Comparison with the heterotic string in the next section

will again indicate that the approximate expression for the mass of the two D-particle

state is exact.
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(c)(b)(a)

Figure 3: A mirror pair of D-particles in the background with two displaced D8-branes. In (a)

the particle is to the right of the D8-branes and has no strings attached. In (b) it has crossed

to the left, and two strings attaching it to the D8-branes have been created. In (c) these have

been traded for a single string attaching the D-particle to its mirror image.

States created by V j
1I , V

j
2I (I 6= 1, 2) and their space-time spinor partners are also

lower in energy than the naive vacuum |0 > near the orientifold plane. They are reached

by trading only one of the two strings that attach the particle to a D8-brane on its right.

However, such states have higher mass than the states (3.23), and can indeed decay into

them by emitting one massive and one massless open-string gauge boson at threshold. All

states with n > 2 have also similar potential instabilities at threshold. Strictly-speaking,

the only conclusions that follow rigorously from our discussion in this section are (i) that

the lowest-mass n=1 states are stable, and (ii) that some of the n=2 states cannot decay

by emission of a Kaluza-Klein supergraviton.

Situations where more than two D8-branes are displaced from the orientifold plane

can be analyzed similarly. One novel subtlety, that will play a role later on, appears

when all eight D8-branes are displaced. The n=1 mass spectrum (3.9) depends in this

case on whether the number of positive mI’s is even or odd. Put differently, because

the D-particle carries a chiral spinor representation of SO(16), only an even number of

D8-brane reflections in the mirror leave its spectrum invariant. In particular, there are

two inequivalent configurations with eight D8-branes at position m, and their eight mirror

images at −m. In one configuration there is a unique lowest-lying D-particle state with

mass M = M0 − 4gm, in the (1,−4) representation of the SU(8) × U(1) open-string

gauge group.6 In the other configuration, the lowest-lying state of the D-particle is in a

degenerate (8,−3) representation, and has mass M = M0 − 3gm. This degeneracy can

be pictured as the different ways in which a string can join any of the eight displaced

D8-branes to the D-particle (or anti D-particle). We will use this second configuration in

the discussion of the special locus of moduli space with SU(18) gauge symmetry.

4 Global aspects of moduli space

A significant test of our understanding of issues concerning bound states in the type I’

6Our normalization is such that a string attached to one of the eight D8-branes has U(1) charge equal

to ±1.
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theory is whether we can reproduce the spectrum of BPS states in regions of moduli space

that are outside of the weakly coupled domain. For example, using the duality relations

between type I’ string theory and the heterotic string it is easy to see that there must be

points in moduli space (at strong type I’ coupling) at which the symmetry is enhanced

[1]. These correspond to the compactifications of the heterotic string on a circle where

the symmetry is enhanced at specific values of the radii and of the background Wilson

lines. It was shown in [1] that these enhanced symmetry points occur in the type I’

language precisely when the effective couplng constant diverges at one of the orientifold

planes. However, this gave no hint of the mechanism that generates the extra massless

states needed to enlarge the symmetry. In this section we will see how such enhanced

symmetry points can be exactly determined by the D-particle (8, 0) quantum mechanical

hamiltonian.

4.1 Heterotic string and M-theory on the cylinder

Before describing the type I’ dynamics we shall review the expectations based on duality

with the heterotic string orM-theory compactified on a cylinder [2] of circumference 2πr11

and length πr9. This compactification has two dual interpretations (i) as weakly-coupled

type I’ theory in the limit r11 → 0, and (ii) as the weakly-coupled heterotic theory in

the limit r9 → 0. More generally the compactification has a moduli space of dimension

eighteen. On the heterotic side the moduli are the coupling constant λh, the radius r11 of

the cylinder, and sixteen Wilson lines in the Cartan subalgebra of the gauge group. On

the type I’ side they are the coupling constant λI′, the separation πr9 of the orientifolds,

and the positions of the sixteen independent D8-branes between the two orientifold planes.

In order to work out the precise mapping between these two parametrizations

of moduli space, we first consider the special locus where the gauge symmetry is

SO(16) × SO(16) × U(1) × U(1). We have already seen that on the type I’ side this

is a privileged configuration because it corresponds to sixteen D8-branes sitting precisely

at each orientifold. Therefore, the (effective) string coupling is constant over the entire

interval and the two length scales of the cylinder can be varied independently without

encountering any phase transitions. Since a mirror pair of D-particles is identified with a

freely-propagating Kaluza-Klein graviton in the bulk, we have

2M0 =
1

r11

. (4.1)

The theory also contains BPS states that are membranes stretching a number w of times

between the two orientifolds. If w is odd the corresponding type I’ string must start

and end at two different D8-branes sitting at opposite ends of the cylinder, and therefore

carries charge under both SO(16) factors of the gauge group. If w is even the string

may (or may not) close onto itself, and consequently may (but need not) be neutral.

The minimum mass of a stretched membrane is 2π2r9r11T2, where T2 is the membrane

tension. The ratio of the winding and Kaluza-Klein masses is an important dimensionless
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parameter

c = 2π2r9r
2
11T2 . (4.2)

The BPS spectrum of the theory does not depend on the third scale, which can be chosen

either as the gravitational coupling, or as the mass of (non-BPS) open-string excitations

( 1
√
αI′
∼
√
T2r11).

The two extra U(1) factors of the gauge group are associated with two gauge bosons,

Gµ 11 and C
(3)
µ9 11, which originate from Kaluza–Klein compactification of the eleven-

dimensional metric and the three-form antisymmetric tensor potential. The metric com-

ponent Gµ9 is projected out of the spectrum by the compactification, and does not give

rise to an additional U(1). On the type I’ side these fields are the RR one-form coupling

to D-particle charge and the Neveu-Schwarz antisymmetric tensor coupling to winding

along the ninth direction. In the heterotic theory, they correspond to the off-diagonal

components of the metric and of the Neveu-Schwarz antisymmetric tensor, which couple

to momentum and winding along the eleventh direction, respectively. Under T-duality

momentum gets exchanged with winding and D0-charge with D1-charge.

Let us move on now to the heterotic side, and parametrize first the moduli space in

terms of a Wilson line coupling to E8 × E8 charge. Such a Wilson line is a sum of two

orthogonal eight-vectors, A = A1 ⊕A2, one for each E8 factor of the gauge group. The

states of the theory are defined with reference to the Lorentzian lattice, Γ1,17, given by

( pL | pR ) =

(
m̃

r11
−
wr11

α′h

∣∣∣ m̃
r11

+
wr11

α′h
;

√
2

α′h
(Q + wA)

)
(4.3)

where

m̃ = m−Q ·A−
w

2
A ·A , (4.4)

with m and w the integer momentum and winding numbers, Q = Q1 ⊕ Q2 a sixteen-

component vector in the E8 ×E8 root lattice Γ8 ⊕ Γ8, and α′h the heterotic Regge slope.

The E8 lattice Γ8 is generated in our conventions by the vectors ±ei ± ej and
∑
i±

1
2
ei

where ei form an orthonormal set. For a BPS state there are no oscillator excitations in

the left-moving sector, so the mass of the state is

M2 = p2
L. (4.5)

The Wilson line A takes values in a fundamental cell of the self-dual E8 ×E8 lattice.

In order to make contact with the privileged type I’ background, we will choose the center

of the fundamental cell to be the point of SO(16)× SO(16)× U(1)2 symmetry,

A =
(
1 (0)7 1 (0)7

)
+ a. (4.6)

Recall that the root vectors corresponding to the 120 of SO(16) have integer entries while

those corresponding to the 128 have half-integer entries. As a result, at the special point

a = 0, the momentum m of states in the (120, 1) and (1, 120) is shifted by an integer,

while the momentum of the (128, 1) and (1, 128) is shifted by a half-integer. This breaks

the E8 × E8 × U(1)2 symmetry down to SO(16)× SO(16)× U(1)2.
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More generally, substituting (4.6) into (4.3) leads to the following alternative form for

the Lorentzian lattice,

( pL | pR ) =

(
n− 2q · a

2r11

− w(
r11

α′h
+

a · a

2r11

)

∣∣∣∣∣ n− 2q · a

2r11

+ w(
r11

α′h
−

a · a

2r11

) ;

√
2

α′h
(q + wa)

)
,

(4.7)

where

q ∈


Γ8 ⊕ Γ8 if w is even

(1(0)7 1(0)7) + Γ8 ⊕ Γ8 if w is odd ,

(4.8)

and n is even or odd depending on whether we are considering a tensor or a spinor

representation of the diagonal SO(16). We can now match precisely heterotic and type

I’ BPS states for the special value a = 0 by noting that

α′h = (2π2r9T2)−1 . (4.9)

The heterotic momentum and winding numbers, n and w, must be identified with the

number of D-particles and the number of type I’ strings stretching between the two

orientifold planes, in accordance with the fact that they are charges for the M-theory

fields Gµ 11 and C
(3)
µ9 11. The vector q gives the charges under the open-string gauge group

on the type I’ side. Note, for instance, that type I’ states with n odd have at least one

D-particle stuck at the orientifold plane and carry a spinor representation of the diagonal

SO(16), in agreement with the above heterotic spectrum. Furthermore, type I’ states with

odd w are strings stretching between two D8-branes at opposite ends of the cylinder and

therefore carry one vector index of each SO(16), as well as extra charges in the E8 × E8

lattice. This is again in agreement with the heterotic spectrum (4.7). Note finally that the

BPS spectrum of the heterotic string does not depend on the string coupling λh, which

sets the value of the Planck mass. Unlike the tension of type I’ strings, the heterotic

string tension cannot be varied, however, independently, because r2
11/α

′
h = c.

4.2 Enhanced symmetry and phase transitions

In order to make contact with the quantum mechanical system of section 3, we would

now like to go to the limit in which the orientifold planes are infinitely far apart. This is

the limit in which stretched membranes are much heavier than Kaluza-Klein excitations

and decouple, which is the case if

c� 1 , or equivalently r11 �
√
α′h . (4.10)

The states that survive in this limit on the heterotic side have w = 0 and α′h(p
2
R−p

2
L) = 0

or 4. These are precisely the Kaluza-Klein excitations of the supergravity and E8 × E8

super Yang-Mills theory, compactified to nine dimensions on a circle. All heterotic string

excitations decouple, and so do all states charged under both E8 factors of the gauge

group. We may therefore restrict our discussion to one of these factors, which translates

in type I’ language to focusing attention on a single orientifold plane.
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Strictly speaking the limit (4.10) does not by itself justify the quantum mechanical

truncation of the theory. To stay at weak type I’ coupling, we should approach this limit

by taking r9 → ∞ while keeping r11 small, in units of the eleven-dimensional Planck

scale. Furthermore, we must consider processes sufficiently close to the orientifold plane,

for which open-string excitations may be neglected. As usual with BPS statements, these

caveats will not be necessary, and the mass formulae of the previous section will extend

much beyond their naive range of validity. The only important limitation comes from

decoupling of the winding BPS states, which are described by a two-dimensional field

theory, and this decoupling is guaranteed by the condition (4.10).

The moduli space of the heterotic theory in this limit can be explored by turning on

a Wilson line a = (a1...a8), for one of the E8 factors of the gauge group. This Wilson

line can be confined to a fundamental cell of the Γ8 lattice, since two backgrounds that

differ by a lattice vector are gauge equivalent. A two-dimensional section of such a cell,

centered around the point of SO(16) symmetry, and corresponding to a Wilson line of

the form (a1 a2 (0)6 ) is shown in figure 4. Using the heterotic mass formula, M2 = p2
L,

with w = 0 gives the following spectrum of BPS states,

M =
1

2r11
|n− qIaI | (4.11)

where n is even for the supergravitons and SO(16)-adjoint states, and odd for the states in

the spinor representation of SO(16). For special values of the Wilson lines, aI , new BPS

massless states arise, signalling the standard symmetry enhancements of the heterotic

string.

The heterotic mass formula (4.11) agrees precisely with the spectrum of states in the

type I’ picture if we identify the Wilson lines and D8-brane positions by the relation,

gmI = aI/2r11 . (4.12)

The exactness of the heterotic expression strongly suggests that our quantum mechanical

mass formula (3.9) is also exact. It can therefore be continued to a region in which the

binding energy of the D-particle is of the same order as its bare rest mass, in which case

the bound state can be massless. For such critical displacements, the type I’ gauge sym-

metry will be non-perturbatively enhanced. This is to be distinguished from the standard

perturbative symmetry enhancement in type I’ that arises when D8-branes coincide with

each other or with an orientifold.

It will be important in the following that all symmetry enhancements actually occur

at the boundary of a single cover of moduli space. Such a cover, which is represented by

the shaded region in figure 4, is obtained by modding out by the Weyl reflections of the

fundamental cell. These Weyl reflections correspond to the permutation symmetries of

the D8-branes. For instance the reflection m1 → −m1 is simply the exchange of the first

D8-brane with its mirror image, together with an odd number of mirror exchanges of the

D8-branes sitting at the orientifold. The reflection m1 ↔ m2 corresponds to interchanging

the first two mirror pairs of D8-branes. At a generic point in the interior of this region
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SO(12)xU(2) E
7 xU(1)

xSU(2)

SO(16)
SO(14)xU(1)

E7

m1

m
2

Figure 4: The two-dimensional section of the fundamental cell of moduli space discussed in the

text. It corresponds to heterotic Wilson lines of the form (a1 a2 (0)6), or, in type I’ language,

to the motion of two D8-branes away from the orientifold. The center of the cell is the point of

SO(16) symmetry where the D8-branes sit at the orientifold. The shaded region is a single cover

of the moduli space, obtained by modding out with the Weyl symmetry, i.e. the permutations of

the D8-branes. The generic SO(12)×U(1)2 symmetry in the interior of the cell is enhanced at

the fixed loci of the Weyl group, as well as at the outer boundaries. The former enhancement is

produced in type I’ language by colliding D8-branes, while the latter by massless bound states

of D-particles with the orientifold. The type I’ description cannot be continued analytically

beyond this outer boundary.

the symmetry is SO(12) × U(1) × U(1). Along the fixed lines of the Weyl reflections

— the two interior boundaries of the shaded region — the symmetry is enhanced in the

standard perturbative manner while along the exterior boundary it is enhanced due to

the appearance of massless D-particle bound states.

We will now describe some of these points of enhanced symmetry associated with a

single orientifold in more detail. For example, we saw in section 3 that when a single

mirror pair of D8-branes is displaced from an orientifold there are sub-threshold bound

states of the symmetry SO(14)× U(1) associated with that orientifold. These consisted

of the 128 states in a non-chiral SO(14) spinor and 28 states in a complex vector. The

masses of these states, given by (3.12) and (3.21), vanish when the displacement of the

D8-branes reaches the critical value m1 = 2M0/g. This is a point of enhanced symmetry

where the extra massless states combine with the 92 states of the adjoint of SO(14)×U(1)

to form the 248 of E8. Moving two mirror pairs of D8-branes gives an enhanced symmetry

E7 × U(1) at a generic point on the boundary of figure 4. Generally, when N D8-branes

and their mirrors are displaced, the unbroken SO(16− 2N)× U(1)N gauge symmetry in
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the interior of the cell is enhanced to E9−N ×U(1)N−1 at the boundary. Here the groups

E1, E2, E3, E4, and E5 are conventionally defined as SU(2), SU(2)×U(1), SU(3)×SU(2),

SU(5) and Spin 10, respectively. One special point on the boundary of the fundamental

cell corresponds to the heterotic Wilson line a =
((

1
6

)7
− 1

6

)
where the symmetry is

enhanced to SU(9). In type I’ language this arises when all D8-branes are displaced to a

critical distance from the orientifold in a such a way that the SU(8)×U(1) perturbative

symmetry is enhanced. The extra massless states are the D-particle bound states in the

(8,−3) representation of the perturbative group discussed at the end of section 3.

The semi-classical type I’ description cannot be analytically continued beyond the

boundary of the fundamental cell, where some D-particles have binding energy that ex-

ceeds their mass. This is in contrast with the heterotic theory (in the limit (4.10)) which

can be continued to any point a. However, since the Wilson lines have the periodicity

of the E8 root lattice, any such point can be brought back to the fundamental cell pro-

vided one shifts simultaneously the momentum of the various states. In the heterotic

description the phase transitions arise when energy levels of fundamental quanta become

negative, which is dealt with by a redefinition of the vacuum state. In type I’ language

this would necessitate second-quantization of the D-particle bound states.

The picture of massless bound states makes qualitative contact with the description

of the type I’ theory based on classical supergravity [1]. There the coupling varies over

space, and diverges at one of the orientifold planes when the symmetry on the heterotic

side is enhanced. The supergravity coupling is to be identified with the inverse of the

effective mass of a D-particle, which varies as the particle moves through the potential.

At an enhanced symmetry point the effective mass of a D-particle that is bound to an ori-

entifold plane vanishes so that the effective coupling diverges on that plane. However, the

description in terms of D-particle quantum mechanics captures the exact short-distance

physics and allows precise calculations of the dynamics at enhanced symmetry points.

4.3 Closing the orientifold gap

Our discussion in the previous subsection was confined to a region of moduli space where

the two orientifold planes were very far apart. The physics of symmetry enhancement

could thus be discussed by focusing on one orientifold and ignoring the presence of the

other. However, some of the interesting phenomena in heterotic string theory involve

winding heterotic E8 × E8 states, and necessitate the discussion of both orientifolds si-

multaneously. This is the case, for example, for the special regions in moduli space where

the symmetry is enhanced to E8 ×E8 × SU(2), SU(18) or SO(34). These only have one

free modulus, the heterotic coupling constant λh, and one may wonder whether they can

be attained in the type I’ picture. Seiberg and Morrison have in fact argued that in order

to describe some of these regions one may need to introduce one or two extra D8-branes

[37]. We will present some persuasive arguments that such regions can also be described

in terms of massless D-particle bound states. In order to give a complete discussion we

would have to go beyond the quantum mechanical picture that applies when only one ori-
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entifold plane is present to a (1 + 1)-dimensional field theory description that takes into

account the infinite tower of type I’ open and closed strings winding around the compact

ninth dimension. However, we will only present a qualitative overview of the mechanism

for symmetry enhancement.

The explicit examples of enhanced symmetries to be considered below will make use

of the following geometrical property of the heterotic string. Define the moduli space of

lorentzian Γ1,17 lattices to beM and the subspace in which the gauge symmetry is larger

than U(1)17 ×U(1)g to beME, where the factor U(1)g denotes the abelian gravi-photon

symmetry which can never be enhanced. The property we shall use is that M−ME

is connected (which follows, for example, from [42] and references therein). What makes

this statement non-trivial is the fact that some regions of enhanced symmetry have codi-

mension one, and could conceivably separate moduli space into several disconnected com-

ponents. However, this is not the case because such regions are boundaries, as illustrated

in figure 4 for example, where all symmetry enhancements occur at the boundaries of the

shaded region.7 Another simple example is the moduli space of Γ2,2 lattices, correspond-

ing to compactifications of type II theory on a two-torus. If T and U are the complex

structure and Kähler moduli of the torus, then all symmetry enhancements occur on the

locus T = U . This is again on the boundary of moduli space because of the discrete

symmetry T ↔ U .

What this ‘theorem’ implies in the cases we are interested in is that an arbitrary point

in the moduli space of interest can be reached from any other point continuously with-

out ever encountering a phase transition. This guarantees that we may extend the type

I’ description to cover the Narain moduli space of the perturbative 9d heterotic string

and to reach, in particular, the neigbourhood of all the special points mentioned above,

without ever encountering negative mass solitonic states. There are additional discon-

nected regions of the full M-theory moduli space, such as those discussed for instance in

[38, 39, 40, 41], which we are not considering in this paper.

For example, consider a type I’ configuration with E8×E8×U(1)×U(1)g symmetry,

obtained by displacing one (pair of) D8-branes to a critical distance mcr ∼ (r2
11T2)−1 from

each orientifold plane. There are two free parameters, the radii r9 and r11, provided the

latter is sufficiently small. Decreasing the separation πr9 of the orientifolds, or equiva-

lently the radius r11 of the circle, brings the two separated D8-branes closer. At a critical

value,

r9r
2
11 ∼ T−1

2 , (4.13)

the two displaced D8-branes coincide (see figure 5). This gives rise to an extra complex

massless gauge boson, corresponding to a stretched type I’ string, and enhancing the U(1)

factor of the gauge group to SU(2). This corresponds to the straightforward compacti-

fication of the heterotic E8 × E8 theory, with no Wilson lines, on a circle with self-dual

radius.

7We thank K. Narain and G. Moore for discussions on this point.
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Figure 5: The type I’ vacuum close to the point with E8 × E8 × SU(2) × U(1)g symmetry.

It is obtained by first displacing the two D8-branes to a critical distance from their respective

orientifolds, so as to enhance each SO(14) × U(1) to an E8, then closing the orientifold gap so

as to make them collide.

A possible source of confusion is the identification of the U(1) factors that complete

the three enhanced simple groups, two E8’s and a SU(2). From the heterotic point of

view, however, their identification is clear. At a generic point in moduli space the gauge

field action has the form

Lgauge = −
1

4
MA

Cη
BCFAFB, (4.14)

where FA (A = 1, . . . , 18) are the abelian field strengths of the U(1) factors, ηBC is the

SO(1, 17)-invariant metric and MA
B is a moduli-dependent Lorentz boost. The matrix M

describes the deformation of the Lorentzian lattice, (4.7), as the Wilson lines are turned

on, (
pL
pR

)
a

= M−1

(
pL
pR

)
a=0

. (4.15)

The perturbative open-string gauge group and the two extra bulk U(1)’s (the C
(3)
µ911 and

Gµ 11 gauge potentials) that couple to Chan-Paton charges, D-particle number and wind-

ing, respectively, do not mix at a = 0. However, as the Wilson lines are turned on, or

equivalently as the D8-branes are displaced, the U(1)’s generally mix. In particular, the

charge vector of the w = ±1 string stretching between the two displaced D8-branes is

rotated in such a way that it becomes orthogonal to the charges of the D-particle bound

states at each orientifold plane, in accordance with the fact that these states complete

different simple factors of the enhanced gauge group.

In order to describe the SU(18) point we start from the region with SU(9)×SU(9)×

U(1)×U(1)g symmetry and with the orientifolds far apart. As we saw earlier, this requires

a configuration in which there is a stack of eight coincident D8-branes displaced a critical

distance from each orientifold plane. Reducing the separation of the orientifold planes

as in the previous example again results in symmetry enhancement when the two stacks

coincide. Among the massless states are the U(16) open-string gauge bosons that arise

in the standard manner. Recall that each SU(9) factor contains a massless D-particle

bound state in a complex 8 of the perturbative U(8) subgroup which can be pictured as

the different ways in which a string can join the D-particle (or anti D-particle) to any of

the eight displaced D8-branes. Such a string is required to be present by the chirality

argument given earlier. When the two stacks of D8-branes coincide the 8 is augmented
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to a 16 since the string can now terminate on any of the coincident branes. Since there

can be a D-particle on either orientifold plane there are two complex 16’s giving a total

of 64 extra massless states. In addition, there is a complex U(16) singlet where one D-

particle is stuck on each orientifold and they are joined by a χ string. This gives a total

of 66 states which completes the 258 states of the adjoint of U(16) × U(1) × U(1)g to

SU(18)× U(1)g.

Finally, we may consider the mechanism for the enhancement of the symmetry to

SO(34)× U(1). The point in moduli space where this occurs can be reached by starting

from the SO(16)×SO(16) configuration and displacing the stack of eight D8-branes (and

their mirrors) from the left orientifold plane. When the coupling constant is sufficiently

small this set of displaced D8-branes can be moved onto the right orientifold plane without

encountering a phase transition. Now all 32 D8-branes coincide and the theory is in a

SO(32) vacuum. The degeneracy of the sub-threshold ground states of a D-particle stuck

on the left orientifold plane is either 1 or 32 for the two inequivalent motions of the D8-

branes. In one case the D-particle has no strings attached while in the other case (which

differs by a single interchange of a D8-brane with its mirror) it is joined by a single χ

string to any of the 32 coincident D8-branes.8 The coupling constant may now be tuned

so that in the second case these 32 D-particle states, together with the 32 states of an anti

D-particle, give 64 new massless states. These are precisely the 64 states that are needed

to enhance the symmetry from SO(32)×U(1)×Ug(1) to SO(34)×Ug(1). The inequivalent

SO(32) theory with only two massless D-particle bound states is SO(32)×SU(2)×U(1)g.

Other examples can be discussed similarly.

Acknowledgments

We thank G. Ferretti, M. Gaberdiel, I. Klebanov, K. Narain, G. Papadopoulos and N.

Seiberg for discussions. We are also grateful to the organizers of the Newton Institute

program on Non-perturbative Aspects of Quantum Field Theory for providing a stimulat-

ing atmosphere during the early stages of this work. This work was partially supported

by the EEC grants CHRX-CT93-0340, TMR-ERBFMRXCT96-0090 and by the Minerva

Foundation,Germany.

References

[1] J. Polchinski and E. Witten, Evidence for Heterotic-Type I String Duality, Nucl.

Phys. B 460 (1996) 525 [hep-th/9510169].

[2] P. Horava and E. Witten, Heterotic and Type I String Dynamics from Eleven

Dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209].

8In heterotic language there are two inequivalent SO(32) theories in nine dimensions that are distin-

guished only by a probe spinor.

26

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB460%2C525
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB460%2C525
http://xxx.lanl.gov/abs/hep-th/9510169
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB460%2C506
http://xxx.lanl.gov/abs/hep-th/9510209


J
H
E
P
0
1
(
1
9
9
8
)
0
0
6

[3] U.H. Danielsson and G. Ferretti, The Heterotic Life of the D-particle, Int. J. Mod.

Phys. A 12 (1997) 4581 [hep-th/9610082].

[4] T. Banks, N. Seiberg and E. Silverstein, Zero and One-dimensional Probes with

N = 8 Supersymmetry, Phys. Lett. B 401 (1997) 30 [hep-th/9703052].

[5] S. Kachru and E. Silverstein, On Gauge Bosons in the Matrix Model Approach to

M Theory, Phys. Lett. B 396 (1997) 70 [hep-th/9612162].

[6] N. Kim and S.J. Rey, M(atrix) Theory on Orbifold and Twisted Membrane, Nucl.

Phys. B 504 (1997) 189 [hep-th/9701139].

[7] D.A. Lowe, Bound States of Type I’ D-particles and Enhanced Gauge Symmetry,

Nucl. Phys. B 501 (1997) 134 [hep-th/9702006].

[8] T. Banks and L. Motl, Heterotic Strings from Matrices, hep-th/9703218.

[9] Soo-Jong Rey, Heterotic M(atrix) Strings and Their Interactions, Nucl. Phys. B

502 (1997) 170 [hep-th/9704158].

[10] P. Horava, Matrix Theory and Heterotic Strings on Tori, Nucl. Phys. B 505

(1997) 84 [hep-th/9705055].

[11] D. Kabat and S.-J. Rey, Wilson Lines and T-Duality in Heterotic Matrix Theory,

Nucl. Phys. B 508 (1997) 535 [hep-th/9707099].

[12] D. Matalliotakis, H-P. Nilles and S. Theisen, Matching the BPS Spectra of

Heterotic-Type I-Type I’ Strings, hep-th/9710247.

[13] O. Bergman, M. R. Gaberdiel and G. Lifschytz, String Creation and Heterotic-Type

I’ Duality, hep-th/9711098.

[14] Julie D. Blum, Keith R. Dienes, From the Type I String to M-theory: A Continuous

Connection, hep-th/9708016

[15] C.P. Bachas, M.R. Douglas and M.B. Green, Anomalous Creation of Branes,

JHEP 07 (1997) 2 [hep-th/9705074].

[16] U. Danielsson, G. Ferretti and I.R. Klebanov, Creation of Fundamental Strings by

Crossing D-branes, Phys. Rev. Lett. 79 (1997) 1984 [hep-th/9705084].

[17] O. Bergman, M. Gaberdiel and G. Lifschytz, Branes, Orientifolds and the Creation

of Elementary Strings, hep-th/9705130.

[18] S.P. de Alwis, A Note on Brane Creation, Phys. Lett. B 413 (1997) 49

hep-th/9706142.

[19] P-M. Ho and Y-S. Wu, Brane Creation in M(atrix) Theory, hep-th/9708137.

27

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA12%2C4581
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA12%2C4581
http://xxx.lanl.gov/abs/hep-th/9610082
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB401%2C30
http://xxx.lanl.gov/abs/hep-th/9703052
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB396%2C70
http://xxx.lanl.gov/abs/hep-th/9612162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB504%2C189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB504%2C189
http://xxx.lanl.gov/abs/hep-th/9701139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB501%2C134
http://xxx.lanl.gov/abs/hep-th/9702006
http://xxx.lanl.gov/abs/hep-th/9703218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB502%2C170
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB502%2C170
http://xxx.lanl.gov/abs/hep-th/9704158
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB505%2C84
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB505%2C84
http://xxx.lanl.gov/abs/hep-th/9705055
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB508%2C535
http://xxx.lanl.gov/abs/hep-th/9707099
http://xxx.lanl.gov/abs/hep-th/9710247
http://xxx.lanl.gov/abs/hep-th/9711098
http://xxx.lanl.gov/abs/hep-th/9708016
http://jhep.sissa.it/stdsearch?jhepno=07(1997)2
http://xxx.lanl.gov/abs/hep-th/9705074
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C79%2C1984
http://xxx.lanl.gov/abs/hep-th/9705084
http://xxx.lanl.gov/abs/hep-th/9705130
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB413%2C49
http://xxx.lanl.gov/abs/hep-th/9706142
http://xxx.lanl.gov/abs/hep-th/9708137


J
H
E
P
0
1
(
1
9
9
8
)
0
0
6

[20] N. Ohta, T. Shimizu, J-G. Zhou, Creation of Fundamental String in M(atrix)

Theory, hep-th/9710218.

[21] A. Hanany and E. Witten, Type-IIB Superstrings, BPS Monopoles and Three-

Dimensional Gauge Dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230].

[22] S. Elitzur, A. Giveon and D. Kutasov, Branes and N=1 Duality in String Theory,

Phys. Lett. B 400 (1997) 269 [hep-th/9702014].

[23] H. Ooguri and C. Vafa, Geometry of N=1 Dualities in Four Dimensions, Nucl.

Phys. B 500 (1997) 62 [hep-th/9702180].

[24] S. Elitzur, A. Giveon, D. Kutasov, E. Rabinovici and A. Schwimmer, Brane Dy-

namics and N=1 Supersymmetric Gauge Theory, Nucl. Phys. B 505 (1997) 202

[hep-th/9704104].

[25] M. Claudson and M. Halpern, Supersymmetric Ground State Wave Functions,

Nucl. Phys. B 250 (1985) 689.

[26] B. de Wit, J. Hoppe and H. Nicolai, On the Quantum Mechanics of Supermem-

branes, Nucl. Phys. B 305 (1988) 545 [FS23].

[27] E. Witten, Bound States Of Strings And p-Branes, Nucl. Phys. B 460 (1996) 335

[hep-th/9510135].

[28] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Cambridge U. Press,

1987.

[29] C. Bachas, D-Brane Dynamics, Phys. Lett. B 374 (1996) 37 [hep-th/9511043].

[30] S. Chaudhuri, C. Johnson and J. Polchinski, Notes on D-Branes, hep-th/9602052;

J. Polchinski, TASI lectures on D-branes, hep-th/9611050.

[31] L. Romans, Massive N = 2A Supergravity in Ten Dimensions, Phys. Lett. B 169

(1986) 374.

[32] J. Polchinski, Dirichlet-Branes and Ramond-Ramond Charges, Phys. Rev. Lett.

75 (1995) 4724 [hep-th/9510017].

[33] E. Bergshoeff, M. de Roo, M. B. Green, G. Papadopoulos and P. K. Townsend,

Duality of Type II 7-branes and 8-branes, Nucl. Phys. B 470 (1996) 113

[hep-th/9601150].

[34] C.G. Callan and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and

Domain Walls, Nucl. Phys. B 250 (1985) 427.

[35] M.B. Green, J.A. Harvey and G. Moore, I-brane Inflow and Anomalous Couplings

on D-branes, Class. and Quant. Grav. 14 (1997) 47 [hep-th/9605033].

28

http://xxx.lanl.gov/abs/hep-th/9710218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB492%2C152
http://xxx.lanl.gov/abs/hep-th/9611230
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB400%2C269
http://xxx.lanl.gov/abs/hep-th/9702014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB500%2C62
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB500%2C62
http://xxx.lanl.gov/abs/hep-th/9702180
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB505%2C202
http://xxx.lanl.gov/abs/hep-th/9704104
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB250%2C689
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB305%2C545
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB460%2C335
http://xxx.lanl.gov/abs/hep-th/9510135
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB374%2C37
http://xxx.lanl.gov/abs/hep-th/9511043
http://xxx.lanl.gov/abs/hep-th/9602052
http://xxx.lanl.gov/abs/hep-th/9611050
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB169%2C374
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB169%2C374
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C75%2C4724
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C75%2C4724
http://xxx.lanl.gov/abs/hep-th/9510017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB470%2C113
http://xxx.lanl.gov/abs/hep-th/9601150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB250%2C427
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C14%2C47
http://xxx.lanl.gov/abs/hep-th/9605033


J
H
E
P
0
1
(
1
9
9
8
)
0
0
6

[36] E. Bergshoeff and M. De Roo, D-branes and T duality, Phys. Lett. B 380 (1996)

265 [hep-th/9603123].

[37] N. Seiberg and D.R. Morrison, Extremal Transitions and Five-Dimensional Super-

symmetric Field Theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070].

[38] M. Bianchi, G. Pradisi and A. Sagnotti, Toroidal Compactification and Symmetry

Breaking in Open String Theories, Nucl. Phys. B 376 (1992) 365.

[39] Atish Dabholkar, Jaemo Park, Strings on Orientifolds, Nucl. Phys. B 477 (1996)

701, [hep-th/9604178].

[40] E. Witten, Toroidal Compactification Without Vector Structure, JHEP 02 (1998)

006 [hep-th/9712028].

[41] Shmuel Elitzur, Amit Giveon, David Kutasov, David Tsabar, Branes, Orientifolds

and Chiral Gauge Theories, hep-th/9801020.

[42] J.H. Conway, pages 527-531 in Sphere Packings, Lattices and Group J.H. Conway

and N.J.A. Sloane eds., Springer, 1988.

29

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB380%2C265
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB380%2C265
http://xxx.lanl.gov/abs/hep-th/9603123
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB483%2C229
http://xxx.lanl.gov/abs/hep-th/9609070
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB376%2C365
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB477%2C701
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB477%2C701
http://xxx.lanl.gov/abs/hep-th/9604178
http://jhep.sissa.it/stdsearch?jhepno=02(1998)006
http://jhep.sissa.it/stdsearch?jhepno=02(1998)006
http://xxx.lanl.gov/abs/hep-th/9712028
http://xxx.lanl.gov/abs/hep-th/9801020

