Fusion Engineering

Investigation on the Fatigue Characteristic in Support Structure of HL-2M Tokamak

, , and

Published under licence by IOP Publishing Ltd
, , Citation Cao Chengzhi et al 2014 Plasma Sci. Technol. 16 172 DOI 10.1088/1009-0630/16/2/15

1009-0630/16/2/172

Abstract

In order to obtain enhanced plasma parameters a complete new tokamak HL-2M is now under construction in Southwestern Institute of Physics. To assure the structural safety of the device for the entire operation cycle, one of the most important issues is the lifetime-limiting effects due to the pulsed operation mode. Fatigue is one of the major failure modes to be considered in mechanical design, and pulsed operation imposes stress with significant alternating components on the support structure (SS). Therefore, the reliability of the whole device is strongly affected by the stress and fatigue characteristic of the SS as the interface structure. This article introduces the SS design and details the fatigue life calculation methods based on the different characteristics of the sub-structures. The fatigue life in hazardous areas of the toroidal field coils anti-torque structure (TFCs-ATs) has been determined by non-linear analysis results. And with the stress-time history data of the vacuum vessel & poloidal field coils support structure (VV&PFCs SS), the fatigue analysis of the hot spots has been completed based on rain-flow counting method and linear cumulative damage method. The calculated minimum fatigue life on TFCs-ATs and VV&PFCs SS is 4.743E+05 and 1.805E+06 cycles, respectively. And the calculated fatigue life on sub-structures can meet the required life for HL-2M tokamak: 1.0E+05 cycles.

Export citation and abstract BibTeX RIS

10.1088/1009-0630/16/2/15