
Distributed Systems Engineering

SmallTool - a toolkit for realizing shared virtual
environments on the Internet
To cite this article: Wolfgang Broll 1998 Distrib. Syst. Engng. 5 118

View the article online for updates and enhancements.

You may also like
A Swing of the Pendulum: The
Chemodynamics of the Local Stellar Halo
Indicate Contributions from Several Radial
Merger Events
Thomas Donlon and Heidi Jo Newberg

-

The Milky Way’s Shell Structure Reveals
the Time of a Radial Collision
Thomas Donlon, Heidi Jo Newberg, Robyn
Sanderson et al.

-

DIVE: a scaleable network architecture for
distributed virtual environments
Emmanuel Frécon and Mårten Stenius

-

This content was downloaded from IP address 18.221.222.47 on 07/05/2024 at 13:13

https://doi.org/10.1088/0967-1846/5/3/005
https://iopscience.iop.org/article/10.3847/1538-4357/acb150
https://iopscience.iop.org/article/10.3847/1538-4357/acb150
https://iopscience.iop.org/article/10.3847/1538-4357/acb150
https://iopscience.iop.org/article/10.3847/1538-4357/acb150
https://iopscience.iop.org/article/10.3847/1538-4357/abb5f6
https://iopscience.iop.org/article/10.3847/1538-4357/abb5f6
https://iopscience.iop.org/article/10.1088/0967-1846/5/3/002
https://iopscience.iop.org/article/10.1088/0967-1846/5/3/002

Distrib. Syst. Engng 5 (1998) 118–128. Printed in the UK PII: S0967-1846(98)95808-9

SmallTool—a toolkit for realizing
shared virtual environments on the
Internet

Wolfgang Broll †‡

GMD—German National Research Center for Information Technology, Institute for
Applied Information Technology (FIT), Sankt Augustin, Germany

Received 6 March 1998

Abstract. With increasing graphics capabilities of computers and higher network
communication speed, networked virtual environments have become available to a
large number of people. While the virtual reality modelling language (VRML)
provides users with the ability to exchange 3D data, there is still a lack of
appropriate support to realize large-scale multi-user applications on the Internet.

In this paper we will present SmallTool, a toolkit to support shared virtual
environments on the Internet. The toolkit consists of a VRML-based parsing and
rendering library, a device library, and a network library. This paper will focus on
the networking architecture, provided by the network library—the distributed worlds
transfer and communication protocol (DWTP). DWTP provides an
application-independent network architecture to support large-scale multi-user
environments on the Internet.

1. Introduction

Networked virtual reality (VR) may be a chance to provide
a new interface metaphor to the Internet. While the
WorldWide Web (WWW) is used by millions of people,
it is currently impossible for these people to interact with
one another. Shared virtual environments accessible from
almost everywhere will be able to offer new types of
cooperation.

The SmallTool-distributed VR toolkit includes a
number of developments to enable worldwide-distributed
users to participate in shared 3D worlds across the Internet,
interacting with the objects of these worlds as well as
communicating and collaborating with other participants.
The development of this toolkit is part of a larger
research initiative calledThe Social Web. Its goal is to
develop the WWW into an active social meeting space
in contrast to its current state as a more or less passive
assembling of distributed artefacts. In the area of multi-
user shared virtual environments we currently focus on
two aspects: an adequate representation of users and their
behaviours to extend shared virtual environments into a
rich meeting and communication facility, and the network
requirements to support a large number of worldwide-
distributed participants on the Internet.

The realization of applications for shared virtual
environments is based on a number of key technologies
which make the development time intensive and expensive.

† E-mail address: wolfgang.broll@gmd.de
‡ URL: http://orgwis.gmd.de/

An appropriate description for 3D objects is required.
3D scenes have to be rendered and input devices have
to be connected to realize interactive worlds. Network
connections have to be set up and mechanisms have to
be established to keep copies of shared virtual worlds
consistent.

The Virtual Reality Modeling Language (VRML) [1]
provides us with a standard for the description of 3D
objects on the Internet. Standard VRML browsers or
plug-ins allow users to view 3D objects and navigate
through VRML scenes, but they do not provide any
support for shared virtual worlds. While browsers are
available which support multiple users in VRML worlds,
application developers cannot create their own applications
independent of that particular browser. Additionally the
network architectures provided for communication between
the individual participants are rather inflexible and cannot
be tailored to support different application areas.

In this paper we shall show how the SmallTool-
distributed VR toolkit simplifies the development of shared
VR applications. Since standard solutions for parsing,
rendering and the connection of input devices exist, we will
not discuss these features in detail. We will rather focus on
the networking issues, which allow us to provide a flexible
and scalable network infrastructure. This infrastructure is
optimized for shared VR applications and provides a simple
interface for applications and servers.

This paper is organized as follows. In section 2 we
will introduce the basic architecture of the SmallTool VR
toolkit. First we shall present the basic libraries that the
toolkit is based on. Section 2.1 reveals the connections

0967-1846/98/030118+11$19.50 c© 1998 The British Computer Society, The Institution of Electrical Engineers and IOP Publishing Ltd

SmallTool—a toolkit for realizing shared virtual environments

Extended VRML
Library

Device Interface
Library (DICI)

Network Library
(DWTP)

Distributed VR applications

Figure 1. Realizing distributed VR applications with
SmallTool.

to VRML and presents extensions provided by the
extended VRML library. In section 2.2 we will introduce
the universal device library of the SmallTool toolkit.
Sections 2.3 and 2.4 discuss two sample applications,
realized to demonstrate the use of the toolkit. In section 2.3
we will give a brief introduction of the SmallView browser,
and in section 2.4 we will present the SmallServ application
server. Section 2.5 shows how shared VR applications
can be realized with SmallTool. In section 3 we will
discuss the networking architecture in detail as used within
the networking part of the toolkit. After reviewing
the requirements for networked virtual environments in
section 3.1 we will introduce the distributed worlds
transfer and communication protocol (DWTP). The
following sections describe the various aspects of the
protocol including the support for heterogeneous network
connections, reliable transfers on unreliable protocols, and
the realization of persistent and consistent worlds. In
section 3.6 scalability issues are discussed. Section 4 relates
our work to others, and sections 5 and 6 discuss future
directions and give conclusions.

2. The SmallTool VR toolkit

SmallTool is a toolkit for realizing shared virtual
environments on the Internet. It is based on a
number of libraries to build (VRML-based) networked VR
applications. The SmallView VRML browser and the
SmallServ application server are such applications which
allow users to participate in shared VRML worlds.

Figure 1 shows the overall architecture for building VR
applications with the toolkit. The toolkit consists of the
following three libraries.
• The extended VRML library for reading and writing

VRML files and for rendering VRML scenes. This library
is based on OpenGL and is independent of any particular
window system.
• The device interface library for connecting external

devices to such applications.
• The network library to provide a flexible and scalable

network architecture for shared virtual environments on the
Internet. The network architecture used within this library
is discussed in detail in section 3 of this paper. These
libraries are currently available for SGI IRIX, Sun Solaris
and Linux.

2.1. VRML and more

This section will introduce the extended VRML library.
The extended VRML library provides a simple interface to
read, parse, visualize and write VRML files. Additionally

it processes input events to modify the VRML scene and
can automatically generate events for synchronizing shared
copies of the world. The extended VRML library supports
the VRML standards 1.0 and 2.0 (VRML 97) as well as
extensions for multiple users [2] and arbitrary input/output
devices. Rendering is based on the OpenGL API. We
will now focus on the extensions going beyond the current
VRML standard.

2.1.1. Representing and managing users. The extended
VRML library provides support for the representation of
users by avatars. Avatars can be defined by extensions
within VRML files, either as part of a user profile or within
the shared virtual world. A user profile is a VRML file
identified by a special header line and will usually be loaded
by a multi-user browser or applications at start-up time. It
provides user-dependent settings to the system as well as
to other participants in distributed worlds. These include
the unique id of the participant, his or her nickname for
chatting and audio communication, and additional personal
information such as their e-mail address or the home page
URL. The user identification provided by the user profile
may also be used by the VR application for individual set-
ups (e.g. calibration of input devices). All user information
is located in auser node, which has to be the root node
of the user profile. As part of a user description, one or
several avatars can be defined byavatar nodes. Avatar
descriptions are based on standard VRML for geometry
and behaviours. Additionally user- and/or avatar-dependent
values specifying individual spatial ranges for interactions,
chatting and audio communication may be specified either
in the user or the individual avatar node. These spatial
limitations are based on a mechanism similar to the spatial
model for interactions [3].

In order to specify the current participants of a shared
virtual world, the URLs of all current participants are
defined as inlined URLs as part of a scene description. The
number or type of participants of a particular world might
have to be restricted. Thus our extensions enable providers
and authors of a shared virtual world to restrict the number
of participants, their type (users, agents, applications),
avatar type and avatar size.

2.1.2. Subdividing virtual worlds. The extended VRML
library supports a mechanism for subdividing large virtual
worlds into several regions [2]. Regions define parts
of a virtual world which might be temporarily invisible
to a participant when his or her viewpoint is outside a
particular area. When the contents of this world part
cannot be realized by the user, they do not require updating
immediately upon changes based on object behaviour (e.g.
animations) or interactions of other participants.

However, the subdivision mechanism realized by the
extended VRML library provides much more than that. It
can be used to nest several regions and by that realize
a region hierarchy. A landscape for instance might be
subdivided into several regions residing on the same level.
Within these regions, however, there may be subregions
representing buildings. Some of these buildings may be
very large and thus they are subdivided again into smaller

119

W Broll

regions representing one or several rooms. One of these
rooms may be a biologist’s laboratory and some of the
bacteria visible through a microscope might also represent
an individual region. Thus, when looking into the ocular
of the microscope the user might enter the world of the
microbes and scale down to their size. The extended VRML
library provides these functions by a special node to inline
regions into VRML files. This node (region node) defines
a transformation for the region within the current frame,
its contents (as URLs), its external representation, and an
optional transformation of the viewpoint when entering the
region. Additionally, three spaces are used to determine
the mutual visibility of participants inside or outside the
specified region.
• The border defines the actual border of the region

within the current frame. When crossing the border of a
region, the user becomes a member of that region.
• The radiation defines the space (outside the region)

from where the contents of the region are visible. If no
radiation space is defined, the contents of the region are
not visible until entering the region (as specified by the
border space).
• The horizon specifies the visibility of objects from

within the region (beside the contents of the region itself).
If no horizon is defined, other parts of the world outside
the region are not visible after crossing the border of the
region.

In addition to these spaces, thehull of a region defines
a fourth space to determine when the contents of the region
require to be loaded or updated.

2.1.3. Achieving consistency among distributed copies.
Support for shared VRML worlds using the extended
VRML library is based on the concept of replicated copies
of virtual world contents. In our model there are no
particular shared objects as used in the living worlds
approach [4]. Thus, all modifications of any object in
the virtual world are distributed to all other participants
of the world. The extended VRML library realizes the
consistency among different copies of a shared virtual
world through some basic functions provided by its event
model. The event model represents all events by objects.
There exists one object class for each input device and
for several VRML node classes (e.g. sensor nodes). As
soon as an instance of such a node class is modified, it
creates a synchronization event to forward the changes to
all replicated copies of the node. To reduce the number of
events transferred over a network connection, a maximum
frequency for events sent by a single object may be
specified by the application. The event model ensures that
the most recent event is always transmitted. Additionally
the application might specify whether particular events
require reliable distribution or not. Many events such
as avatar movements do not require reliable transmission,
since they are updated frequently, while other events (e.g.
opening a door) will lead to permanent inconsistencies, if
they get lost during transmission. The event model provides
support for the serialization of events to transfer them over
a network connection.

VRML events as used in VRML 97 consist of a field
value and a timestamp. The recipient of an event is defined
by the routing mechanism. A single VRML event might
modify a large number of nodes within the scene graph.
The reason for that is that a single event caught by a
VRML node might create new events and so on and by
that create what is called theevent cascade. Thus, it is
important to synchronize events at the beginning of the
event cascade and execute them locally on each site rather
than synchronizing each node modified individually. To
achieve this, synchronization is performed by the sensor
nodes, which catch an external event and make it available
to the VRML scene. Additionally all events based on timers
(e.g. the execution of animations), which are independent
of user input, are not transferred at all.

2.2. Connecting VRML scenes to the real world

In VRML support for input devices is limited to a
simple pointing device. VR applications, however, often
realize complex user interactions which require support for
keyboards, six degree of freedom (6DOF) input devices,
etc. To connect any type of additional input or output
devices to a VRML world, the external authoring interface
(EAI) [5], which is not yet part of the VRML standard, has
to be used.

SmallTool provides a flexible mechanism to connect
any kind of input or output device to a VRML world. This
mechanism is based on:
• a small VRML extension providing a universal sensor

node,
• the device-independent communication interface

(DICI).
The universal VRML sensor allows the author of a

3D scene to specify an arbitrary input device. Events
received by this sensor can be used to modify the scene by
routing the sensor fields to other VRML nodes similar to the
mechanism used by standard VRML sensors. Additionally
such sensors can be used as an output interface to external
devices by routing VRML node fields to the sensor nodes.
This sensor node is realized as part of the extended VRML
library discussed before.

The DICI consists of a client and a server part. An
application based on this SmallTool library (such as the
SmallView browser) will use a client to communicate with
external devices. Each external input or output device
requires a tailored server. Several sample servers are
provided to connect standard input devices such as trackers,
gloves and SpaceMouse (Magellan). Each server can send
or receive events by TCP or UDP connections, depending
on whether reliable transmission of events is required or
not. An arbitrary number of clients (not necessarily using
the same VRML world) can be connected to a single server.

This flexible architecture allows us to:
• connect complex 3D input devices such as trackers

and data gloves to VRML worlds
• use VRML objects as indicators for the state of real

world objects (e.g. a door is opened, somebody entered a
room, etc)
• manipulate real world objects from VRML worlds

(e.g. switch the light on or off).

120

SmallTool—a toolkit for realizing shared virtual environments

Figure 2. Screenshot of the SmallView browser.

2.3. The SmallView browser

The SmallView browser (figure 2) enables users to partic-
ipate at shared VRML worlds. To support multiple users
it provides the possibility to specify user profiles and user
avatars. Communication among distributed users is sup-
ported by spatial chatting and audio. Similar to an HTML
browser or other VRML browsers or plug-ins, shared vir-
tual worlds can be specified by a local name or a URL.
The URL may either point to an ordinary hyper text trans-
fer protocol (HTTP) server or be a DWTP address (e.g.
dwtp://multiuser.gmd.de/worlds/meetingSpace.wrl)
to participate at a shared VRML world. In the latter case a
network communication to other participants is established
in addition to the download of the scene description and the
local avatar is transmitted. The local avatar can either be
selected from a user profile, maybe provided by a shared
virtual world, or can be imported from an ordinary VRML
file.

The subdivision of shared virtual worlds as provided
by the extended VRML library is used within SmallView
to subdivide worlds into several regions, each using its
individual network connection. When the viewpoint or the
avatar of a user enter the hull of a region, the browser
will start a new connection to the DWTP URL specified
for the contents of that region. If the participant has not
used this part of the world recently, all contents will be
transferred. If the participant has already downloaded this
part before, a timestamp of the last change of the local copy

is added to the request to receive an incremental update.
After the avatar or the user’s viewpoint has left the hull
of the region, the browser will usually cancel the network
connection to reduce the local network traffic. However,
a timeout mechanism is required to avoid the overhead of
several connect, break up, reconnect cycles when the user
navigates along the border of the specified hull. By this
mechanism each participant will only be connected to those
regions relevant for his or her current viewpoint within
the shared virtual world. Nevertheless the region hierarchy
can be used for additional reduction of network traffic. In
addition to regions on the same level, parent regions (or
their sister regions) will often not be visible after entering
a region due to a limited horizon. Thus those parts can
often be unloaded as well.

The first prototype of the SmallView browser was
developed shortly after VRML 1.0 was presented. At
this time it used a simplified network architecture based
on Internet protocol (IP) multicasting and extended HTTP
servers. The second version of SmallView added
support for user interactions, object behaviour and user
representation as proposed by the Dynamic Worlds VRML
2.0 proposal in 1996. Its current third version is based on
the VRML 97 specification [6] for the description of virtual
worlds. Nevertheless it uses extensions (provided by the
extended VRML library) which go beyond the capabilities
of this standard for representing users, subdividing large
virtual worlds, and to minimize and resolve access conflicts
between distributed users. The SmallView browser is
developed on SGI workstations. It is based on the three
libraries provided by SmallTool and is programmed in
C++. It is also available for Sun Solaris and Linux with
limited functionality.

2.4. The SmallServ application server

In addition to the SmallView browser, a SmallServ
application server was realized. Similar to the SmallView
browser this server is an example application built on top of
the SmallTool libraries. However, it does not provide any
visualization or I/O facilities and is based on the extended
VRML library and the DWTP network library only. It
is used to dump the current state of the world into a
file, or to create events to resynchronize a shared virtual
world. The latter is realized by comparing the timestamps
of all nodes in the scene with the timestamp of the existing
world description. The application server will then create
synchronization events for these nodes. Additionally the
SmallServ application server is used to realize persistent
worlds (see section 3.5).

Given the SmallView VRML browser and the
SmallServ application server, users can easily set up their
own shared virtual worlds. To do so, one or several
SmallServ applications have to be configured and the
scene descriptions of the worlds to be shared have to be
available as VRML files. Each participant can then connect
to such an application server to download the virtual
world description and to establish the appropriate network
connections by specifying the URL of the application server
within the SmallView browser. In order to give a user

121

W Broll

an embodiment, an avatar file has to be provided by
each participant. This requires minimal modifications to
a regular VRML 97 description, which can be performed
automatically by the browser when importing a file as an
avatar. The user is then represented by this avatar. In
addition to all changes of the avatars, all changes of the
virtual world are distributed to all participants as well.

2.5. Realizing VR applications with SmallTool

In this section we will show how new shared VR
applications can be realized based on the libraries provided
by the SmallTool toolkit. For a better understanding of this
mechanism we will give two small example applications:
a virtual store and a simple robot agent.

In our first example, the virtual store will provide
its own representation, e.g. a simple building containing
shelves with goods. Users visiting the world can enter
the store with their avatar and select one or several goods.
When the avatar leaves the shop, a virtual cashier will tell
the user the price of the selected goods. To pay the user
might have to click on a credit card symbol to pop up an
appropriate HTML page.

The virtual store application would be based on the
DWTP network library to connect to one (or even several)
shared virtual worlds. Although it does not have to
parse or render any VRML files, it will use the extended
VRML library to restore the events transmitted from other
participants when interacting with the store objects and to
identify these participants. Finally, the application will
have an underlying database to handle the transactions.
This database will also require an interface accessible from
a HTTP server realizing the payment. Additionally, the
application has to provide its external representation as a
VRML file. This file will be uploaded by the network
library when connecting to a shared virtual world.

The second application is a very simple robot agent to
welcome new participants in a shared world and to do some
chatting with these participants. Similar to the virtual store,
the application will be based on the network library for
communication and the extended VRML library to interpret
the events transmitted (e.g. the location of a particular
avatar). Although the robot application does not need to
render the VRML scene, it will need a continuously updated
copy to realize realistic movements of the robot (e.g. to
avoid walking through walls by collision detection). This
can be also handled by the VRML library. The application
developer only has to add code for moving the robot to
the location of new users and create some chat messages
based on keywords within the chat messages received from
these users. Finally, a VRML file description of the robot
is required for distribution to other participants.

3. Networking architecture

This section will discuss the networking architecture as used
in SmallTool and provided by the underlying networking
library in detail.

3.1. Requirements for networked virtual environments

In contrast to most other application areas, shared virtual
environments distributed over a network such as the Internet
require a large variety of different data types to be
transferred. Additionally there are all kinds of connections
from one-to-one, one-to-many to many-to-many. Classical
client–server approaches do not fit very well for the needs
of general purpose networked virtual environments. After
the completion of initial transfers (such as downloads of
world descriptions), typically all participants will send and
receive data equally. This might include small amounts
of data such as events, or even large files (e.g. avatar
descriptions). The interactions of users participating at a
shared virtual environment will usually not be limited to
navigation: users can interact with the objects of the world
as well as with other users. Thus, appropriate support for
communication as well as for collaboration between users
has to be considered. Additionally, users might want to
bring new objects with them and leave them in a shared
world, hand them to other users, or take objects with them,
when leaving the world. To support general purpose virtual
environments however, participants should not be limited
to users. There might be any kind of participants including
(autonomous) agents or applications (see 2.5). Neither of
them necessarily have to be defined as part of the scene but
may simply connect to one or even several shared virtual
worlds, or travel between worlds, offering certain services
to other participants.

While most application level network protocols support
the transmission of a particular data type only, network
support for shared virtual environments requires the support
of several different data types. This includes:
• files to transmit the scene as well as other object

descriptions (including avatars, agents, applications)
• eventsto keep distributed copies of a shared virtual

world consistent
• messagesto organize the participation (join, leave

etc) of shared virtual worlds
• streamsto transmit audio or video data.

3.2. The distributed worlds transfer and
communication protocol (DWTP)

We developed DWTP [7] to address the needs of large-scale
distributed virtual environments. DWTP is an application
layer protocol at the top of existing Internet protocols such
as TCP/IP and UDP/IP. Thus, it resides on the same level
as HTTP or file transfer protocol (FTP). In contrast to
those rather simple protocols the communication structure
required to support shared virtual environments of different
size and for different purposes is much more complex. For
that reason DWTP is not based on a simple client–server
approach including a single daemon to provide the required
service, but uses a set of different daemons to provide
particular services to the participants. DWTP provides the
following four different daemons, which will be explained
in detail in the following sections.
• World daemons, to download static or dynamic files

and to keep modifiable worlds persistent.

122

SmallTool—a toolkit for realizing shared virtual environments

multicast
group

participantparticipant

unicast
daemon

multicast

participant

participantparticipant

participant

unicast (UDP/IP or TCP/IP)

Figure 3. Participating via unicast daemons.

• Reliability daemonsto provide reliable transfers by
unreliable network protocols.
• Recovery daemonsto receive lost messages.
• Unicast daemonsto provide access via unicast

network connections.
These daemons can either be combined in a single

program (optionally combined with an application server) to
provide all the services required to realize a single shared
virtual environment or they may be split among several
hosts.

In addition to these daemons, a client interface is
provided by the DWTP library, which enables applications
to connect to shared virtual worlds, and to send and receive
the different data types used in shared virtual environments
(see section 3.1). DWTP is realized as a multithreaded
library to support asynchronous network communication
independent of the main application.

The basic communication architecture of DWTP is
based on IP multicasting groups [8]. The heterogeneous
architecture of the approach however also allows non-
multicast capable participants to join shared virtual worlds.

3.3. Supporting a heterogeneous network architecture

While DWTP heavily relies on IP multicasting for
scalability, it allows participants to connect to shared
virtual worlds by alternate (unicast) protocols such as
UDP/IP or TCP/IP. Usually the DWTP client software will
try to establish a multicast connection in the first place,
followed by UDP and TCP on failure. The application,
however, might change this behaviour due to its individual
requirements. It can either specify preferred connection
types or demand a particular type. Additionally different
protocols might be selected for the individual data types
(e.g. TCP/IP for files, UDP/IP for messages, IP multicasting
for events). However, the selection made by the underlying
protocol is usually optimized for the available set of
connections and does need to be tailored by the application.

When using UDP/IP or TCP/IP for one-to-many
data transfers this is realized via unicast daemons (see
figure 3). Unicast daemons forward received data to all
participants currently connected. However, there are some
basic differences to classical central server approaches:

the number of participants at each unicast daemon is
restricted to a rather small number (five to ten) and the
unicast daemon communicates with all other daemons
and participants via multicasting only. This prevents a
unicast daemon becoming a bottleneck of the system and
allows us to keep the overall approach scalable even with
a large number of unicast participants. Thus, unicast
daemons allow us to create an application layer backbone
for participants which do not have access to the MBONE.

3.4. Realizing reliable transfers

As discussed earlier, at least certain messages distributed
in shared virtual environments require a reliable transfer.
UDP/IP, however, is a connectionless protocol. Thus
packages (datagrams) transmitted by this protocol might
get lost, duplicated, or arrive in a different order. IP
multicasting currently supports data transmission based
on UDP/IP only. A number of approaches have been
made to realize reliable data transfers on top of IP
multicasting (e.g. SRM [9], LBRM [10], and RAMP [11]).
Most of these approaches, however, were focused on a
particular application area or network environment. For
that reason DWTP uses a new mechanism for realizing
reliable data transfers via unreliable protocols. Existing
approaches either use acknowledge messages (ACKs)
or negative acknowledge messages (NACKs) to realize
reliable transfers. When using ACKs, each recipient of
a message returns an ACK to the sender. The sender
has to be aware of each recipient to identify missing
ACKs. It will then send these messages to the particular
recipients or all participants again. In a distributed virtual
environment where participants join and leave frequently
this approach has a number of drawbacks: the large
number of ACKs increases the network load dramatically.
The sender might have to resend a particular message
several times before all other participants have successfully
received it. Each participant has to keep track of all other
participants currently connected. Leaving a shared world
requires special attention, since all messages have to be
acknowledged before and the recipient has to make sure that
no other participant is still waiting for an ACK. Otherwise
the message would be transferred several times unless

123

W Broll

router

receiver

sender

message distribution

receiver

transmission
error

NACK

NACK

NACK

receiver

Figure 4. NACK explosion effect.

sending is stopped by a timeout mechanism or restricted
by the number of failures.

NACKs, on the other hand, are much easier to handle
for the sender of a message. They may, however, lead
to the NACK explosion effect (see figure 4). This effect
occurs if a message gets lost at a particular host (a router)
within the network connection. All participants which
should have received the message and which are located
behind that host will now send a negative ACK message.
Since these messages will usually take the same route back,
this will even increase the problem. Another problem of
NACKs is, that the receiving party needs to know when to
send a negative acknowledgment. It is usually not obvious
whether receiving no messages means that no messages
were sent or all messages got lost. Thus, all sending parties
additionally have to send an ‘I’m alive’ message after a
certain period. In an environment with a large number of
participants this will significantly increase the network load.

Our approach tries to overcome the disadvantages
of both approaches by shifting the responsibility for the
reliable transfer from the sender to some daemons and
the recipients of the messages. To achieve this we use a
combination of ACKs and NACKs in our approach. ACKs
are sent by reliability daemons (see figure 5). This allows
the sender of a message to make sure that the message
has been transferred. Other participants can use the ACKs
sent by the reliability daemon to detect that they missed
a message. To detect transfer failures of ACK messages
there is a maximum interval between two ACK messages
send by the reliability daemon. After this time has passed,
the reliability daemon will send an (empty) ACK even if
it has not received a message. All ACKs are additionally
numbered. Thus, participants can detect missing ACKs
either by a timeout mechanism or by missing message
numbers.

Missing messages and missing acknowledge messages
are not requested from the sender or the reliability daemon
but from recovery daemons. Recovery daemons provide a
cache of the most recent messages transferred and send
these messages to participants upon request via unicast
connections (UDP/IP or TCP/IP). Like all other daemons,
recovery daemons have to be connected to the multicast
group. The reliability daemon itself has to provide recovery
services at least to recovery daemons to ensure that all
acknowledged messages can be recovered.

3.5. Achieving persistent worlds

When establishing a connection to a shared virtual world,
the application will provide a DWTP URL to the DWTP
library to connect to a DWTP world daemon. If a
shared virtual world is static, i.e. participants may not
modify any contents other than themselves, an application
(e.g. a browser) may also use a local scene description
or download the scene from a HTTP or FTP server.
Most shared virtual worlds, however, will incorporate
applications or behaviours which continuously alter the
contents of the virtual world. Thus, each participant
connecting to such a world might find a different world or at
least a world in a different state. Additionally participants
of such worlds might change or modify their contents.
These changes have to be preserved even if no participant is
connected to the world. This requires at least one instance
of the world being dynamically updated. For that reason the
world daemon provides an interface to request dynamically
created files or data from another application. Since the
requested data highly depends on the application and is
actually independent of the network communication, this
service cannot be provided by the world daemon itself. The
SmallServ application server is an example application on
top of DWTP which provides these services (see figure 6).
The application server receives all events modifying the
virtual world from the DWTP world daemon and updates
the virtual world objects accordingly. Similar to the world
daemon itself, an application server may handle several
shared worlds at the same time. An application server
will provide a current description of the virtual world to
the world daemon for transferring it to new participants.
Additionally it may provide incremental updates by creating
a set of events to update an older version of the world to
the current state.

3.6. Making worlds scalable

In this section we will present mechanisms which allow us
to keep the number of participants, the size of the world,
and the number of its objects scalable.

3.6.1. Avoiding bottlenecks. Systems supporting
multiple participants which rely on centralized components
do not scale very well, since the centralized component
becomes the bottleneck of the system. For that reason it
is necessary to avoid any centralized components as far as
possible and distribute their duties between several sites.

124

SmallTool—a toolkit for realizing shared virtual environments

multicast
group

participant participant

participant

reliability
daemon

recovery
daemon

recovery
request

(NACK)

multicast

unicast (UDP/IP or TCP/IP)

ACK

transmission
error

recovery
data

Figure 5. Network architecture for achieving reliability.

multicast
group

participant participant

new
participant

world
daemon

snapshot of
virtual world

application
server

establishing new
connection

scene file, pending events,
user profiles etc.

 connect to
world

multicast

unicast (UDP/IP or TCP/IP)

Figure 6. Achieving persistence.

DWTP allows us to distribute the individual daemons on
several hosts and by that reduce the load at each site.
Additionally most daemons (except the reliability daemon)
can be replicated to split the load of a particular daemon
between several sites. Several world daemons can be
used to provide multiple dial-in points. Similar to HTTP
daemons only a single URL is required and other world
daemons are addressed via redirection from the primary
daemon. As already mentioned above, unicast daemons
have to limit their number of participants. Nevertheless
any number of unicast participants can be supported by
providing several unicast daemons for a particular world.
The same applies for recovery daemons. Depending on the
amount of recovery requests, additional recovery daemons
can be added to a shared virtual world. On the other
hand, several daemons can be combined at a single host,
if the world and the number of participants are small.
It is also possible to use one daemon for an arbitrary
number of shared worlds (similar to an HTTP daemon
serving several HTML pages). Which solution actually
is appropriate, highly depends on the available resources
(bandwidth, computing power) as well as on the size of the
shared worlds and the number of participants.

3.6.2. Supporting large-scaled virtual worlds. Another
mechanism to support large-scaled virtual worlds is to
subdivide the world into several regions. Each of them
providing its own network communication. The flexible
communication approach realized by DWTP to group or
distribute files and services between several daemons and
hosts supports an easy realization of regions by shared
VR applications (see figure 7). The regions can then
easily be linked together by VR applications based on the
DWTP library. Within the application each region has to
be presented by an appropriate DWTP URL. This URL
specifies the world daemon to download the region contents
and to setup the communication for that region.

3.6.3. Comparing DWTP network load with traditional
approaches. In this section we will compare the network
load of traditional approaches to the DWTP architecture.
For this comparison we assume that the size of one update
message is 100 bytes, which is a reasonable value for
updates of avatar specific data (i.e. position, orientation,
etc). Five updates are sent per second. We will ignore the
ACKs created by the reliability daemon, since only a few
messages will require reliable transfers. Additionally the
number of acknowledges under high-load conditions will
not exceed 5% of the messages requiring reliable transfer

125

W Broll

multicast
group

multicast
group

participant participant participant participant

world daemon

multicast
group

participant

world daemon

Figure 7. Realizing individual network connections for each region.

(approximately 20 messages can be acknowledged within a
single ACK). We further assume that all participants are
either moving (transmitting changes of their avatar), or
interacting with an object within the scene. Since many
users often neither move nor interact for some time, the
overall number of messages will usually be even less.
Finally, we can neglect messages based on animations,
since starting or stopping an animation will each require a
single event already considered as part of user interactions.
The execution of animations is performed locally and does
not require the transfer of any message.

In each comparison matrix we will compare the
classical client–server approach and direct peer-to-peer
connections to DWTP using either a multicasting or unicast
connection. In the latter case a maximum of 10 participants
for each unicast daemon is assumed. The unicast daemon
will forward a message to local participants directly and
to all other participants via the multicast group. The load
of the daemons (except the unicast daemon) is not shown
in the table. However, their load always equals the local
network load of each participant. The first comparison
matrix (table 1) shows the network load (bits s−1) for 10
participants.

In this example the network load at the unicast daemon
is slightly higher than at a traditional server, since the
unicast server additionally sends all messages to other
daemons and participants via the multicast group.

The second comparison matrix (table 2) shows the
network load for 100 concurrent participants.

While the overall load is not a problem for shared
virtual worlds with 10 users, these tables show that the
traditional client–server approach is not suitable to realize
shared virtual worlds with a large number of participants.
The reason is that the network load at the server increases
by the square of the number of participants. Direct peer-
to-peer communication puts a rather high load on the
local network and for that reason cannot be used for
low bandwidth connections. All other approaches are
able to support up to 70 concurrent users on a regular
64 kbit s−1 ISDN line, if the update rate is dropped to
1 Hz.

4. Related work

There have been a number of recent developments in the
area of protocols for shared virtual environments. However,

DIS [12] is still the only existing networking standard for
distributed virtual environments. It is currently used in
NPSNET [13] as well as in several other shared simulations.
It is completely based on IP multicasting and does not
support any alternative protocols. Consistency among
participants is achieved by sending the current state of
each entity (object) frequently to the multicast group. Since
all entity types and their potential states are known by all
participants in advance, this mechanism can also be used
to distribute the contents of the current world. Although
this approach is very suitable for the specific application
area (military simulations), it does not fit very well to
general purpose virtual environments, where the type of
objects and their states usually will usually not be known in
advance. A subdivision of a DIS environment into several
multicast groups similar to that provided by SmallTool
exists. The approach, however, is based on a subdivision
of the landscape into a set of hexagonal cells. Each cell
is represented by an individual multicast group and each
participant is connected to his local cell and the neighbour
cells only. Again the approach is highly adapted to the
application area.

The VR transfer protocol (VRTP) [14] is a new
network protocol currently being developed at the Naval
Postgraduate School, Monterey, CA to overcome the
limitations of DIS. It combines existing client–server
technology as used by HTTP with reliable multicasting.

The interactive simulation transfer protocol (ISTP) [15]
is a high-level protocol. Similar to DWTP it uses a
mixed multicast and client–server model. This enables
ISTP to select network connections depending on the data
type to be transmitted. ISTP is used within the SPLINE
system (scalable platform for large interactive network
environments) [16]. Similar to SmallTool, SPLINE
supports the subdivision of virtual worlds into several
regions, each with its individual network connection. In
SPLINE these regions are calledlocales.

Beside these approaches based on heterogeneous
network architectures, a number of approaches exist, which
entirely rely on IP multicasting. Two of the most advanced
systems in this area are MASSIVE and the distributed
interactive virtual environment (DIVE).

The MASSIVE VR system was developed at the
University of Nottingham. In its second version
(MASSIVE-2) [17] it uses third-party objects in addition to
the mechanisms introduced by the spatial model to control

126

SmallTool—a toolkit for realizing shared virtual environments

Table 1.

Participant Participant Participant Server
sending receiving local network (or unicast daemon)

Client–server
approach 4 kbit s−1 36 kbit s−1 40 kbit s−1 400 kbit s−1

Peer-to-peer
connections 36 kbit s−1 36 kbit s−1 72 kbit s−1 0
DWTP using IP
multicasting 4 kbit s−1 36 kbit s−1 40 kbit s−1 0
DWTP using
unicast connections 4 kbit s−1 36 kbit s−1 40 kbit s−1 440 kbit s−1

Table 2.

Participant Participant Participant Server
sending receiving local network (or unicast daemon)

Client–server
approach 4 kbit s−1 396 kbit s−1 400 kbit s−1 40 Mbit s−1

Peer-to-peer
connections 396 kbit s−1 396 kbit s−1 792 kbit s−1 0
DWTP using IP
multicasting 4 kbit s−1 396 kbit s−1 400 kbit s−1 0
DWTP using
unicast connections 4 kbit s−1 396 kbit s−1 400 kbit s−1 4.4 Mbit s−1

the interaction of users and the presentation of information.
In addition to the approach realized by SmallTool,
MASSIVE’s third-party objects provide mechanisms to
manage the communication via several multicast groups
dynamically, i.e. add and remove participants depending
on their number, the current load, etc.

The DIVE [18] system has been developed by SICS.
It does not guarantee the persistence of virtual worlds.
Nevertheless the basic synchronization mechanism is very
similar to the one used by the SmallTool. The system,
however, does not take care of package loss on multicast
connections, but assumes that most differences will be fixed
over time by later transmissions.

Beside this, a large number of networked VR systems,
many of them based on VRML, exist. These systems are
usually based on central servers. While this architecture
is rather simple and provides easy realization of reliable
message transfers, the number of concurrent participants
is either restricted to a small number (typically some 10
users), or the number of object changes distributed to other
participants is reduced significantly. The latter usually
implies that avatar movements are only transmitted at very
low rates and consistency is limited to certain objects of a
shared virtual world. Examples for such systems include
Sony’s Community Place [19] or Blaxxun’s CC3D/CCPro
[20].

5. Future directions

Our research can be subdivided into two major areas.
On the one hand, we try to provide better (technical)
mechanisms to enable users to participate at shared virtual

worlds. On the other hand we try to improve the quality
of the representation of the users, their interaction with the
worlds’ contents and collaboration with other users.

The first area of interest includes research on how to
enable participants connected via low-bandwidth connec-
tions without making them lose important information on
the current state of the world. It further attempts to increase
scalability by reducing network traffic. Additional work has
to be done to make the scalability mechanisms more dy-
namic. So far several daemons might be either combined
on a single host or distributed or even replicated among
several hosts. While this approach is already very scalable,
it is nevertheless static. Thus, it cannot deal very well with
a suddenly rising number of participants. The same applies
for the subdivision mechanism. Some effort is required to
make these approaches dynamically adjustable to the cur-
rent load of the system by launching additional (optional)
daemons or subdividing the world on the fly.

The second area includes research on the appropriate
representation of users in shared virtual worlds and
examines the impact of various representations on the
mutual awareness of other users’ interactions. This includes
experimenting with avatars which are completely non-
human, human-shaped, human-shaped and animated up to
representations using embedded video. Additionally, the
representation of human gestures and body language plays
an important part in this area.

6. Conclusions

In this paper we presented SmallTool, a toolkit for realizing
shared virtual environment on the Internet. SmallTool

127

W Broll

provides support for the ISO standard VRML as a
basic description language for 3D objects and for the
representation of users by avatars through its extended
VRML library. It also simplifies the use of arbitrary
input devices by its device library. Combined with its
DWTP networking library, SmallTool provides us with a
platform for further investigating the area of collaborative
virtual environments and multi-user applications. We
demonstrated the use of the toolkit by our two example
applications SmallView and SmallServ, which enable users
to setup and participate in shared VRML worlds.

We further discussed the realization of the DWTP
library in detail. We showed how DWTP can be
used to realize networked virtual environments which
are consistent, persistent and scalable. The architecture
we presented allows us to support a large number of
participants distributed worldwide on the Internet. These
participants may use individual network connections to
share a virtual world. We finally showed how the concepts
realized within DWTP keep the overall network architecture
scalable.

References

[1] Ames L A, Nadeau D R and Moreland J L 1997The
VRML 2.0 Sourcebook(New York: Wiley)

[2] Broll W 1997 Populating the Internet: supporting multiple
users and shared applications with VRMLProc.
VRML’97 Symp.pp 33–40

[3] Benford S and Fahlén L E 1993 A spatial model of
interaction in large virtual environmentsProc. 3rd Eur.
Conf. on Computer Supported Cooperative Work
(ECSCW’93) (Milan, Italy)(Dordrecht: Kluwer)
pp 109–24

[4] 1997 Living Worlds—Making VRML 2.0 Applications
Interpersonal and InteroperableDraft 2
http://www.vrml.org/Workingroups/living-worlds/

[5] Marrin C and Couch J 1998 VRML external authoring
interface (EAI) referenceProposal for a VRML 2.0
Informative Annex
http://www.vrml.org/WorkingGroups/vrml-eai/

[6] 1997 VRML’97, the Virtual Reality Modeling Language
ISO/IEC International Standard 14772-1:1997
http://www.vrml.org/Specifications/VRML97/

[7] Broll W 1998 DWTP—An Internet protocol for shared
virtual environmentsProc. VRML’98 Symp.
(February 16–19, Monterey, CA)to appear

[8] Kumar V 1995MBone: Interactive Multimedia on the
Internet (Indianapolis, IN: New Riders)

[9] Floyd S, Jacobsen V, Liu C, McCanne S and Zhang L
1995 A reliable multicast framework for light-weight
sessions and application level framing, scalable reliable
multicast (SRM)ACM SIGCOMM 95

[10] Hobrook H W, Singhal S K and Cheriton D R 1995
Lob-based receiver reliable multicast for DISACM
SIGCOMM 95pp 328–41

[11] Koifman A and Zabele S 1996 RAMP: A reliable adaptive
multicast protocolProc. IEEE INFOCOM ’96 (San
Francisco, CA)
http://www.tasc.com:80/simweb/papers/RAMP/ramp.htm

[12] Locke J An introduction to the internet networking
environment and SIMNET/DIS http://www-
npsnet.cs.nps.navy.mil/npsnet/publications/DISIntro.ps.Z

[13] Macedonia M Ret al 1995 Exploiting reality with
multicast groups: a network architecture for large-scale
virtual environmentsProc. IEEE VRAIS’95(Los
Alamitos, CA: IEEE Computer Society Press) pp 2–10

[14] Brutzman D, Zyda M, Watsen K and Macedonia M 1997
Virtual reality transfer protocol (VRTP) design rationale
Proc. 6th IEEE Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises
(June 18–20) (Cambridge, MA: MIT)(Los Alamitos,
CA: IEEE Computer Society Press) pp 179–86

[15] Waters R C, Anderson D B and Schwenke D L 1997
Design of the interactive sharing transfer protocolProc.
6th IEEE Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (June 18–20,
Cambridge, MA: MIT)(Los Alamitos, CA: IEEE
Computer Society) pp 140–7

[16] Barrus J W, Waters R C and Anderson D B 1996 Locales:
Supporting large multiuser virtual environmentsIEEE
Comput. Graph. Appl.16 50–7

[17] Benford S and Greenhalgh C 1997 Introducing third party
objects into the spatial model of interactionProc. 5th
Eur. Conf. on Computer Supported Cooperative Work
(ECSCW’97)ed J A Hugheset al (Dordrecht: Kluwer
Academic)

[18] Hagsand O 1996 Interactive multi-user VEs in the DIVE
systemIEEE Multimedia3

[19] Lea R, Honda Y, Matsuda K and Matsuda S 1997
Community place: architecture and performanceProc.
VRML’97 Symp.pp 41–9

[20] Blaxxun Interactive http://www.blaxxun.com

128

