
Distributed Systems Engineering

Planning for change: a reconfiguration language
for distributed systems
To cite this article: B Agnew et al 1994 Distrib. Syst. Engng. 1 313

View the article online for updates and enhancements.

You may also like
Tiger: Concept Study for a New Frontiers
Enceladus Habitability Mission
Elizabeth M. Spiers, Jessica M. Weber,
Chandrakanth Venigalla et al.

-

Leveraging the Gravity Field Spectrum for
Icy Satellite Interior Structure
Determination: The Case of Europa with
the Europa Clipper Mission
G. Cascioli, E. Mazarico, A. J. Dombard et
al.

-

Resurfacing: An Approach to Planetary
Protection for Geologically Active Ocean
Worlds
Michael DiNicola, Samuel M. Howell, Kelli
McCoy et al.

-

This content was downloaded from IP address 3.14.15.94 on 28/04/2024 at 06:46

https://doi.org/10.1088/0967-1846/1/5/006
https://iopscience.iop.org/article/10.3847/PSJ/ac19b7
https://iopscience.iop.org/article/10.3847/PSJ/ac19b7
https://iopscience.iop.org/article/10.3847/PSJ/ad1933
https://iopscience.iop.org/article/10.3847/PSJ/ad1933
https://iopscience.iop.org/article/10.3847/PSJ/ad1933
https://iopscience.iop.org/article/10.3847/PSJ/ad1933
https://iopscience.iop.org/article/10.3847/PSJ/ac642d
https://iopscience.iop.org/article/10.3847/PSJ/ac642d
https://iopscience.iop.org/article/10.3847/PSJ/ac642d

Mstrib. Syst. Engng 1 (1994) 313-322. Printed in the UK

Planning for change: a reconfiguration
language for distributed systems

B Agnewt, C Hofmeisterz and J Puttilot
t Computer Science Department and Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742, USA
1 Siemens Corporate Research, 755 College Rd E., Princeton, NJ 08540-6632,
USA

Abstract. To improve the programmer's use of reconfiguration methods in
distributed systems, we are studying notations for expressing change in the form
of reconfiguration plans. These plans are used to describe the application's
reconfiguration as a result of the detection of events from either the application
itself or its environment. Our current work on this subject is a system called
Clipper. Clipper is based on C++, and provides the programmer with a
language for describing reconfiguration plans that are compiled into the run
time mechanisms for implementing change rules in the application. This paper
describes Clipper and the requirements that guided its development.

1. Introduction

Dynamic reconfiguration of an executing distributed ap-
plication entails mapping one application configuration
to another, where an application configuration refers to
the structural properties of the application. The map-
ping may be applied to implement a planned upgrade,
to recover from a fault condition, or to adjust perfor-
mance in the application environment. Given the ad-
vent of environments in which dynamic reconfiguration
is possible, our interest has focused on methods for as-
sisting the programmer in the control of reconfiguration.
Specifically, we are concerned with the mapping of re-
configuration plans to the execution of the application.
To facilitate this, we have developed a simple C++ [3]
extension for organizing reconfigurations on behalf of
programmers, based upon recognition of reconfiguration
events. Reconfiguration events represent an application
state, or precondition, that is necessary for transforma-
tion of the application. These events are bound explicitly
by the programmer to a plan of actions appropriate for
the transformation on the application structure.

We adopt the terminology from the prior reconfig-
uration research [6]. A distributed application consists
of a set of processes (possibly across many heteroge-
neous host platforms) interconnected by communication
channels. The processes shae only the distributed envi-
ronment in which they execute, and their mutual bind-
ings. Dynamic reconfiguration may involve change to
the structure of the application (such as addition and
deletion of modules or bindings) or it may involve al-
tering how the structure is mapped onto the underlying
host resources.

In our previous work [12], we focused on the
run-time environment required to support dynamic

reconfiguration. This environment provided the
programmer with a library of system-call-like accessors
to effect change. A component of the application using
these methods was referred to as a catalyst module.
The purpose of the catalyst module in an application
is to recognize conditions suitable for reconfiguration
and perform the operations necessary to satisfy those
conditions. Our experience has shown that construction
of these modules requires much repetitious coding;
this suggests that the task can be made more efficient
by creating a higher level abstraction for translating
the programmer's reconfiguration plans automatically.
Clipper is our first experimental notation for expressing
these reconfiguration plans abstractly.

Clipper represents an application configuration as a
collection of C++ structures, and allows the programmer
to describe mappings between configurations as opera-
tions on structures. Then each mapping is explicitly
associated with the conditions and events that will trig-
ger it, resulting in a reconfiguration plan. The plans
are compiled into a catalyst module which is executed
with its subject application. At run time the catalyst ex-
ecutes the plans after recognizing the events associated
with those plans. With this method, the programmer
is free to realize the transformation of the application
at the configuration level without additional concern of
implementation details.

This paper describes Clipper, along with require-
ments we have identified that led to its development.
It describes how catalyst modules are constructed, and
subsequently executed. It discusses the current state of
our overall system and the experiments we are perform-
ing.

0967-1846/9~/050313+10$19.50 0 1994The British Computer Society. The institution of Electrical Engineen and IOP Publishing Ltd 313

B Agnew et a/

Figure 1. The dining philosopher’s initial configuration (left); during reconfiguration
(right).

2. Requirements of the reconfiguration
language

The requirements we chose for the Clipper language
were motivated by these considerations: developmental
ease, protection of the application state, clean separation
between (normal) application processing and reconfig-
uration activities, and minimization of side effects due
to reconfiguration. As with any language development
effort, we sought a notation that is both expressive and
succinct: a language detailed enough to support all struc-
tural changes to the application but simple enough that
syntactical errors can be kept at a minimum.

We also believed it advantageous for the language’s
syntax, scope and control structures to be similar to
high-level languages currently in use; this permits the
programmer to develop reconfiguration plans with some
intuition as to their behaviour. All changes in the
application are orchestrated from a central plan extemal
to the application, differing from the notations expressed
in Durra [l] and Gerel [4]. This simplifies the set ‘of
reconfiguration commands [5] and enables portability
between distributed environments.

Of course, not all types of reconfigurations are
appropriate or correct for all applications, and therefore
an important requirement of the language and system is
to protect against inappropriate operations. Constraints
on the set of reconfigurations valid at any given point
can be described as arising from two sources. In the
first, the application is assured of semantic consistency,
independent of the nature of the application. For
example, a module cannot be connected to another
module that does not exist. In the second form
of protection, the application configuration is limited
to the set of possible configurations specified by the
reconfiguration plan. This protection is explicitly

314

enforced by the programmer, and is application
dependent.

Another general requirement is one of non-
interference: the steady state behaviour of a reconfig-
urable application should not vary significantly from a
similarly structured static application. Specifically, dur-
ing the normal operation of the application users should
not experience performance or reliability degradation
due to the presence of any extemal system in the run
time environment that would make the application re-
configurable.

The reconfiguration process itself should be efficient
in resource and time use. This is not a strict requirement,
and is intended to reflect a strong sentiment that
most reconfigurations (other than those intended to
alter functionality) should be invisible to users of the
application.

We use a dining philosophers example to illustrate
the intended application of a reconfiguration language.
In particular, it illustrates how use of such a language
would augment the current run-time environments
that support dynamic reconfiguration of distributed
applications. (In the past, this example bas been
referred to as the ‘uninvited diner’ problem.) The initial
application consists of four components representing
dining philosophers (figure 1, left). Each diner module
has three possible states: eating, thinking, or hungry.
Adjacent diners share a resource, a fork, and each diner
must have exclusive use of its two forks in order to eat.
After eating, a diner reverts to a thinking state, where
it remains until it becomes hungry and requests the two
forks.

As a reconfiguration operation, we would like to
add a new diner to the application (figure I , right). To
support this change, the following modifications to the
application are necessary: replacing the original diner

A reconfiguration language for distributed systems

reconfiguration, we are exploiting a ‘divide and conquer’
approach to development. In our example, one event
might be called. ‘anival‘ (of some new diner); later,
the programmer may wish to provide rules for other
events, such as recognition of a fault (e.g., ‘host down’,
mapping into a restart operation for whatever processes
are affected) or load balancing (e.g., ‘loaded’ mapping
into a process migration plan). Ideally, any language
for planning reconfigurations should support expression
of rules such as these, and allow for the executables
to be prepared without manual intervention by the
programmer.

module with one that it is capable of transferring its
state (which is needed to maintain the correct sharing of
forks), adding a display @laitre d’) module to request
reconfiguration infomation (such as the name of a new
diner) and adding a catalyst module (Waiter) to perform
application configuration changes.

We have modified the original module description
of the diner to allow distinction between a dynamically
created object and a statically allocated one. This is
important for synchronization of the new diner with the
existing application. A new diner module checks its
status at the start of its execution. If status is dynamic,
then the module waits for state information from the
diners to its left and right before proceeding. This is
necessary to prevent the application from entering a state
of starvation. The new module enters one of its three
working states once it receives state information (a token
indicating a fork) from its neighbouring diners. The
reconfiguration operation is described by the following
steps.

(i) Get access to a new diner and the adjacent existing
diners. Change an attribute of the new diner to indicate
that the diner is dynamic.

(ii) Activate queued binding mode. This allows us
to defer binding changes until we are ready to add them
just before starting the new diner.

(iii) Disconnect the two adjacent diners. Connect the
new diner to the existing diners.

(iv) Release queued binding mode. This applies
all previous binding changes since the activation of the
queued binding mode.

(v) Add the new diner.
(vi) Synchronize the new diner with the application

by inducing the existing diners to dump their state
information to the new diner.

This type of reconfiguration was enabled by prior
work, such as found within the Conic system [SI or
the Surgeon system [6]. In the terminology of our own
platform, the catalyst for this system would need to be
prepared manually; more importantly, the programmer
must decide the basis for initiating the introduction
of a new diner. This is not an insurmountable
problem, and indeed we have solved it in the past
via manual techniques. Nevertheless, the problem
still remains: even though the programmer can reason
about the reconfiguration in the abstract, the only
medium for expressing decisions on reconfiguration
was the programming language used to implement the
application itself.

The programmer should be able to simply declare
the names of abstract events, then illustrate in terms of
the structure how the application should change in the
face of those events. The programmer should be able to
express reconfiguration plans abstractly, and then have
implementation of the appropriate infrastructure installed
automatically in the context of the particular application.
The problem of identifying the run time mechanisms
needed to recognize events and trigger reconfiguration
is then solved separately.

By separating the development of the application
components from the task of enabling application

3. Design and implementation

Clipper is the language and system intended to meet
requirements listed in the previous section. Our current
notation is a prototype, and is based upon a simple
extension to Ctt; our language for the configuration
itself, as well as the run time environment to support the
reconfiguration steps, is drawn from our work in Polylith
[12]. This section of the paper describes the language
itself, the event mechanism, and the properties of catalyst
modules that are generated by the Clipper system for
introduction to the application run time environment.

3.1. Description of the reconfiguration language

To meet the requirements stated earlier, C++ was chosen
to support the reconfiguration language. C++ provides
type checking, restricted data access, overloading of
operators and functions, derivation of data types,
and implicit initialization of data structures. Type
checking permits rudimentary static analysis of the
reconfiguration plan, while data access, operator
and function overloading allow implementation of
dynamic analysis. Derivation of data types helps
enforce consistency in the definitions of application
components. Consistency is needed to ensure all
application components can be analysed dynamically.
Implicit initialization of data structures lets the user take
advantage of default values specified in the configuration
file.

By using an existing language (that includes an
overloading capability) we were able to construct the
first prototype of the system rapidly. Then, based upon
our experimentation with Clipper, we slightly modified
the syntax into a rule-based notation more strongly suited
to the expression of plans. We use the diners application
to illustrate the nature of Clipper. In table 1 the code
on the left side is explained by comments on the right.
We have numbered the comments to indicate the steps
invoked in the reconfiguration.

A plan is a valid C++ program in which changes to
application components (modules and bindings) occur
as a result of manipulations on a set of class objects
representing the application. The set is the model of the
application, and it is through this model that all changes
to the application are made. The Clipper compiler

315

B Agnew et a/

Table 1. The reconfiguration plan for the dining philosophers example.

The reconfiguration code

#include "dinnerp1ans.h"
void adddiner
(char "leftname, char' centername, char rightname)

diner oldleft(left-name); 1 get access to diner objects
[

diner oldright(rightname); 1
diner newdiner(centername); 1

*newdiner.STATUS= "dynamic"; 1 set attribute STATUS
initbindo; 2 lock bindings
oldleft.unbilink("right-req" 'letreq", oldright); 3 disconnect oldlefl from oldright
oldright.unbilink("letfork", "rightfork". oldleft); 3 disconnect oldright from oldleft
oldleft.bilink("rightreq", 'leftreq", newdiner); 4 connect oldleft to newdiner
newdiner.bilink("lefrk", "rightfork", oldleft); 4 connect newdiner to oldleft
oldright.bilink("lefLfork", "rightfork", newdiner); 4 connect oldright to newdiner
newdiner.bilink("rightJeq", "lertreq", oldright); 4 connect newdiner to oldright
setbindo; 5 apply binding changes
newdinerstarto; 6 start new application component
oldleft.dumpstate("reconflg-right", newdiner); 7 dump application state
oldright.dumpstate("recontigJeft", newdiner); 7 dump application state

1

The code behaviour

include model object definitions

builds the class definitions and model objects when it
parses the static representation of the application. Each
model object represents an executable component of the
application. A model object type is a class containing
attribute, and interface objects. These intemal objects
are initialized according to the appropriate module
description given in the static representation.

We now use the diner reconfiguration plan to
illustrate a typical reconfiguration sequence in a Clipper
plan. The first step of the plan involves obtaining access
to the model elements representing the parts of the
application we wish to change. This is done by declaring
three diner objects, each initialized through a constructor.
The character string passed to the constructor identifies
the module that this diner object represents. If the
module is currently running, or is described by an
existing model object the application model, this diner
object will alias it. If the module does not exist (in the
distributed environment or model), this diner object will
represent a new module in the application. The scope
of model object types extends beyond that of normal
static types. The distributed object's lifetime dictates
the lifetime of the model object representing it, although
local identifiers aliasing that model object exist only in
the block in which they are declared.

After having gained access to the application, we
perform changes in the remaining steps. We queue
the subsequent binding changes in step two to prevent
the application from reaching unwanted intermediate
configurations. These binding changes are then applied
in step five, just before starting the new diner. In steps
three and four the existing diners are disconnected from
each other and reconnected to the new diner. After the
new diner is started in step six, we command the two
older diners to disgorge their state information to the
new diner to maintain the consistency of the application.

Table 2 illustrates the commands for manipulating
module objects. The basemodule class is the base

316

class from which all modules described in the static
application are derived. By using a base class for
all model changes we were able to better control
the consistency of the application. All operations on
the components of the application and their member
attributes and interfaces are atomic in the reconfiguration
environment to prevent them from conflicting with each
other.

3.2. Events initiating reconfiguration

There are three possible sources of stimulus for recon-
figuration: the application, the distributed environment,
and the system environment. Events received by the
catalyst are acted upon immediately unless a reconfigu-
ration operation has already been initiated. If this is the
case, the events are queued in the order of their arrival
untii the current reconfiguration is complete.

In Clipper, reconfiguration plans execute by implicit
invocation. We bind the events that initiate reconfigura-
tion with the reconfiguration plans using bind statements.
Table 3 shows the text for binding an event called "ar-
rival" to the reconfiguration plan adddiner. We first de-
clare an event object with the intemal name of "arrival".
Then, we bind that event object to a reconfiguration plan
by creating a binding object. Binding object construc-
tion requires an event object and a reconfiguration plan.
If we need to send any of the event's parameters to the
plan we also include a tape code (a string specifying pa-
rameter types in the distributed system) to specify the
format of those parameters. For our example, the tape
code is 'SSS', which represents the names of the two
adjacent diners and the new diner.

The reconfiguration plan add-diner is called with
the following sequence. The event generating module
display receives a request from the user to add a new
diner. The event generating module then broadcasts the
event "arrival" throughout the distributed system. The

A reconfiguration language for distributed systems

Table 2. The methods for modifying the application in Clipper. All objects representing application executables
are derived from the class basemodule.

The Function protoype and description

basemodule::start();
Add this module to the application.
basemodu1e::stop ();
This module is removed from the distributed environment.
basemodu1e::link (char* fromiface , char* toiface , basermoduleR to-module);
Add a directed binding between one of this module's interfaces and another module's interface.
basemodu1e::unlink (char* fromiface , char* toiface , basemodule& tomodule);
Remove a directed binding between one of this module's interfaces and another module's interface.
basemodu1e::bilink (char* fromiface , char* toiface , basermoduleR tomodule);
Add a bidirected binding between one of this module's interfaces and another module's interface.
basemodu1e::unbilink (char* fromiface , char* toiface , basemodule& to-module);
Remove a bidirected binding between one of this module's interfaces and another module's interface.
basemodu1e::dumpstate (char* fromiface , char* toiface , basermodule& to-module);
Create a temporary binding between fromiface and to-iface from this module to tomodule .
basemodu1e::dumpstate (char* from-to-iface , basesloduleR tomodule);
Create a temporary binding between from-toiface and from.toifm? from this module to tomodule.
initbindings ();
Queue all binding changes applied after this function call.
setbindings ();
Apply all binding changes made after the previous call to initbindings.

Table 3. The Bindings file for the dining philosophers example. We have bound the
event "add" to the plan adddiner.

The binding code The code behaviour

#include 'dinnerp1ans.h"
R-event' el= make-event(varrival");
makeMnding(e1, "SSS", adddiner);

declarations of plans for binding objects
creation of an event labelled add
creation of a binding between the event el
and the plan adddiner

parameters sent with the event are the name of a new
diner and two adjacent diners. The catalyst module
receives the event and executes the adddiner plan,
which is the only plan bound to that event in the bindings
file. Execution of a reconfiguration plan involves parsing
the event parameters in the format specified by the
binding's tape code and calling the binding's plan with
the result. The catalyst resumes waiting for additional
events after adddiner terminates.

In the case of our example, we have only one plan
for all operations pertaining to the "arrival" event. But,
in the case of more complicated reconfigurations, it
may make more sense to break up the configuration
changes into smaller, more reusable components. This is
especially true if those components are needed for other
events. For example, deleting a new diner requires a
state transmission similar to adding a new diner. If we
were to change the example to include removal of a
diner, the changes required to the reconfiguration plan
would be made simpler by separating plans in this way,
especially if the state transmittal was complex.

The second source of events is the distributed
environment. Events generated by the distributed
environment are received in the same manner as
application events, although in this case our system relies
upon the underlying bus mechanism to recognize and

generate the appropriate event stream. An example of
a distributed environment event would be the sudden
failure of a module (this could also be classified as a
system event, since the fault is visible at the system level
as well). Once it has detected the problem, the bus sends
an event to the catalyst. The plan bound to this event is
then activated. Typically, such a plan reconfigures the
application based on the information passed to it in the
event, such as the type of module that had terminated
and any special termination conditions.

The third source of events is the system environment.
A system environment event is a trigger representing
a change to the operating environment of the modules
making up the application. An example of such
an event would be the failure of a module's host
machine. We detect this by executing a separate module
with the application, one that is capable of generating
system status events. Determining a set of realistic
events is a complex task for the the underlying system.
Currently, the reconfigurable system on which Clipper
is implemented recognizes only a limited set of events;
a more practical implementation would need to include
a more robust fault tolerance and recovery model.

33. The catalyst module

We have previously identified the catalyst or reconfig-

317

B Agnew et a/

1) RecofligoraLion Module W o n

Bindings

3) Application Execution -
Figure 2. A pictorial representation of the creation and execution of the diners example
as a Clipper application.

uration module. This is the central change agent that
is dedicated to processing the application configuration
changes embodied within the reconfiguration plan.

3.3.1. Application model. The catalyst maintains
a model of the application in its currently executing
state. This provides access to all structural components
(bindings and modules) of the application in the
reconfiguration plan. Since we perform no analysis
of reconfiguration plans, we are not aware of the
type of configuration changes being made, and hence,
what components must be accessible to each plan.
This would be a concem if plans were. allowed to
execute concurrently, since concurrent execution of
plans operating on the same application components
would result in a resource conflict. At this time Clipper
is restricted to serial execution of plans.

In the diners example, the plan attached to the
“arrival” event controls additions of all new diners.
This requires that it have access to any pair of directly
connected diners, though it does not need access to the
display module.

The model maintained by the catalyst is separate
from the distributed environment’s representation of

318

the application. There are several advantages to this
approach.

A separate model gives us more flexibility in deciding
the semantics of a reconfiguration plan. By maintaining
our own representation, the plan implementor is not
constrained by the methods of the distributed system
for gaining capability to application components. In
some cases, information about the application may not
be present within the distributed system. This would
limit the reconfiguration possible using the language.

It minimizes the effect of the plan executions on
reconfiguration performance. Queries to the distributed
system involve resources that may otherwise be devoted
to the application. By keeping separate data, we reduce
the load on the system.

Better application representation. Using the Clipper
application model we can infer more about the
application than possible through the distributed system.
Some examples are the number of modules running on
a given machine, or the bindings between two modules.

A reconfiguration language for distributed systems

Table 4. The Configuration specification for the dining philosophers example.

Module definitions Application definition

service "specialdiner" : [
implementation : 1 binary:"diner.out" }
algebra : ["STATUS=special"]
function "leftfork" : {} returns []
client "rightfork" : {I accepts []
client "leftleq" : [] accepts {]
function "rightJeq" : {] returns {I

implementation : [binaly : "diner.our]
algebra : ["STATUSstatic" 1
function "lftfork" : {I returns [}
client "rightfork" : [] accepts []
client "left-req" : {] accepts []
function "rightreq" : [] returns I]

implementation : [binary : "display.out"]

I
service '"diner" : {

I
service "display" : [

I

orchestrate 'table" : [
tool Yrontend" : udisplay"
tool "Jim" : "specialdiner"
tool "Jack" : "diner"
tool "Christine" : "diner"
tool " L i f : "diner"
bind "Jim leftfork" "Christine rightforP'
bind "Jim left-req" "Christine rightreq"
bind "Christine leftfork" "Liz rightfork"
bind "Christine leftreq" "Liz right-req"
bind "Liz left-req" "Jack .rightreq"
bind "Liz leftfork" "Jack rightfork"
bind "Jack left-fork" "Jim rightfork"
bind "Jack left-req" *Jim right-req"
1

3.4. Catalyst module weation

Figure 2 shows the use of Clipper in constructing the
new dynamically reconfigurable diners application. We
have separated the diagram into three parts: creation of
the recoofiguration module using the Clipper and native
system compilers, creation of the remaining application
components using the distributed system and native
system compilers, and execution of the application.
There are two application configuration descriptions used
to create the catalyst.

The initial configuration of the application, the static
description. We use this to initialize the application
model at the begining of execution. For the distributed
system on which our language is currently implemented,
this description is contained in the configuration
specification shown in table 4.

The reconfiguration modes of the application, or
dynamic description. These are the plans which describe
configuration changes to the application. Table 1 shows
the reconfiguration plan for our example.

3.4.1. Parsing the static description. The configuration
specification file consists of two parts. The first
contains the module descriptions, or declarations of
the module types that are available for instantiation in
the application. The second contains the application
description, or bindings and modules that make up
the application at the start of execution. We extract
from the module,description section of the configuration
specification the module definitions for creating model
object types. From the application description we get the
bindings and modules that are described in the model at
startup.

3.4.2. Assembling the catalyst module. The catalyst
executable consists of the model definition, model
initialization function (needed to synchronize the model
with the application at startup), and the main function.
The main function contains the model initializer call
and the event handling loop. The initialization function
is made up of statements for initializing the event
handler and statements for initializing the application
model. The event and binding declarations extracted
from the bindings file j.nitialize the event bander. The
model object and bind statements derived from the
configuration specification initialize the model. To
simplify construction, we have limited the amount of
code that is generated by the Clipper compiler to
the initialization function and model object definitions.
The remaining definitions are contained in the Clipper
library, which is linked with the user's plans and the
initialization function definition at compile time.

3.4.3. Execution of the catalyst module. The catalyst
module is started when the application begins execution.
Event handlers execute when the event generator they
are bound to sends a signal to the catalyst module.
Execution order of the event handlers bound to the same
event generator follows the order in which they are
declared in the bindings file. Processing event generator
signals is serialized at the catalyst. New events queue in
the order they are received, until all event handlers have
executed for the current event.

3.5. Execution of the reconfiguration plan

The module display is the event generator signalling
the user's desire for a new diner to be added to the
application. After the event generator receives the names
of a new diner and two adjacent diners, the module
sends an "arrival" event to the catalyst to initiate the
configuration change. The catalyst then processes any

319

B Agnew et a/

plans that are bound to the “arrival” event (only one
for this example). Once the plan bound to this event
is started, we gain access to the two adjacent diners
and a new diner with the diner constructors for objects
o l d l e f t , o ld r igh t and newdiner. Following this, we
change newdiner’s STATUS attribute to indicate that this
module has been started dynamically. If this attribute
is not set, the new module will not synchronize with
the two adjacent diners. Bindings between modules
o l d l e f t and o l d r i g h t are removed with un6ilink
commands. The fork bindings are attached between the
two existing modules and the new module using bilink
commands. Since there are no other attributes that need
to be initialized, the module can now be added to the
application. Model objects o l d l e f t and o ld r igh t are
signalled to dump their state information to newdiner
through interfaces “reconfigight” and “reconfigleft”
respectively.

4. Discussion

In this section we discuss some of the issues that arose
as a result of our implementation of Clipper.

Atomicity. So far we have not shown the sequence
of low-level reconfiguration commands executed by
the reconfiguration operations in Clipper. It has
been assumed that the sequence of events executed
by these commands is prevented from causing failure
by a set of preconditions. However, in many cases
there is the possibility that the configuration of the
application may be altered during the execution of a
reconfiguration command, creating unpredictable results.
If the reconfiguration commands are not executed
atomically, the final configuration is undetermined. For
example, if access to attribute values involved spawned
processes, there is the possibility of newdiner in the
diners example being added to the application before
its STATUS attribute is modified. This would cause the
module to starve. Much of our effort in the prototype
goes into addressing the issue of atomicity of operations.

Transformations that are not specified by the
reconfiguration programmer in Clipper cannot be
guaranteed successful. At this time, our prototype
assumes there is only one agent responsible for
performing reconfiguration operations. In the diners
application, one transfer function was specified for the
application, that of adding a new diner to an application
containing two diner modules directly bound. This
reconfiguration is not protected against the condition
of a specified diner not existing. Dynamic checking
of reconfiguration commands will prevent application
failure locally, but will not discourage the propagation
of an error through the plan. Let us assume the user
specifies a non-existent left module. A new module will
be created at the declaration of o l d l e f t . Since this
module is not part of the application, unbilink will not
attempt to unbind it from oldr ight , bilink will not
attach it to newdiner, and dumpstate will not signal
it to synchronize with newdiner. The result will be an

320

application in which newdiner is partially bound and
starving.

Event handling. In the current implementation of
Clipper, the plan module is not represented in its
application model. The intent of this is to satisfy
the ideal that the catalyst is an external change
agent, independent of the application configuration, and
therefore not part of the application model. This means
that we cannot explicitly bind modules to the catalyst,
nor can we start a new catalyst using the existing one.
With only application based event generators available,
we bad to be sure the event generator that initiated
the addition of a new diner was not a component
that would be reconfigured. If it was, then the
plan module would not be able to receive additional
events after the first new diner was added. The main
difficulties in implementing the dining philosophers
problem were transmitting reconfiguration events to
the catalyst, attaining capability to dynamic objects,
and synchronizing new components with the existing
application.

During our prototyping
we introduced an event communication network for
organization of reconfiguration events for improved
synchronization of event generators. This network
uses the framework of Polylith Multicast [2]. The
design considerations of the network are similar those
,of the Distributed ObjectKoncurrent-Thread system
@O/CT), an event handling system for asynchronous
and synchronous events by Menon [lo] et al.

Implementation of the event network using the
language semantics of multicast is as follows: Events are
represented by message type. When an event generator
activates, it multicasts a message to the catalyst of a type
appropriate for that event. The catalyst remains blocked
until it receives a multicast message. When a message is
received, the catalyst executes the plans that have been
declared as handlers for that type. of message.

Multicast message passing provides a seamless
interconnect between many event generators and the
catalyst. It also simplifies the implementation of
multiple reconfiguration agents running concurrently in
the same application. The latter benefit is not one
we exploit at the moment because of considerations
involving synchronization of configuration modes in the
application with multiple, simultaneous reconfiguration
processes. This involves reconfiguration control beyond
our current design objectives.

Model structure query language. More flexibility in
gaining access to model components could be realized
through the introduction of model access methods based
on the structural or component nature of the application.
For example, we may be interested (for load balancing
purposes) in moving all of the modules on machine ‘A’
to machine ‘B’. To do this, we search the model and
replace a l l modules with a machine attribute of ‘A’ with
modules with machine attribute of ‘B’.

This work directly builds upon
prior research performed at the University of Maryland.
Previously, Surgeon (built upon Polylith) provided a

Event passing network.

Related work.

A reconfiguration language for distributed systems

An example of their use in the diners application is in
the addition or removal of a diner. A new diner is
always bound to a left and right diner. Consequently,
its constructor is a function that has two model object
parameters. When the constructor is called, it initializes
its object’s STATUS attribute and binds its object between
the diner object arguments passed to it. Similarly, a
diner object’s destructor is a function that disconnects
its object and reconnects its object’s neighbours to
each other. We discourage reconfiguration programmers
from creating constructor or destructor plans in the
current implementation of Clipper in order to protect the
underlying, structure of the application model.

general mechanism for performing reconfiguration [6];
its focus was on making run-time capabilities available
in widely heterogeneous environments, where the
reconfiguration activities were invisible to application
programmers. This largely paralleled (and to some
extent also built upon) work in the Conic project [8]
as previously reported. One of the differences was
degree of transparency to the programmer. The Surgeon
system placed great emphasis upon making application
reconfigurations invisible to the programmer, whereas
Conic placed requirements upon the designer in order for
the application to be reconfigurable. But this was also
a tradeoff, since the Conic work had greater emphasis
on characterizing correctness and consistency conditions
in the reconfiguration operations. This included a
great deal of analysis to identify a ‘stable state’ within
which reconfiguration steps would be acceptable, and
hence produced a system with more safety conditions.
The Surgeon system opened a much broader set of
commands (and states within which those commands
could be performed) to the reconfiguration programmer,
but without necessarily maintaining as strict a sef of
safety conditions.

In Surgeon, the reconfiguration programmer (as
opposed to the application programmer) still had
several manual steps to perform in order to prepare
to reconfigure a running application. As noted earlier
in this paper, this was the motivation for our current
work. The Clipper language reflects our desire to
provide a simple and compact notation for programmers
to characterize large classes of reconfiguration steps.
Clipper might be though of as a high level environment
for interacting with Surgeon, although this image would
not capture the design effort of automatically generated
stubs and catalyst modules. In the same way that
Surgeon has evolved into the current work, the Conic
effort eventually motivated Rex and then Regis [9], a
powerful environment. In some respects, the derivation
of Regis contains many of the desirable characteristics
of the earlier Surgeon, and similarly our own work now
reflects a step towards increased levels of formalism as
originally inspired by Conic.

Other systems have emerged to assist programmers
in performing reconfiguration operations dynamically.
The Schooner system [7] provides an efficient run-time
mechanism for reconfiguration of the application within
the scientific computing domain, while the Durra [I]
system covers real-time computing reconfiguration con-
cems. Each of these systems provides efficient meth-
ods for reconfiguration but with fairly strict assumptions
limiting their application domain. More recent develop-
ments include environments which provide an object on-
ented approach to the implementation of reconfigurable
applications [13], as well as supporting reconfiguration
mechanisms such as those found in Surgeon or Rex.

Further improvements. We would like to create a
more comprehensive set,of plans that are triggered by
changes to application components based on the type
of these components. These ‘plans’ already exist in
C t t in the form of object constructors and destructors.

5. Conclusion

Using the specifications presented in section 2 we
have created a simple reconfiguration language for
specifying application configuration transitions in terms
of event generators signalling change and event handlers
describing change. The plan syntax provides an intuitive
way of manipulating the application structure through
a set of heterogeneous objects making up a model
of the application. We promote correct execution of
reconfiguration using two methods: type checking for
static analysis (using the C++ type checking facilities),
and dynamic checking for correctness of reconfiguration
operations (by imposing constraints on changes of the
application model). We specify application configuration
transitions as a separate component of the application
specification; these are incorporated into an external
change agent executed with the application. This process
allows the reconfigurations to be handled in a manner
that minimizes the changes to the application, and
insulates the plan writer from the distributed platfom.

References

Barbacci M, Doubleday D, Weinstock C, Gardner M
and Lichota R 1992 Building fault tolerant distributed
applications with Durra Pmc. Int. Workshop on
Confrgurable Distributed System (London) (London:
IEE) pp 128-39

Chen C, White E and Purtilo J 1993 A packager for
multicast software in distributed systems Proc 5th
Inr. Con$ on Software Engineering and Knowledge
Engineering (San Francisco) (Skokie, E Knowledge
Systems Institute) pp 612-21

Ellis M and Strousbup B 1991 The Annotated C++
Reference Manual (New York Addison-Wesley)

Ender M and Wei J 1992 Programming generic dynamic
reconfigurations for distributed applications Proc.
Int. Workshop on Conj’igumble Distribured System
(London) (London: IEE) pp 68-79

systems Pmc. Int. Workhop on Conj’igumble
Distributed Systems (London) (London: IEE) pp 14&51

Hofmeister C, White E and Purtilo J 1993 Surgeon: a
packager for dynamically reconfigurable distributed
applications Sofnare Engng J. 8 (2) 95-101

Homer P and Schlicting R 1994 Configuring scientific
applications in a heterogeneous distributed system Proc.

321

Etzkom G 1992 Change programming in distributed

B Agnew et a/

2nd Int. Workshop on Confrgurable Dism’buted Systems
(Pittsburgh PA) (Los Alamitos, C A IEEE) pp 159-71

[SI Kramer J and Magee J 1990 The evolving philosophers
problem: dynamic change management IEEE Trans.
Software Engng 16 1293-306

[91 Magee J, Dulay N, and &mer J 1994 A constructive
development environment for parallel and distributed
programs Pmc. 2nd Int. Workshop on Confgurable
Distributed Systems (Pittsburgh PA) (Los Alamitos,
C A IEEE) pp 4-11

1101 Menon S, Dasgupta P and LeBlanc R 1993 Asynchronous
event handling in distributed object-based systems
Proc. 13th Int. Conz on Distributed Computing Systems
(Pittsburgh, PA) (Los Alamitos, C A EEE) pp 383-90

[ll] Purtilo J 1994 The Polylith software bus ACM T O P M 1

’

1121 Purtilo J and Hofmeister C 1991 Dynamic reconfiguration
of distributed programs Proc. 11th Int. Con$ on
Distributed Computing Systems (Arlington) (Los
Alados, CA IEEE) pp 560-71

[13] Schmidt D and Suda T 1994 The service configurator
framework an extensible architecture for dynamically
configuring concurrent multi-service network daemons
Pmc. 2nd Int. Workshop on Confgurable Distributed
Systems (Pittsburgh PA) (LQS Alamitos, C A IEEE)
pp 190-205

evolution of reconfigurable systems Proc. Int. Workshop
on Configumble Distributed Systems (London) (London:
IEE) pp 152-63

[I41 Young A and Magee J 1992 A flexible approach to

322

