
Distributed Systems Engineering

Planning for change: a reconfiguration language
for distributed systems
To cite this article: B Agnew et al 1994 Distrib. Syst. Engng. 1 313

 

View the article online for updates and enhancements.

You may also like
Tiger: Concept Study for a New Frontiers
Enceladus Habitability Mission
Elizabeth M. Spiers, Jessica M. Weber,
Chandrakanth Venigalla et al.

-

Leveraging the Gravity Field Spectrum for
Icy Satellite Interior Structure
Determination: The Case of Europa with
the Europa Clipper Mission
G. Cascioli, E. Mazarico, A. J. Dombard et
al.

-

Resurfacing: An Approach to Planetary
Protection for Geologically Active Ocean
Worlds
Michael DiNicola, Samuel M. Howell, Kelli
McCoy et al.

-

This content was downloaded from IP address 3.14.15.94 on 28/04/2024 at 06:46

https://doi.org/10.1088/0967-1846/1/5/006
https://iopscience.iop.org/article/10.3847/PSJ/ac19b7
https://iopscience.iop.org/article/10.3847/PSJ/ac19b7
https://iopscience.iop.org/article/10.3847/PSJ/ad1933
https://iopscience.iop.org/article/10.3847/PSJ/ad1933
https://iopscience.iop.org/article/10.3847/PSJ/ad1933
https://iopscience.iop.org/article/10.3847/PSJ/ad1933
https://iopscience.iop.org/article/10.3847/PSJ/ac642d
https://iopscience.iop.org/article/10.3847/PSJ/ac642d
https://iopscience.iop.org/article/10.3847/PSJ/ac642d


Mstrib. Syst. Engng 1 (1994) 313-322. Printed in the UK 

Planning for change: a reconfiguration 
language for distributed systems 

B Agnewt, C Hofmeisterz and J Puttilot 
t Computer Science Department and Institute for Advanced Computer Studies, 
University of Maryland, College Park, MD 20742, USA 
1 Siemens Corporate Research, 755 College Rd E., Princeton, NJ 08540-6632, 
USA 

Abstract. To improve the programmer's use of reconfiguration methods in 
distributed systems, we are studying notations for expressing change in the form 
of reconfiguration plans. These plans are used to describe the application's 
reconfiguration as a result of the detection of events from either the application 
itself or its environment. Our current work on this subject is a system called 
Clipper. Clipper is based on C++, and provides the programmer with a 
language for describing reconfiguration plans that are compiled into the run 
time mechanisms for implementing change rules in the application. This paper 
describes Clipper and the requirements that guided its development. 

1. Introduction 

Dynamic reconfiguration of an executing distributed ap- 
plication entails mapping one application configuration 
to another, where an application configuration refers to 
the structural properties of the application. The map- 
ping may be applied to implement a planned upgrade, 
to recover from a fault condition, or to adjust perfor- 
mance in the application environment. Given the ad- 
vent of environments in which dynamic reconfiguration 
is possible, our interest has focused on methods for as- 
sisting the programmer in the control of reconfiguration. 
Specifically, we are concerned with the mapping of re- 
configuration plans to the execution of the application. 
To facilitate this, we have developed a simple C++ [3] 
extension for organizing reconfigurations on behalf of 
programmers, based upon recognition of reconfiguration 
events. Reconfiguration events represent an application 
state, or precondition, that is necessary for transforma- 
tion of the application. These events are bound explicitly 
by the programmer to a plan of actions appropriate for 
the transformation on the application structure. 

We adopt the terminology from the prior reconfig- 
uration research [6]. A distributed application consists 
of a set of processes (possibly across many heteroge- 
neous host platforms) interconnected by communication 
channels. The processes shae  only the distributed envi- 
ronment in which they execute, and their mutual bind- 
ings. Dynamic reconfiguration may involve change to 
the structure of the application (such as addition and 
deletion of modules or bindings) or it may involve al- 
tering how the structure is mapped onto the underlying 
host resources. 

In our previous work [12], we focused on the 
run-time environment required to support dynamic 

reconfiguration. This environment provided the 
programmer with a library of system-call-like accessors 
to effect change. A component of the application using 
these methods was referred to as a catalyst module. 
The purpose of the catalyst module in an application 
is to recognize conditions suitable for reconfiguration 
and perform the operations necessary to satisfy those 
conditions. Our experience has shown that construction 
of these modules requires much repetitious coding; 
this suggests that the task can be made more efficient 
by creating a higher level abstraction for translating 
the programmer's reconfiguration plans automatically. 
Clipper is our first experimental notation for expressing 
these reconfiguration plans abstractly. 

Clipper represents an application configuration as a 
collection of C++ structures, and allows the programmer 
to describe mappings between configurations as opera- 
tions on structures. Then each mapping is explicitly 
associated with the conditions and events that will trig- 
ger it, resulting in a reconfiguration plan. The plans 
are compiled into a catalyst module which is executed 
with its subject application. At run time the catalyst ex- 
ecutes the plans after recognizing the events associated 
with those plans. With this method, the programmer 
is free to realize the transformation of the application 
at the configuration level without additional concern of 
implementation details. 

This paper describes Clipper, along with require- 
ments we have identified that led to its development. 
It describes how catalyst modules are constructed, and 
subsequently executed. It discusses the current state of 
our overall system and the experiments we are perform- 
ing. 
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Figure 1. The dining philosopher’s initial configuration (left); during reconfiguration 
(right). 

2. Requirements of the reconfiguration 
language 

The requirements we chose for the Clipper language 
were motivated by these considerations: developmental 
ease, protection of the application state, clean separation 
between (normal) application processing and reconfig- 
uration activities, and minimization of side effects due 
to reconfiguration. As with any language development 
effort, we sought a notation that is both expressive and 
succinct: a language detailed enough to support all struc- 
tural changes to the application but simple enough that 
syntactical errors can be kept at a minimum. 

We also believed it advantageous for the language’s 
syntax, scope and control structures to be similar to 
high-level languages currently in use; this permits the 
programmer to develop reconfiguration plans with some 
intuition as to their behaviour. All changes in the 
application are orchestrated from a central plan extemal 
to the application, differing from the notations expressed 
in Durra [l] and Gerel [4]. This simplifies the set ‘of 
reconfiguration commands [5] and enables portability 
between distributed environments. 

Of course, not all types of reconfigurations are 
appropriate or correct for all applications, and therefore 
an important requirement of the language and system is 
to protect against inappropriate operations. Constraints 
on the set of reconfigurations valid at any given point 
can be described as arising from two sources. In the 
first, the application is assured of semantic consistency, 
independent of the nature of the application. For 
example, a module cannot be connected to another 
module that does not exist. In the second form 
of protection, the application configuration is limited 
to the set of possible configurations specified by the 
reconfiguration plan. This protection is explicitly 
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enforced by the programmer, and is application 
dependent. 

Another general requirement is one of non- 
interference: the steady state behaviour of a reconfig- 
urable application should not vary significantly from a 
similarly structured static application. Specifically, dur- 
ing the normal operation of the application users should 
not experience performance or reliability degradation 
due to the presence of any extemal system in the run 
time environment that would make the application re- 
configurable. 

The reconfiguration process itself should be efficient 
in resource and time use. This is not a strict requirement, 
and is intended to reflect a strong sentiment that 
most reconfigurations (other than those intended to 
alter functionality) should be invisible to users of the 
application. 

We use a dining philosophers example to illustrate 
the intended application of a reconfiguration language. 
In particular, it illustrates how use of such a language 
would augment the current run-time environments 
that support dynamic reconfiguration of distributed 
applications. (In the past, this example bas been 
referred to as the ‘uninvited diner’ problem.) The initial 
application consists of four components representing 
dining philosophers (figure 1, left). Each diner module 
has three possible states: eating, thinking, or hungry. 
Adjacent diners share a resource, a fork, and each diner 
must have exclusive use of its two forks in order to eat. 
After eating, a diner reverts to a thinking state, where 
it remains until it becomes hungry and requests the two 
forks. 

As a reconfiguration operation, we would like to 
add a new diner to the application (figure I ,  right). To 
support this change, the following modifications to the 
application are necessary: replacing the original diner 
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reconfiguration, we are exploiting a ‘divide and conquer’ 
approach to development. In our example, one event 
might be called. ‘anival‘ (of some new diner); later, 
the programmer may wish to provide rules for other 
events, such as recognition of a fault (e.g., ‘host down’, 
mapping into a restart operation for whatever processes 
are affected) or load balancing (e.g., ‘loaded’ mapping 
into a process migration plan). Ideally, any language 
for planning reconfigurations should support expression 
of rules such as these, and allow for the executables 
to be prepared without manual intervention by the 
programmer. 

module with one that it is capable of transferring its 
state (which is needed to maintain the correct sharing of 
forks), adding a display @laitre d’) module to request 
reconfiguration infomation (such as the name of a new 
diner) and adding a catalyst module (Waiter) to perform 
application configuration changes. 

We have modified the original module description 
of the diner to allow distinction between a dynamically 
created object and a statically allocated one. This is 
important for synchronization of the new diner with the 
existing application. A new diner module checks its 
status at the start of its execution. If status is dynamic, 
then the module waits for state information from the 
diners to its left and right before proceeding. This is 
necessary to prevent the application from entering a state 
of starvation. The new module enters one of its three 
working states once it receives state information (a token 
indicating a fork) from its neighbouring diners. The 
reconfiguration operation is described by the following 
steps. 

(i) Get access to a new diner and the adjacent existing 
diners. Change an attribute of the new diner to indicate 
that the diner is dynamic. 

(ii) Activate queued binding mode. This allows us 
to defer binding changes until we are ready to add them 
just before starting the new diner. 

(iii) Disconnect the two adjacent diners. Connect the 
new diner to the existing diners. 

(iv) Release queued binding mode. This applies 
all previous binding changes since the activation of the 
queued binding mode. 

(v) Add the new diner. 
(vi) Synchronize the new diner with the application 

by inducing the existing diners to dump their state 
information to the new diner. 

This type of reconfiguration was enabled by prior 
work, such as found within the Conic system [SI or 
the Surgeon system [6]. In the terminology of our own 
platform, the catalyst for this system would need to be 
prepared manually; more importantly, the programmer 
must decide the basis for initiating the introduction 
of a new diner. This is not an insurmountable 
problem, and indeed we have solved it in the past 
via manual techniques. Nevertheless, the problem 
still remains: even though the programmer can reason 
about the reconfiguration in the abstract, the only 
medium for expressing decisions on reconfiguration 
was the programming language used to implement the 
application itself. 

The programmer should be able to simply declare 
the names of abstract events, then illustrate in terms of 
the structure how the application should change in the 
face of those events. The programmer should be able to 
express reconfiguration plans abstractly, and then have 
implementation of the appropriate infrastructure installed 
automatically in the context of the particular application. 
The problem of identifying the run time mechanisms 
needed to recognize events and trigger reconfiguration 
is then solved separately. 

By separating the development of the application 
components from the task of enabling application 

3. Design and  implementation 

Clipper is the language and system intended to meet 
requirements listed in the previous section. Our current 
notation is a prototype, and is based upon a simple 
extension to Ctt; our language for the configuration 
itself, as well as the run time environment to support the 
reconfiguration steps, is drawn from our work in Polylith 
[12]. This section of the paper describes the language 
itself, the event mechanism, and the properties of catalyst 
modules that are generated by the Clipper system for 
introduction to the application run time environment. 

3.1. Description of the reconfiguration language 

To meet the requirements stated earlier, C++ was chosen 
to support the reconfiguration language. C++ provides 
type checking, restricted data access, overloading of 
operators and functions, derivation of data types, 
and implicit initialization of data structures. Type 
checking permits rudimentary static analysis of the 
reconfiguration plan, while data access, operator 
and function overloading allow implementation of 
dynamic analysis. Derivation of data types helps 
enforce consistency in the definitions of application 
components. Consistency is needed to ensure all 
application components can be analysed dynamically. 
Implicit initialization of data structures lets the user take 
advantage of default values specified in the configuration 
file. 

By using an existing language (that includes an 
overloading capability) we were able to construct the 
first prototype of the system rapidly. Then, based upon 
our experimentation with Clipper, we slightly modified 
the syntax into a rule-based notation more strongly suited 
to the expression of plans. We use the diners application 
to illustrate the nature of Clipper. In table 1 the code 
on the left side is explained by comments on the right. 
We have numbered the comments to indicate the steps 
invoked in the reconfiguration. 

A plan is a valid C++ program in which changes to 
application components (modules and bindings) occur 
as a result of manipulations on a set of class objects 
representing the application. The set is the model of the 
application, and it is through this model that all changes 
to the application are made. The Clipper compiler 
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Table 1. The reconfiguration plan for the dining philosophers example. 

The reconfiguration code 

#include "dinnerp1ans.h" 
void adddiner 
(char "leftname, char' centername, char rightname) 

diner oldleft(left-name); 1 get access to diner objects 
[ 

diner oldright(rightname); 1 
diner newdiner(centername); 1 

*newdiner.STATUS= "dynamic"; 1 set attribute STATUS 
initbindo; 2 lock bindings 
oldleft.unbilink("right-req" 'letreq", oldright); 3 disconnect oldlefl from oldright 
oldright.unbilink("letfork", "rightfork". oldleft); 3 disconnect oldright from oldleft 
oldleft.bilink("rightreq", 'leftreq", newdiner); 4 connect oldleft to newdiner 
newdiner.bilink("lefrk", "rightfork", oldleft); 4 connect newdiner to oldleft 
oldright.bilink("lefLfork", "rightfork", newdiner); 4 connect oldright to newdiner 
newdiner.bilink("rightJeq", "lertreq", oldright); 4 connect newdiner to oldright 
setbindo; 5 apply binding changes 
newdinerstarto; 6 start new application component 
oldleft.dumpstate("reconflg-right", newdiner); 7 dump application state 
oldright.dumpstate("recontigJeft", newdiner); 7 dump application state 

1 

The code behaviour 

include model object definitions 

builds the class definitions and model objects when it 
parses the static representation of the application. Each 
model object represents an executable component of the 
application. A model object type is a class containing 
attribute, and interface objects. These intemal objects 
are initialized according to the appropriate module 
description given in the static representation. 

We now use the diner reconfiguration plan to 
illustrate a typical reconfiguration sequence in a Clipper 
plan. The first step of the plan involves obtaining access 
to the model elements representing the parts of the 
application we wish to change. This is done by declaring 
three diner objects, each initialized through a constructor. 
The character string passed to the constructor identifies 
the module that this diner object represents. If the 
module is currently running, or is described by an 
existing model object the application model, this diner 
object will alias it. If the module does not exist (in the 
distributed environment or model), this diner object will 
represent a new module in the application. The scope 
of model object types extends beyond that of normal 
static types. The distributed object's lifetime dictates 
the lifetime of the model object representing it, although 
local identifiers aliasing that model object exist only in 
the block in which they are declared. 

After having gained access to the application, we 
perform changes in the remaining steps. We queue 
the subsequent binding changes in step two to prevent 
the application from reaching unwanted intermediate 
configurations. These binding changes are then applied 
in step five, just before starting the new diner. In steps 
three and four the existing diners are disconnected from 
each other and reconnected to the new diner. After the 
new diner is started in step six, we command the two 
older diners to disgorge their state information to the 
new diner to maintain the consistency of the application. 

Table 2 illustrates the commands for manipulating 
module objects. The basemodule class is the base 
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class from which all modules described in the static 
application are derived. By using a base class for 
all model changes we were able to better control 
the consistency of the application. All operations on 
the components of the application and their member 
attributes and interfaces are atomic in the reconfiguration 
environment to prevent them from conflicting with each 
other. 

3.2. Events initiating reconfiguration 

There are three possible sources of stimulus for recon- 
figuration: the application, the distributed environment, 
and the system environment. Events received by the 
catalyst are acted upon immediately unless a reconfigu- 
ration operation has already been initiated. If this is the 
case, the events are queued in the order of their arrival 
untii the current reconfiguration is complete. 

In Clipper, reconfiguration plans execute by implicit 
invocation. We bind the events that initiate reconfigura- 
tion with the reconfiguration plans using bind statements. 
Table 3 shows the text for binding an event called "ar- 
rival" to the reconfiguration plan adddiner. We first de- 
clare an event object with the intemal name of "arrival". 
Then, we bind that event object to a reconfiguration plan 
by creating a binding object. Binding object construc- 
tion requires an event object and a reconfiguration plan. 
If we need to send any of the event's parameters to the 
plan we also include a tape code (a string specifying pa- 
rameter types in the distributed system) to specify the 
format of those parameters. For our example, the tape 
code is 'SSS', which represents the names of the two 
adjacent diners and the new diner. 

The reconfiguration plan add-diner is called with 
the following sequence. The event generating module 
display receives a request from the user to add a new 
diner. The event generating module then broadcasts the 
event "arrival" throughout the distributed system. The 
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Table 2. The methods for modifying the application in Clipper. All objects representing application executables 
are derived from the class basemodule. 

The Function protoype and description 

basemodule::start(); 
Add this module to the application. 
basemodu1e::stop (); 
This module is removed from the distributed environment. 
basemodu1e::link (char* fromiface , char* toiface , basermoduleR to-module ); 
Add a directed binding between one of this module's interfaces and another module's interface. 
basemodu1e::unlink (char* fromiface , char* toiface , basemodule& tomodule ); 
Remove a directed binding between one of this module's interfaces and another module's interface. 
basemodu1e::bilink (char* fromiface , char* toiface , basermoduleR tomodule ); 
Add a bidirected binding between one of this module's interfaces and another module's interface. 
basemodu1e::unbilink (char* fromiface , char* toiface , basemodule& to-module ); 
Remove a bidirected binding between one of this module's interfaces and another module's interface. 
basemodu1e::dumpstate (char* fromiface , char* toiface , basermodule& to-module ); 
Create a temporary binding between fromiface and to-iface from this module to tomodule . 
basemodu1e::dumpstate (char* from-to-iface , basesloduleR tomodule ); 
Create a temporary binding between from-toiface and from.toifm? from this module to tomodule. 
initbindings (); 
Queue all binding changes applied after this function call. 
setbindings (); 
Apply all binding changes made after the  previous call to initbindings. 

Table 3. The Bindings file for the dining philosophers example. We have bound the 
event "add" to the plan adddiner. 

The binding code The code behaviour 

#include 'dinnerp1ans.h" 
R-event' el= make-event(varrival"); 
makeMnding(e1, "SSS", adddiner); 

declarations of plans for binding objects 
creation of an event labelled add 
creation of a binding between the event el 
and the plan adddiner 

parameters sent with the event are the name of a new 
diner and two adjacent diners. The catalyst module 
receives the event and executes the adddiner plan, 
which is the only plan bound to that event in the bindings 
file. Execution of a reconfiguration plan involves parsing 
the event parameters in the format specified by the 
binding's tape code and calling the binding's plan with 
the result. The catalyst resumes waiting for additional 
events after adddiner terminates. 

In the case of our example, we have only one plan 
for all operations pertaining to the "arrival" event. But, 
in the case of more complicated reconfigurations, it 
may make more sense to break up the configuration 
changes into smaller, more reusable components. This is 
especially true if those components are needed for other 
events. For example, deleting a new diner requires a 
state transmission similar to adding a new diner. If we 
were to change the example to include removal of a 
diner, the changes required to the reconfiguration plan 
would be made simpler by separating plans in this way, 
especially if the state transmittal was complex. 

The second source of events is the distributed 
environment. Events generated by the distributed 
environment are received in the same manner as 
application events, although in this case our system relies 
upon the underlying bus mechanism to recognize and 

generate the appropriate event stream. An example of 
a distributed environment event would be the sudden 
failure of a module (this could also be classified as a 
system event, since the fault is visible at the system level 
as well). Once it has detected the problem, the bus sends 
an event to the catalyst. The plan bound to this event is 
then activated. Typically, such a plan reconfigures the 
application based on the information passed to it in the 
event, such as the type of module that had terminated 
and any special termination conditions. 

The third source of events is the system environment. 
A system environment event is a trigger representing 
a change to the operating environment of the modules 
making up the application. An example of such 
an event would be the failure of a module's host 
machine. We detect this by executing a separate module 
with the application, one that is capable of generating 
system status events. Determining a set of realistic 
events is a complex task for the the underlying system. 
Currently, the reconfigurable system on which Clipper 
is implemented recognizes only a limited set of events; 
a more practical implementation would need to include 
a more robust fault tolerance and recovery model. 

33. The catalyst module 

We have previously identified the catalyst or reconfig- 
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1) RecofligoraLion Module W o n  

Bindings 

3) Application Execution - 
Figure 2. A pictorial representation of the creation and execution of the diners example 
as  a Clipper application. 

uration module. This is the central change agent that 
is dedicated to processing the application configuration 
changes embodied within the reconfiguration plan. 

3.3.1. Application model. The catalyst maintains 
a model of the application in its currently executing 
state. This provides access to all structural components 
(bindings and modules) of the application in the 
reconfiguration plan. Since we perform no analysis 
of reconfiguration plans, we are not aware of the 
type of configuration changes being made, and hence, 
what components must be accessible to each plan. 
This would be a concem if plans were. allowed to 
execute concurrently, since concurrent execution of 
plans operating on the same application components 
would result in a resource conflict. At this time Clipper 
is restricted to serial execution of plans. 

In the diners example, the plan attached to the 
“arrival” event controls additions of all new diners. 
This requires that it have access to any pair of directly 
connected diners, though it does not need access to the 
display module. 

The model maintained by the catalyst is separate 
from the distributed environment’s representation of 
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the application. There are several advantages to this 
approach. 

A separate model gives us more flexibility in deciding 
the semantics of a reconfiguration plan. By maintaining 
our own representation, the plan implementor is not 
constrained by the methods of the distributed system 
for gaining capability to application components. In 
some cases, information about the application may not 
be present within the distributed system. This would 
limit the reconfiguration possible using the language. 

It minimizes the effect of the plan executions on 
reconfiguration performance. Queries to the distributed 
system involve resources that may otherwise be devoted 
to the application. By keeping separate data, we reduce 
the load on the system. 

Better application representation. Using the Clipper 
application model we can infer more about the 
application than possible through the distributed system. 
Some examples are the number of modules running on 
a given machine, or the bindings between two modules. 
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Table 4. The Configuration specification for the dining philosophers example. 

Module definitions Application definition 

service "specialdiner" : [ 
implementation : 1 binary:"diner.out" } 
algebra : [ "STATUS=special" ] 
function "leftfork" : {} returns [] 
client "rightfork" : {I accepts [] 
client "leftleq" : [] accepts {] 
function "rightJeq" : {] returns {I 

implementation : [ binaly : "diner.our ] 
algebra : [ "STATUSstatic" 1 
function "lftfork" : {I returns [} 
client "rightfork" : [] accepts [] 
client "left-req" : {] accepts [] 
function "rightreq" : [] returns I] 

implementation : [ binary : "display.out" ] 

I 
service '"diner" : { 

I 
service "display" : [ 

I 

orchestrate 'table" : [ 
tool Yrontend" : udisplay" 
tool "Jim" : "specialdiner" 
tool "Jack" : "diner" 
tool "Christine" : "diner" 
tool " L i f  : "diner" 
bind "Jim leftfork" "Christine rightforP' 
bind "Jim left-req" "Christine rightreq" 
bind "Christine leftfork" "Liz rightfork" 
bind "Christine leftreq" "Liz right-req" 
bind "Liz left-req" "Jack .rightreq" 
bind "Liz leftfork" "Jack rightfork" 
bind "Jack left-fork" "Jim rightfork" 
bind "Jack left-req" *Jim right-req" 
1 

3.4. Catalyst module weation 

Figure 2 shows the use of Clipper in constructing the 
new dynamically reconfigurable diners application. We 
have separated the diagram into three parts: creation of 
the recoofiguration module using the Clipper and native 
system compilers, creation of the remaining application 
components using the distributed system and native 
system compilers, and execution of the application. 
There are two application configuration descriptions used 
to create the catalyst. 

The initial configuration of the application, the static 
description. We use this to initialize the application 
model at the begining of execution. For the distributed 
system on which our language is currently implemented, 
this description is contained in the configuration 
specification shown in table 4. 

The reconfiguration modes of the application, or 
dynamic description. These are the plans which describe 
configuration changes to the application. Table 1 shows 
the reconfiguration plan for our example. 

3.4.1. Parsing the static description. The configuration 
specification file consists of two parts. The first 
contains the module descriptions, or declarations of 
the module types that are available for instantiation in 
the application. The second contains the application 
description, or bindings and modules that make up 
the application at the start of execution. We extract 
from the module,description section of the configuration 
specification the module definitions for creating model 
object types. From the application description we get the 
bindings and modules that are described in the model at 
startup. 

3.4.2. Assembling the catalyst module. The catalyst 
executable consists of the model definition, model 
initialization function (needed to synchronize the model 
with the application at startup), and the main function. 
The main function contains the model initializer call 
and the event handling loop. The initialization function 
is made up of statements for initializing the event 
handler and statements for initializing the application 
model. The event and binding declarations extracted 
from the bindings file j.nitialize the event bander. The 
model object and bind statements derived from the 
configuration specification initialize the model. To 
simplify construction, we have limited the amount of 
code that is generated by the Clipper compiler to 
the initialization function and model object definitions. 
The remaining definitions are contained in the Clipper 
library, which is linked with the user's plans and the 
initialization function definition at compile time. 

3.4.3. Execution of the catalyst module. The catalyst 
module is started when the application begins execution. 
Event handlers execute when the event generator they 
are bound to sends a signal to the catalyst module. 
Execution order of the event handlers bound to the same 
event generator follows the order in which they are 
declared in the bindings file. Processing event generator 
signals is serialized at the catalyst. New events queue in 
the order they are received, until all event handlers have 
executed for the current event. 

3.5. Execution of the reconfiguration plan 

The module display is the event generator signalling 
the user's desire for a new diner to be added to the 
application. After the event generator receives the names 
of a new diner and two adjacent diners, the module 
sends an "arrival" event to the catalyst to initiate the 
configuration change. The catalyst then processes any 
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plans that are bound to the “arrival” event (only one 
for this example). Once the plan bound to this event 
is started, we gain access to the two adjacent diners 
and a new diner with the diner constructors for objects 
o l d l e f t ,  o ld r igh t  and newdiner. Following this, we 
change newdiner’s STATUS attribute to indicate that this 
module has been started dynamically. If this attribute 
is not set, the new module will not synchronize with 
the two adjacent diners. Bindings between modules 
o l d l e f t  and o l d r i g h t  are removed with un6ilink 
commands. The fork bindings are attached between the 
two existing modules and the new module using bilink 
commands. Since there are no other attributes that need 
to be initialized, the module can now be added to the 
application. Model objects o l d l e f t  and o ld r igh t  are 
signalled to dump their state information to newdiner 
through interfaces “reconfigight” and “reconfigleft” 
respectively. 

4. Discussion 

In this section we discuss some of the issues that arose 
as a result of our implementation of Clipper. 

Atomicity. So far we have not shown the sequence 
of low-level reconfiguration commands executed by 
the reconfiguration operations in Clipper. It has 
been assumed that the sequence of events executed 
by these commands is prevented from causing failure 
by a set of preconditions. However, in many cases 
there is the possibility that the configuration of the 
application may be altered during the execution of a 
reconfiguration command, creating unpredictable results. 
If the reconfiguration commands are not executed 
atomically, the final configuration is undetermined. For 
example, if access to attribute values involved spawned 
processes, there is the possibility of newdiner in the 
diners example being added to the application before 
its STATUS attribute is modified. This would cause the 
module to starve. Much of our effort in the prototype 
goes into addressing the issue of atomicity of operations. 

Transformations that are not specified by the 
reconfiguration programmer in Clipper cannot be 
guaranteed successful. At this time, our prototype 
assumes there is only one agent responsible for 
performing reconfiguration operations. In the diners 
application, one transfer function was specified for the 
application, that of adding a new diner to an application 
containing two diner modules directly bound. This 
reconfiguration is not protected against the condition 
of a specified diner not existing. Dynamic checking 
of reconfiguration commands will prevent application 
failure locally, but will not discourage the propagation 
of an error through the plan. Let us assume the user 
specifies a non-existent left module. A new module will 
be created at the declaration of o l d l e f t .  Since this 
module is not part of the application, unbilink will not 
attempt to unbind it from oldr ight ,  bilink will not 
attach it to newdiner, and dumpstate will not signal 
it to synchronize with newdiner. The result will be an 
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application in  which newdiner is partially bound and 
starving. 

Event handling. In the current implementation of 
Clipper, the plan module is not represented in its 
application model. The intent of this is to satisfy 
the ideal that the catalyst is an external change 
agent, independent of the application configuration, and 
therefore not part of the application model. This means 
that we cannot explicitly bind modules to the catalyst, 
nor can we start a new catalyst using the existing one. 
With only application based event generators available, 
we bad to be sure the event generator that initiated 
the addition of a new diner was not a component 
that would be reconfigured. If it was, then the 
plan module would not be able to receive additional 
events after the first new diner was added. The main 
difficulties in implementing the dining philosophers 
problem were transmitting reconfiguration events to 
the catalyst, attaining capability to dynamic objects, 
and synchronizing new components with the existing 
application. 

During our prototyping 
we introduced an event communication network for 
organization of reconfiguration events for improved 
synchronization of event generators. This network 
uses the framework of Polylith Multicast [2]. The 
design considerations of the network are similar those 
,of the Distributed ObjectKoncurrent-Thread system 
@O/CT), an event handling system for asynchronous 
and synchronous events by Menon [lo] et al. 

Implementation of the event network using the 
language semantics of multicast is as follows: Events are 
represented by message type. When an event generator 
activates, it multicasts a message to the catalyst of a type 
appropriate for that event. The catalyst remains blocked 
until it receives a multicast message. When a message is 
received, the catalyst executes the plans that have been 
declared as handlers for that type. of message. 

Multicast message passing provides a seamless 
interconnect between many event generators and the 
catalyst. It also simplifies the implementation of 
multiple reconfiguration agents running concurrently in 
the same application. The latter benefit is not one 
we exploit at the moment because of considerations 
involving synchronization of configuration modes in the 
application with multiple, simultaneous reconfiguration 
processes. This involves reconfiguration control beyond 
our current design objectives. 

Model structure query language. More flexibility in 
gaining access to model components could be realized 
through the introduction of model access methods based 
on the structural or component nature of the application. 
For example, we may be interested (for load balancing 
purposes) in moving all of the modules on machine ‘A’ 
to machine ‘B’. To do this, we search the model and 
replace a l l  modules with a machine attribute of ‘A’ with 
modules with machine attribute of ‘B’. 

This work directly builds upon 
prior research performed at the University of Maryland. 
Previously, Surgeon (built upon Polylith) provided a 

Event passing network. 

Related work. 



A reconfiguration language for distributed systems 

An example of their use in the diners application is in  
the addition or removal of a diner. A new diner is 
always bound to a left and right diner. Consequently, 
its constructor is a function that has two model object 
parameters. When the constructor is called, it initializes 
its object’s STATUS attribute and binds its object between 
the diner object arguments passed to it. Similarly, a 
diner object’s destructor is a function that disconnects 
its object and reconnects its object’s neighbours to 
each other. We discourage reconfiguration programmers 
from creating constructor or destructor plans in the 
current implementation of Clipper in order to protect the 
underlying, structure of the application model. 

general mechanism for performing reconfiguration [6]; 
its focus was on making run-time capabilities available 
in widely heterogeneous environments, where the 
reconfiguration activities were invisible to application 
programmers. This largely paralleled (and to some 
extent also built upon) work in the Conic project [8] 
as previously reported. One of the differences was 
degree of transparency to the programmer. The Surgeon 
system placed great emphasis upon making application 
reconfigurations invisible to the programmer, whereas 
Conic placed requirements upon the designer in order for 
the application to be reconfigurable. But this was also 
a tradeoff, since the Conic work had greater emphasis 
on characterizing correctness and consistency conditions 
in the reconfiguration operations. This included a 
great deal of analysis to identify a ‘stable state’ within 
which reconfiguration steps would be acceptable, and 
hence produced a system with more safety conditions. 
The Surgeon system opened a much broader set of 
commands (and states within which those commands 
could be performed) to the reconfiguration programmer, 
but without necessarily maintaining as strict a sef of 
safety conditions. 

In Surgeon, the reconfiguration programmer (as 
opposed to the application programmer) still had 
several manual steps to perform in order to prepare 
to reconfigure a running application. As noted earlier 
in this paper, this was the motivation for our current 
work. The Clipper language reflects our desire to 
provide a simple and compact notation for programmers 
to characterize large classes of reconfiguration steps. 
Clipper might be though of as a high level environment 
for interacting with Surgeon, although this image would 
not capture the design effort of automatically generated 
stubs and catalyst modules. In the same way that 
Surgeon has evolved into the current work, the Conic 
effort eventually motivated Rex and then Regis [9], a 
powerful environment. In some respects, the derivation 
of Regis contains many of the desirable characteristics 
of the earlier Surgeon, and similarly our own work now 
reflects a step towards increased levels of formalism as 
originally inspired by Conic. 

Other systems have emerged to assist programmers 
in performing reconfiguration operations dynamically. 
The Schooner system [7] provides an efficient run-time 
mechanism for reconfiguration of the application within 
the scientific computing domain, while the Durra [I] 
system covers real-time computing reconfiguration con- 
cems. Each of these systems provides efficient meth- 
ods for reconfiguration but with fairly strict assumptions 
limiting their application domain. More recent develop- 
ments include environments which provide an object on- 
ented approach to the implementation of reconfigurable 
applications [13], as well as supporting reconfiguration 
mechanisms such as those found in Surgeon or Rex. 

Further improvements. We would like to create a 
more comprehensive set,of plans that are triggered by 
changes to application components based on the type 
of these components. These ‘plans’ already exist in 
C t t  in the form of object constructors and destructors. 

5. Conclusion 

Using the specifications presented in section 2 we 
have created a simple reconfiguration language for 
specifying application configuration transitions in terms 
of event generators signalling change and event handlers 
describing change. The plan syntax provides an intuitive 
way of manipulating the application structure through 
a set of heterogeneous objects making up a model 
of the application. We promote correct execution of 
reconfiguration using two methods: type checking for 
static analysis (using the C++ type checking facilities), 
and dynamic checking for correctness of reconfiguration 
operations (by imposing constraints on changes of the 
application model). We specify application configuration 
transitions as a separate component of the application 
specification; these are incorporated into an external 
change agent executed with the application. This process 
allows the reconfigurations to be handled in a manner 
that minimizes the changes to the application, and 
insulates the plan writer from the distributed platfom. 
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