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Abstract. This paper presents a theoretical analysis of the application of
piezoceramic transducers to cantilever beam modal testing. Four pairs of sensors
and actuators, including accelerometer–point force, accelerometer–PZT,
PVDF–point force and PVDF–PZT, are considered. The frequency response
functions (FRFs) for the four pairs of sensors and actuators are first derived and
written in the conventional modal format. The characteristics of modal parameters
can thus be interpreted through the FRFs. A column of the FRF matrix can then be
obtained based on the theoretical formulation. A curve-fitting algorithm is then
applied to extract the modal parameters, such as natural frequencies, mode
shapes and damping ratios. Results show that any sensor–actuator pair can
successfully determine natural frequencies and damping ratios. Point types of
transducer result in the displacement mode shapes, while piezoceramic
transducers that are strip types and distributed in sense give the mode shapes of
the slope difference between the edges of piezoceramic transducers. The paper
provides the theoretical basis of applying piezoceramic transducers to experimental
modal analysis and numerically supports the feasibility of cantilever beam modal
testing using piezoceramic transducers.

1. Introduction

Experimental modal analysis has been shown to be
an effective means of studying of structural dynamic
characteristics. The mobility measurement is essential
to obtain a set of frequency response functions (FRFs).
Either the shaker or impact hammer is conventionally
used as the excitor, while the accelerometer serves as the
response measurement device [1–6]. A scanning laser
Doppler vibrometer can also be applied for non-contact
measurement and has been shown to be effective to obtain
modal properties, such as natural frequencies, mode shapes
and damping ratios [7, 8].

Piezoceramic transducers have been widely used in
active vibration and acoustic control [9–12]. Many
researchers have developed analytical models for the
characterization of PZT actuators in pure bending [13–16]
and asymmetric [17, 18] excitation. PVDF (polyvinylidene
fluoride) has also been successfully used as error sensors
for structural vibration and acoustic control [19, 20]. The
mathematical models of piezoceramic transducers are well
developed and experimentally verified for simple structure
applications such as a beam [13, 14, 16, 21], plate [15, 22]

∗ Partial results of this paper were presented at the12th National
Conference of the Chinese Society of Mechanical Engineers (Chia-Yi,
1995).

or cylinder [23]. The piezoceramic transducers have unique
advantages over the conventional transducers, such as low
weight and low cost. The most important can be that they
are distributed in sense and can be integrated into structures
without affecting structure properties. The so called
intelligent materials structures and systems (IMSSs) have
been applied to active control systems. The ideas of IMSSs
can also be applied to structural testing and fault diagnosis.
Therefore, the use of piezoceramic transducers for structural
testing is also of interest. Sunet al [24] measured the
electric admittance of PZT actuators incorporated with the
use of accelerometers and derived their frequency response
functions to study dynamic properties of a beam. Coleet
al [25] performed the modal testing of piezostructures and
obtained the electromechanical coupling (EMC) matrices
to characterize the pole-residue properties. Both works
induce the idea of structural testing by using piezoceramic
transducers, but they did not properly recognize the nature
of piezostructures.

This paper presents the theoretical basis of the use
of piezoceramic transducers for structural modal testing.
A cantilever beam is considered as the test structure.
Piezoceramic transducers, such as PZT actuators and PVDF
sensors, are used as the input and output measurement
devices, and conventional transducers, such as shakers
(point force) and accelerometers, are also presented for
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Cantilever beam modal testing

the purpose of comparison. Four pairs of actuator
and sensor combinations, i.e., accelerometer–point force,
accelerometer–PZT, PVDF–point force and PVDF–PZT,
are considered. The theoretical FRFs are first derived
and written in conventional modal format; therefore,
the physical characteristics of modal parameters can be
well recognized. The displacement mode shapes and
the slope difference mode shapes are identified for point
types of conventional transducer and distributed types of
piezoceramic transducer respectively. The synthetic modal
analysis that directly uses the theoretical FRFs for modal
parameter extraction or curve fitting is then performed. The
modal parameters, including natural frequencies, damping
ratios and mode shapes of the cantilever beam, can be
successfully obtained. This work enhances the feasibility
of intelligent structural modal testing (ISMT) and the
possibility of remote structural modal testing (RSMT).

2. Theoretical analysis

2.1. Free vibration analysis

Consider a thin uniform cantilever beam with lengthLb
as shown in figure 1. By neglecting the effect of shear
deformation and rotary inertia, the governing equation of
the beam can be obtained as follows:

EbIb
∂4y(x, t)

∂x4
+ ρbbbtb ∂

2y(x, t)

∂t2
= p(x, t) (1)

in which y is the transverse displacement;Eb is Young’s
modulus; Ib is the moment of inertia;ρb is the beam
density; bb is the beam width;tb is the beam thickness;
p(x, t) is the force function. The subscriptb thus denotes
the beam.

The boundary conditions of a cantilever beam are fixed
at one end and free at the other. Ifx = 0 is the fixed end,
the displacement and slope are to be zero.

y(x = 0, t) = ∂y(x, t)

∂x

∣∣∣∣
x=0

= 0. (2)

If the free end is atx = Lb, the bending moment and shear
force are then zero.

EbIb
∂2y(x, t)

∂x2

∣∣∣∣
x=Lb
= ∂

∂x

(
EbIb

∂2y(x, t)

∂x2

)∣∣∣∣
x=Lb
= 0.

(3)
Let y(x, t) = φ(x)q(t) substitute into equation (1). By
using the method of separation of variables and applying
the boundary conditions, one can obtain the characteristic
equation [26] as follows:

1+ cosαnLb coshαnLb = 0. (4)

The characteristic valuesαn (n = 1, 2, . . .) can then be
solved numerically as follows:

α1Lb = 1.875104

α2Lb = 4.694091

α3Lb = 7.854757

...

(5)

The natural frequencies can then be determined [26]

ωn =
(
αnLb

)2

√
EbIb

ρbbbtbL
4
b

= α2
n

√
EbIb

ρbbbtb
(6)

and the corresponding mode shape functions are identified
as follows:

φn(x) = coshαnx − cosαnx = σn
(
sinhαnx − sin αnx

)
(7)

where

σn = sinhαnLb − sinαnLb
coshαnLb + cosαnLb

. (8)

It is noted thatφn(x) is a continuous function and represents
the displacement.

2.2. Forced vibration analysis

2.2.1. Point force excitation. Consider thej th harmonic
point force acting atx = xFj as shown in figure 1. The
external force function can be expressed as follows:

p(x, t) = Fjδ
(
x − xfj

)
eiωt (9)

in whichFj is the magnitude of thej th point force;δ(x) is
the Dirac delta function;xfj is the location of thej th point
force. The system response is also harmonic. From the
expansion theorem, the system response can be assumed:

y(x, t) = eiωt
∞∑
n=1

Wnφn(x) (10)

whereWn and φn(x) are the modal amplitude and mode
shape function respectively. By substituting equation (10)
into equation (1), pre-multiplying byφm(x) and integrating
over the beam length, the governing equation can be
simplified with the use of orthogonality properties of the
mode shape function; therefore, the modal amplitude can
be obtained:

Wn =
1
Lb
Fjφn(xfj )

EbIbα4
n − ρbbbtbω2

=
1
Lb
Fjφn(xfj )

ρbbbtb(ω2
n − ω2)

. (11)

The displacement response can then be written as follows:

y(x, t) = eiωt
∞∑
n=1

1
Lb
Fjφn(xfj )φn(x)

ρbbbtb(ω2
n − ω2)

. (12)

If the ith accelerometer is chosen to be the output
measurement device, and thej th point force is applied as
the actuation force as shown in figure 1, the FRF between
the acceleration amplitude of theith accelerometer and the
magnitude of thej th point force can be shown as follows:

αaiFj (ω) =
ÿi

Fj
= −ω2

∞∑
n=1

1
Lb
φn(xfj )φn(xai )

ρbbbtb(ω2
n − ω2)

(13)

wherexai is the location of theith accelerometer.
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Figure 1. The conventional transducers on the cantilever beam.

2.2.2. PZT pure bending excitation. Consider thej th
PZT patches to be symmetrically bonded on the top and
the bottom of the beam and applied voltageVcj 180◦ out of
phase as shown in figure 2. The equivalent force induced
by the PZT patches can be shown as two concentrated
moments at both edges of the PZT patches [16], and
therefore the force function can be expressed as follows:

p(x, t) = Meq

[
δ′
(
x − xc1j

)− δ′(x − xc2j )] eiωt (14)

wherexc1j andxc2j are the location coordinates of thej th
PZT actuator;Meq is the equivalent moment induced by
the PZT actuator and represented by the first derivative of
the Dirac delta function.Meq is given by

Meq = C03 (15)

3 = d31

tc
Vcj (16)

C0 = t2bEb

6+9bc (17)

9 = tbEb

tcEc
(18)

where3 is the free strain of the PZT patches induced by the
voltage;9 is the effective stiffness ratio;Vcj is the applied
voltage; d31 is the piezoelectric dielectric strain constant;
Ec Young’s modulus of the PZT patch;bc and tc are the
width and thickness of the PZT patch respectively. The
subscriptc denotes the PZT actuator.

Similar to the point force excitation, the frequency
response function between the acceleration amplitude of
the ith accelerometer and the applied voltage to thej th
PZT actuator can be derived as follows:

αaicj (ω) =
ÿi

Vcj

= −ω2
∞∑
n=1

1
Lb

C0d31
tc

[φ′n(xc2j )− φ′n(xc1j )]φn(xai )
ρbbbtb(ω2

n − ω2)
. (19)

2.3. PVDF sensing approach

A strip of PVDF patch can also be applied as the sensing
device as shown in figure 2. The shape function of theith
PVDF sensor can be expressed as follows:

0(x) = u(x − xp1i

)− u(x − xp2i

)
(20)

wherexp1i andxp2i are the location coordinates of theith
PVDF sensor;u(x) is the unit step function. The subscript
p indicates the PVDF sensor. The sensing equation of the
PVDF sensor is [27]

q(t) = (tb + tp)
2

bpe31

∫ Lb

0
0(x)

∂2y(x, t)

∂x2
dx (21)

where q(t) is the charge;tp and bp are the thickness
and width of the PVDF sensor respectively;e31 is the
piezoelectric field intensity constant. The resultant voltage
can be written

Vpi (t) =
q(t)

εAp
tp (22)

whereVpi (t) is the measured voltage;ε is the permittivity;
Ap is the area of the PVDF sensor, i.e.,Ap = bplp. The
ith PVDF voltage can be rewritten as

Vpi (t) =
tp

εAp

(tb + tp)
2

bpe31 eiωt
∞∑
n=1

Wn

[
φ′n
(
xp2i

)
φ′n
(
xp1i

)]
.

(23)

If the ith PVDF sensor is used as the output sensing device,
and thej th point force is applied as the input force, the
FRF between the measured voltage of theith PVDF sensor
and the force amplitude of thej th force can be derived as
follows:

αpiFj =
Vpi

Fj

= tp

εAp

(tb + tp)
2

bpe31

∞∑
n=1

1
Lb
φn(xfj )[φ

′
n(xp2i )− φ′n(xp1i )]

ρbbbtb(ω2
n − ω2)

.

(24)
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Figure 2. The piezoceramic transducers on the cantilever beam.

Similarly, the FRF between the measured voltage of the
ith PVDF sensor and the voltage amplitude applied by the
PZT actuator can be obtained as follows:

αpicj =
Vpi

Vcj
= tp

εAp

(tb + tp)
2

bpe31

∞∑
n=1

×
1
Lb

C0d31
tc

[φ′n(xc2j )− φ′n(xc1j )][φ′n(xp2i )− φ′n(xp1i )]

ρbbbtb(ω2
n − ω2)

.

(25)

2.4. Frequency response functions

Subsections 2.2 and 2.3 respectively derived the FRFs
for four pairs of actuators and sensors, including (i)
accelerometer–point force, (ii) accelerometer–PZT actuator,
(iii) PVDF sensor–point force and (iv) PVDF sensor–PZT
actuator. If we letxcj be the central location of thej th
PZT actuator andxpi be the central location of theith
PVDF sensor as shown in figure 2, thenxc1j = xcj − lc/2,
xc2j = xcj + lc/2, xp1i = xpi − lp/2, xp2i = xpi + lp/2. If
the viscously damped model is considered, the FRFs can
be summarized as follows:

αaiFj =
ÿai

Fj
= −ω2

∞∑
n=1

i8
a
nj8

f
n

ρbbbtb[(ω2
n − ω2)+ i2ζnωnω]

(26)

αaicj =
ÿai

Vcj
= −ω2

∞∑
n=1

i8
a
nj8

c
n

ρbbbtb[(ω2
n − ω2)+ i2ζnωnω]

(27)

αpiFj =
Vpi

Fj
= −ω2

∞∑
n=1

i8
p

nj8
f
n

ρbbbtb[(ω2
n − ω2)+ i2ζnωnω]

(28)

αpicj =
Vpi

Vcj
= −ω2

∞∑
n=1

i8
p

nj8
c
n

ρbbbtb[(ω2
n − ω2) = i2ζnωnω]

(29)

where

i8
a
n =

√
1

Lb
φn
(
xai
)

(30)

j8
f
n =

√
1

Lb
φn
(
xfj
)

(31)

i8
p
n =

√
1

Lb
kp

[
φ′n
(
xpi + lp/2

)− φ′n(xpi − lp/2)]
kp = tp

εAp

tb + tp
2

bpe31 (32)

j8
c
n =

√
1

Lb
kc

[
φ′n
(
xcj + lc/2

)− φ′n(xcj − lc/2)]
kc = C0d31

tc
(33)

φ′n(x) = αn
[
sinhαnx + sinαnx

− σn
(
coshαnx − cosαnx

)]
. (34)

i8
a
n and j8

f
n represent the values of thenth acceleration

and point force mode shape functions at theith and j th
locations of the accelerometer and point force respectively.
i8

p
n and j8

c
n represent the values of thenth PVDF and

PZT mode shape functions at theith and j th location
of the PVDF sensor and PZT actuator respectively. The
PVDF and PZT mode shape functions are proportional to
the mode shape of the slope difference between the two
edges of PVDF and PZT patches, while the accelerometer
and point force mode shape functions are proportional to
the displacement mode shape function. Generally speaking,
the displacement mode shape has orthogonality properties;
however, the slope difference mode shape has not. Wang
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[28] demonstrated that the slope difference mode shape
is proportional to the displacement mode shape for a
simply supported beam. Here, for a cantilever beam the
slope difference mode shape is not proportional to the
displacement mode shape. The characteristics of the mode
shapes and their relationships will be further discussed.

It should be noted that in practical measurement a
continuous structure is always discretized, and so only a
finite number of pointsN can be measured. TheN × N
FRF matrix can then be measured through the mobility
measurement. The FRF matrix [αij ] can be defined as
follows: {

Zi
}
N×1 =

[
αij
]
N×N

{
Pj
}
N×1 (35)

where{Zi}N×1 and{Pj }N×1 represent the output and input
vectors respectively. The components of the FRF matrix
are shown in equations (26)–(29), which are written in the
conventional FRF format. From observation of equations
(26)–(29), the main difference of the FRFs is the numerator,
that is the residue, also called the modal constant. The
modal constant is the product of the sensor and actuator
mode shape components. It is also noted that the mode
shape function is usually approximated by theN ×1 mode
shape vector. Therefore,i8a

n, j8
f
n , i8

p
n andj8c

n can also
denote theith or j th component of the accelerometer, point
force actuator, PVDF sensor and PZT actuator mode shape
vectors respectively.

To perform experimental modal analysis, at least, either
a row or a column of the FRF matrix must be measured.
By roving the actuator, a row of the FRF matrix can
be obtained; by roving the sensor, a column of the FRF
matrix will be obtained. For the conventional experimental
modal testing, the point force and accelerometer are usually
used as the actuator and sensor. Their FRF is shown in
equation (26). Bothi8a

n and j8
f
n for the modal constant

are associated with displacement mode shapes; therefore,
roving either actuator or sensor, the displacement mode
shapes can always be extracted from the curve-fitting
procedures.

If the accelerometer is used as the sensor, and the
PZT patches are applied as the actuator, then the FRF
is shown in equation (27). When the accelerometer is
fixed, and the PZT actuator is roving, a row of the
FRF matrix will be obtained. The PZT actuator mode
shape that is the slope difference mode shape will be
extracted by performing curve-fitting procedures on the
FRFs. Conversely, when the PZT actuator is fixed, and the
accelerometer is roving, then a column of the FRF matrix
will be obtained. The accelerometer mode shape that is the
displacement mode shape can then be extracted. For other
pairs of combinations of actuators and sensors, the physical
meaning of the extracted mode shapes with respect to the
testing procedure is summarized in table 1. In summary,
when the sensor is roving with the actuator fixed during
testing, a column of the FRF matrix can be determined.
The extracted mode shape will then be characterized by
the sensor mode shape. Conversely, when the actuator
is roving with the sensor fixed, a row of the FRF matrix
can be obtained. The extracted mode shape will then be
characterized by the actuator mode shape.

Figure 3. A flow chart for synthetic modal analysis.

3. Synthetic modal analysis

The normal procedure of experimental modal analysis
includes the measurement of FRFs and the data analysis
of FRFs, so called curve fitting or extraction of modal
parameters. The measurement of FRFs depends on the
types of actuation and sensing device. The data analysis
of FRFs is to extract the modal parameters, including
natural frequencies, damping ratios and mode shapes, from
the measured FRFs. This work obtains the FRFs based
on the theoretical formulation as shown in section 2
instead of practical measurement. By assuming a roving
sensor, a column of the FRF matrix can be theoretically
determined for the four sensor–actuator pair approaches.
The modal parameter estimation is conducted by using
the MDOF curve-fitting algorithm provided by CADA-
PC software [29]. The least-squares complex exponential
(LSCE) method is applied to obtain the poles of FRFs,
i.e., the natural frequencies, and the least-squares frequency
domain (LSFD) method is used to determine the residues.
The synthetic modal analysis procedure is illustrated in
figure 3 and can be applied to show the feasibility of using
piezoceramic transducers for experimental modal testing of
a cantilever beam.

4. Results and discussion

Consider a steel beam with properties as shown in table 2
for numerical simulation. The first ten natural frequencies
were calculated and are listed in table 3. The beam is
equally divided into 15 divisions and numbered in sequence
as shown in figure 4. The point force and accelerometer are
assumed to be applied at the dots shown in figure 4. The
PZT (G-1195 [30]) and PVDF (DT1-028K [31]) patches
with material properties as shown in table 4 are assumed
to be 20 mm in length, and of the same width as the beam.
The PZT actuators and PVDF sensors can then be applied
at each position illustrated in figure 4. In the simulation,
the viscous damping ratios for all modes are assumed to
be 0.01. A total number of 15 modes is included for
obtaining the theoretical FRFs. The FRFs are then used for
performing modal parameter estimation with the methods
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Table 1. Physical meanings of mode shapes with respect to test procedure.

Roving actuator with fixed sensor Roving sensor with fixed actuator
Sensor Actuator (a row of FRF matrix) (a column of FRF matrix)

accelerometer point force displacement mode shape displacement mode shape
accelerometer PZT slope difference mode shape displacement mode shape
PVDF point force displacement mode shape slope difference mode shape
PVDF PZT slope difference mode shape slope difference mode shape

Table 2. Physical properties of the cantilever beam.

Materials Steel

Length (Lb) 0.3 m
Width (bb) 0.04 m
Thickness (tb) 0.002 m
Density (ρb) 7870 kg m−3

Young’s modulus (Eb) 207± 109 N m−2

Table 3. Theoretical natural frequencies of the first ten
modes.

Mode Natural frequency (Hz)

1 18.411
2 115.377
3 323.058
4 633.064
5 1046.501
6 1563.291
7 2183.440
8 2906.946
9 3733.812

10 4664.034

Figure 4. The division of the cantilever beam.

described in the previous section. The companion paper
[32] by the present authors has presented the verification of
experimental results.

4.1. Theoretical mode shapes

The mode shapes of accelerometer and point force as
shown in equations (30) and (31) are displacement mode
shapes. The first four mode shapes of the conventional
transducers are shown in figure 5. The PZT and PVDF
mode shapes as shown in equations (32) and (33) are
proportional to the slope difference between two edges
of piezoceramic transducers. The first four mode shapes

Figure 5. The theoretical mode shapes of the conventional
transducers.

Figure 6. The theoretical mode shapes of the
piezoceramic transducers.

of the piezoceramic transducers are shown in figure 6.
The piezoceramic transducer mode shapes can be observed
as the mirror image of the conventional transducer mode
shapes against the wall for the case of the cantilever
beam. In general, the conventional transducer mode shapes
for accelerometer and point force are displacement mode
shapes, while the piezoceramic transducer mode shapes are
the mode shapes of the slope difference between two edges
of the piezoceramic patches.

4.2. Generation of the theoretical FRFs

The simulation assumes that the actuation forces including
point force and PZT excitation are applied at position
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Figure 7. Theoretical point frequency response functions for i = 2 and j = 2.

Figure 8. Theoretical transfer frequency response functions for i = 12 and j = 2.
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Table 4. Piezoceramic material properties.

PZT actuator (G-1195) [30] PVDF sensor (DT1-028K) [31]

Ec = 6.3× 1010 N m−2 Ep = 2× 109 N m−2

ρc = 7650 kg m−3 ρp = 1800 kg m−3

νc = 0.28 νp = 0.33
d31 = d32 = 166× 10−12 m V−1 e31 = 54× 10−3 C m−1

tc = 1.905 mm tp = 28× 10−6 m
ε = 106× 10−12 F m−1

j = 2 respectively. The accelerometer is roving from
position 1 to 15. For PVDF sensor application, only the
even-number positions are applied. The analysis frequency
range is between 0 and 800 Hz. A total number of
1024 data points for each FRF in the frequency range is
generated for the curve-fitting process. The point FRFs,
i.e., where the response measurements and driving points
coincide, for i = 2 andj = 2 are shown in figure 7(a)–
(d). One can see that anti-resonance points occur between
all resonance points. The transfer FRFs, i.e., where the
response measurements and driving points are different,
for i = 12 andj = 2 as shown in figure 8(a)–(d) are to
demonstrate the characteristics of transfer FRFs. The anti-
resonance points do not always appear between resonance
points.

4.3. Synthetic modal analysis

The generated FRFs for each actuator–sensor pair approach
can be further analyzed by using MDOF curve-fitting
algorithms provided by CADA-PC software. The modal
parameters including natural frequencies, damping ratios
and mode shapes can then be obtained. The following
shows the comparison and discussion of the synthesized
results.

Table 5 shows the comparison of natural frequencies
derived from the theoretical analysis and from the synthetic
modal analysis for the four actuator–sensor pair approaches.
The error percentage with respect to the theoretical model is
also indicated in parenthesis. As expected, the results for
the conventional transducer pair (Acc–Force) agree very
well with the theoretical natural frequencies. The synthetic
modal analysis (SMA) is then considered sufficiently
accurate. When the piezoceramic transducers are applied,
the natural frequencies can also be accurately predicted
except the first natural frequency, that has about 5%
discrepancy. The discrepancy may be due to the frequency
resolution of FRFs. Nevertheless, either actuator–sensor
pair approach can satisfactorily predict the system natural
frequencies.

Table 6 shows the comparison of viscous damping
ratio derived from the synthetic modal analysis and the
theoretical model assumptions. One can see that there
is no more than 5% difference in comparison to the
theoretical assumption of modal damping ratio 0.01 for each
mode. In particular, for the applications of piezoceramic
transducers, the prediction of damping ratio is less than
2% in comparison to the theoretically assumed modal
damping ratio. It is noted that in practical applications

Figure 9. The prediction of the mode shapes from SMA for
Acc–Force.

Figure 10. The prediction of the mode shapes from SMA
for Acc–PZT.

of piezoceramic transducers the damping effect due to the
piezoceramic patches and glue effects, which are not treated
in this work, may not be neglected.

Figure 9 shows the first four mode shapes extracted
from the synthetic modal analysis for the accelerometer
and point force pair. As expected, the mode shape is just
the displacement mode shape and agrees well with those
shown in figure 5. Figure 10 shows the first four mode
shapes derived from the accelerometer and PZT actuator
pair. The mode shapes are not so smooth as those shown
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Table 5. A comparison of natural frequencies between theoretical analysis and synthetic modal analysis (SMA).

First natural Second natural Third natural Fourth natural
frequency frequency frequency frequency

Theoretical analysis 18.411 115.377 323.058 633.064
SMA for Acc–Force 18.422 115.372 323.041 632.938

(0.062%) (−0.044%) (−0.053%) (−0.019%)
SMA for Acc–PZT 17.411 114.371 322.057 632.031

(−5.429%) (−0.872%) (−0.310%) (−0.872%)
SMA for PVDF–Force 17.420 114.371 323.063 632.031

(−5.383%) (−0.872%) (−0.022%) (−0.163%)
SMA for PVDF–PZT 17.406 114.373 323.043 632.028

(−5.495%) (−0.870%) (−0.005%) (−0.164%)

Table 6. Comparison of modal damping ratio (%) between theoretical analysis and SMA.

Theoretical analysis
Mode (assumed) SMA for Acc–Force SMA for Acc–PZT SMA for PVDF–Force SMA for PVDF–PZT

1 1.00 0.95 1.04 1.03 1.01
2 1.00 1.00 1.01 1.01 1.01
3 1.00 1.00 1.00 1.01 1.00
4 1.00 1.01 1.01 1.02 1.01

Figure 11. The prediction of the mode shapes from SMA
for PVDF–Force.

in figure 9, because only the even numbers of measuring
points are considered for synthetic simulation. However,
the nodal point positions and their shapes match very well
with displacement mode shapes. The reason for obtaining
the displacement mode shape for the accelerometer and
PZT actuator pair is that the accelerometer is assumed to
be roving during testing. A column of the FRF matrix is
then obtained. The characteristics of the mode shapes are,
therefore, determined by the mode shapes of the sensing
device. As discussed previously, the accelerometer mode
shape as shown in equation (30) is the displacement mode
shape.

If the PVDF sensor is used as the output device, and
the point force and PZT actuators are applied as the input
devices, then the extracted mode shapes for both cases
reveal the mirror image of the displacement mode shapes

Figure 12. The prediction of the mode shapes from SMA
for PVDF–PZT.

against the wall as shown in figures 11 and 12 respectively.
The extracted mode shapes can also be characterized as
the slope difference mode shapes for the cantilever beam.
Because of the assumption that the PVDF sensor is roving
instead of the actuator, the extracted mode shapes are
dependent on the characteristics of the sensor mode shapes.
One can expect that if the actuator is roving the actuator
mode shape will be extracted. Therefore, the point force
actuation will give the displacement mode shape, and the
PZT actuation will result in the slope difference mode shape
that is the mirror image of the displacement mode shape
with a scaling factor 2αn sin(αnlc/2) against the wall for the
cantilever beam. The relationship between the displacement
and slope difference mode shapes is shown in the appendix.

114



Cantilever beam modal testing

5. Conclusions

This paper presents the use of accelerometers and PVDF
sensors as sensing devices and point force and PZT
actuators as actuation devices for a feasibility study of
modal testing of a cantilever beam. Results show that
the application of any combination of actuator and sensor
to experimental modal testing can successfully determine
the natural frequencies and damping ratio. The mode
shapes can also be extracted and characterized as either
displacement mode shapes or slope difference mode shapes
depending on the types of transducer and modal testing
procedures. Roving sensors will result in the sensor mode
shapes, while roving actuators will result in the actuator
mode shape. The mode shapes of both the accelerometer
and the point force actuator that are the discrete types or
point types of transducer are displacement essentially. The
distributed types or strip types of piezoceramic transducer
are shown to have the slope difference mode shape that is
the mirror image of the displacement mode shape for the
case of the cantilever beam. This work theoretically verifies
the application of piezoceramic transducers to experimental
modal testing of a cantilever beam. The idea of intelligent
structural modal testing (ISMT) is withdrawn and can be
incorporated with the use of an active controller to perform
structural vibration and acoustic control. ISMT can be
applied for fault diagnosis and also be extended for remote
structural modal testing (RSMT).

Appendix. The relationship between the
displacement and slope difference mode shapes

As discussed in subsection 2.4, point transducers will
result in the displacement mode shapes, while piezoceramic
transducers give the slope difference mode shapes between
the two edges of the piezoceramic patches. The
displacement mode shape is given by [26]

φn(x) = coshαnx−cosαnx−σn
(
sinhαnx−sinαnx

)
(A1)

where

σn = sinhαnLb − sinαnLb
coshαnLb + cosαnLb

. (A2)

The slope mode shape can be obtained by taking the first
derivative of the displacement mode shape as follows

φ′n(x) = αn
[
sinhαnx + sinαnx − σn

(
coshαnx − cosαnx

)]
.

(A3)
For thej th PZT actuator, the slope difference between the
two edges of the PZT actuator can be obtained:

φcn
(
xcj
) = φ′n(xc2j )−φ′n(ncj ) = φ′n(xcj+ lc2

)
−φ′n

(
x
j
− lc

2

)
.

(A4)
By substituting equation (A3) into equation (A4),
equation (A4) can be derived and expressed as follows:

φcn
(
xcj
) = 2αn sinαn

lc

2

[
coshαnxcj

sinhαn
lc
2

sinαn
lc
2

+ cosαnxcj

− σn
(

sinhαnxcj
sinhαn

lc
2

sinαn
lc
2

+ sinαnxcj

)]
. (A5)

With the assumption of small length of piezoceramic patch,
let lc approach zero. One can obtain

lim
lc→0

sinhαn
lc
2

sinαn
lc
2

= 0. (A6)

Therefore, equation (A5) can be simplified to

φcn
(
xcj
) = 2αn sinαn

lc

2

[
coshαnxcj + cosαnxcj

− σn
(
sinhαnxcj + sinαnxcj

)]
. (A7)

From equation (A1) forx = xcj ,

φn
(
xcj
) = coshαnxcj−cosαnxcj−σn

(
sinhαnxcj−sinαnxcj

)
.

(A8)
Equation (A8) and the parenthesis in equation (A7) can
be numerically demonstrated to be a mirror image pair.
Therefore, the slope difference mode shape for the PZT
actuator appears as the mirror image of the displacement
mode shape with a scaling factor 2αn sin(αnlc/2). A similar
derivation can also be obtained for the PVDF sensors.
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