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Abstract
A geometrically nonlinear large rotation shell theory is proposed for dynamic finite element
(FE) analysis of piezoelectric integrated thin-walled smart structures. The large rotation
theory, which has six independent kinematic parameters but expressed by five nodal degrees of
freedom (DOFs), is based on first-order shear deformation (FOSD) hypothesis. The
two-dimensional (2D) FE model is constructed using eight-node quadrilateral shell elements
with five mechanical DOFs per node and one electrical DOF per piezoelectric material layer
with linear constitutive equations. The linear and nonlinear dynamic responses are determined
by the central difference algorithm (CDA) and the Newmark method. The results are
compared with those obtained by simplified nonlinear theories, as well as those reported in the
literature. It is shown that the present large rotation theory yields considerable improvement if
the structures undergo large displacements and rotations.

1. Introduction

Due to light-weight design, thin-walled structures are
increasingly implemented in many fields of technology,
especially in automotive and aerospace engineering. Thin-
walled structures have a number of beneficial properties,
e.g. reduction of weight, less raw material, etc. However,
they tend to be more unstable and sensitive to vibrations.
In recent decades, thin-walled structures with integrated
layers or patches of smart materials, i.e. piezoelectrics,
electrostrictives, magnetostrictives, shape memory alloys,
which are so-called smart structures, have been proposed for
vibration control, shape control, noise and acoustic control,
damage detection, and health monitoring (see [1–3] among
others).

Because of the high cost of experimental investigations,
theoretical modeling and dynamic analysis of smart structures
are essential for their design and manufacture. One of
the major problems of analysis of smart structures is
how to precisely predict the dynamic behavior. Numerous

papers can be found in the literature which present linear
piezoelectric coupled FE models using three-dimensional
(3D) elements [4–6], and 2D elements based on various
hypotheses, e.g. Kirchhoff–Love plate/shell theory, Timo-
shenko beam theory, Mindlin–Reissner plate/shell theory,
third-order shear deformation (TOSD) theory or higher-order
shear deformation (HOSD) theory (see [7–11] among many
others). Moreover, a higher-order layerwise laminated theory
and equivalent single layer theory have been proposed and
developed by Carrera and Demasi [12], and Alaimo et al [13]
for laminated plates.

Since linear models are only applicable for structures in
the range of small rotations, geometrically nonlinear effects
have to be considered for structures undergoing moderate or
large deflections. Recently, a large number of papers have
started considering geometrical nonlinearities in FE modeling
for static and dynamic analysis of thin-walled structures
integrated with piezoelectric layers or patches. Von Kármán
type nonlinear theories, which are the simplest geometrically
nonlinear theories, are widely used in modeling of smart
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structures. Panda and Ray [14] developed a von Kármán type
nonlinear FE model, which is based on the FOSD hypothesis,
for static analysis of smart structures. For dynamic analysis, a
number of papers that can be found in the literature developed
FE models using von Kármán type nonlinear theories based on
various hypotheses, e.g. classical plate theory [15, 16], FOSD
hypothesis [17, 18], and TOSD or HOSD hypotheses [19, 20].
Compared to von Kármán type nonlinearity, moderate rotation
theory considers more nonlinear effects, which was first
proposed by Librescu and Schmidt [21], and Schmidt and
Reddy [22]. Later, the theory was further developed and
implemented by Palmerio et al [23], Kreja et al [24], and
Lentzen et al [25–27] for both static and dynamic analysis
of composite or smart structures. Adding more nonlinear
strain–displacement relations results in a fully geometrically
nonlinear theory which was implemented by Chattopadhyay
et al [28] and Ghoshal et al [29] based on improved layerwise
theory for dynamic analysis of smart composite structures
with consideration of delamination effect. Apart from 2D
FE models, Yi et al [30] developed a 3D nonlinear FE
model for transient analysis of a smart beam, a plate and a
shell. Furthermore, Chróscielewski et al [31, 32] developed a
one-dimensional (1D) FE model using fully nonlinear large
rotation theory for shape and vibration control of curved
beam-type structures.

In some applications, von Kármán type nonlinear theory
and moderate rotation theory are precise enough to predict
the transient response of smart structures. But for those
undergoing large deformation, large rotation theories have
to be considered, rather than simplified nonlinear shell
theories. In recent decades, some authors considered fully
geometrically nonlinear theories with arbitrary rotations,
which are called large rotation theories or finite rotation
theories. Most of these were applied to laminated structures
made of isotropic or orthotropic materials for static
benchmark problems (see [33–35, 27] among many others).
Following the approach given by Kreja and Schmidt [35]
for fully geometrically nonlinear static and stability analysis
of composite structures with large rotations, this paper will
develop a large rotation shell theory with six independent
kinematic parameters, but expressed by five nodal DOFs,
for dynamic analysis of piezoelectric coupled thin-walled
smart structures based on the FOSD hypothesis. A nonlinear
dynamic FE model is derived by Hamilton’s principle and
the FE method using eight-node shell elements with five
mechanical DOFs per node and one electrical DOF per
piezoelectric material layer. Additionally, the results obtained
by the proposed large rotation theory are compared with those
obtained by other simplified nonlinear theories, as well as
those reported in [30, 25].

2. Strain field

Large rotation theory is the most accurate one among all
nonlinear shell theories, since fully geometrically nonlinear
strain terms and arbitrary finite rotations are considered in the
theory. In this paper, a dynamic large rotation theory with six
independent kinematic parameters that are expressed by five

nodal DOFs, abbreviated as LRT56 [35], is developed based
on the FOSD hypothesis for smart structures. According to
the geometry relations, the components of the displacement
vector u for an arbitrary point in the shell space at a distance
23 from the mid-surface are given as

vα(2
1,22,23) =

0
vα(2

1,22)+231
vα(2

1,22)

v3(2
1,22,23) =

0
v3(2

1,22)+231
v3(2

1,22)
(1)

where
0
vi (i = 1–3) are the covariant components of the

mid-surface displacement vector
0
u, and

1
vi the components of

the shell director rotation vector
1
u = ā3 − n. Here n is a unit

normal vector in the undeformed configuration and ā3 denotes
the covariant base vector in the direction of the parameter
line 23 in the deformed configuration. Equation (1) can be
re-written in matrix form as

u = Zuv (2)

in which v contains the six kinematic parameters, and Zu is a
matrix of 23.

The Green–Lagrange strain tensors of the in-plane terms,
the transverse shear terms and the transverse normal term
based on the FOSD hypothesis are expressed as (see [36])

εαβ =
0
εαβ +2

3 1
εαβ + (2

3)2
2
εαβ (3)

εα3 =
0
εα3 +2

3 1
εα3 (4)

ε33 =
0
ε33. (5)

Using the assumption of an inextensible shell director, the

transverse normal strain will be
0
ε33 = 0, which implies ā3 ·

ā3 = 1. This constraint will lead to ā3,α · ā3 = 0, meaning

that
1
εα3 = 0 as well. The components of the strain tensors in

equations (3)–(4) can be expressed in terms of six parameters
as

2
0
εαβ =

0
ϕαβ +

0
ϕβα +

0
ϕ3α

0
ϕ3β +

0
ϕδ
α

0
ϕδβ (6)

2
1
εαβ =

1
ϕαβ − bλβ

0
ϕλα +

1
ϕβα − bδα

0
ϕδβ

+
0
ϕ3α

1
ϕ3β +

1
ϕ3α

0
ϕ3β +

0
ϕδ
α

1
ϕδβ +

1
ϕδ
α

0
ϕδβ (7)

2
2
εαβ = −bλβ

1
ϕλα − bδα

1
ϕδβ +

1
ϕ3α

1
ϕ3β +

1
ϕδ
α

1
ϕδβ (8)

2
0
εα3 =

1
vα +

0
ϕ3α +

0
ϕδ
α

1
vδ +

0
ϕ3α

1
v3 (9)

with the abbreviations
n
ϕλα,

n
ϕ3α and

n
vλ|α defined as:

n
ϕλα =

n
vλ|α − bλα

n
v3 (10)

n
ϕ3α =

n
v3,α + bδα

n
vδ (11)

n
vλ|α =

n
vλ,α − 0

δ
λα

n
vδ (12)

in which bλα and bλα are the covariant and mixed components
of the curvature tensor, and 0δλα denote the Christoffel
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symbols of the second kind. Furthermore, �|α and �,α

represent the covariant derivative and spatial derivative with
respect to the coordinate axis 2α . The Greek indices vary
from 1 to 2 and the overhead letter n represents 0 or 1.

Neglecting a priori the sixth parameter
1
v3 is permitted

only for small and moderate rotations. In the case where
full geometrical nonlinearities are considered, however, this
would yield a theory abbreviated as LRT5 [35, 37]. Dropping

the strain terms marked by double lines and assuming
1
v3 =

0 yields the moderate rotation theory with five parameters
(denoted as MRT5), which was first proposed by Librescu
and Schmidt [21]. Further dropping the terms marked by
both single and double lines leads to the linear shell theory.
Retaining the nonlinear strain–displacement relations only
with the squares and products of the derivative of the
transverse deflection yields the refined von Kármán type
nonlinear shell theory (abbreviated as RVK5) [35, 37].

3. Finite element implementation

3.1. Constitutive equations

In this paper, linear piezoelectric coupled constitutive
equations are employed. These are given by

σ = cε − eTE (13)

D = eε + εE (14)

where σ , ε,D and E denote the stress vector, the strain vector,
the electric displacement vector and the electric field vector,
respectively. Additionally, c denotes the elasticity constant
matrix, d and e are the piezoelectric constant matrices with
the relation e = dc, and ε denotes the dielectric constant
matrix. The electric field intensity is assumed to be constant
through the thickness of the piezoelectric material layers and
defined as negative gradient of the electric potential φ (see e.g.
[15, 26, 19])

E = −∇φ = Bφφ. (15)

3.2. Rotational displacement

As previously mentioned, in LRT56 the six kinematic
parameters are expressed by five nodal DOFs: three
translational DOFs (u, v and w) and two rotational DOFs (ϕ1
and ϕ2) are defined. The physical quantities of the generalized

rotational displacements
1̂
vi are expressed by two rotations

ϕ1 and ϕ2 about 22 and 21-axis respectively using Euler
angles [35] as

1̂
v1 = |a1

|
1
v1 = sin(ϕ1) cos(ϕ2)

1̂
v2 = |a2

|
1
v2 = sin(ϕ2)

1̂
v3 = |a3

|
1
v3 = cos(ϕ1) cos(ϕ2)− 1.

(16)

In the linear or simplified nonlinear theories, small or
moderate rotations are respectively assumed in structures,

which leads to sin(ϕα) = ϕα and cos(ϕα) = 1. Therefore,
equation (16) for simplified nonlinear shell theories reads

1̂
v1 = ϕ1,

1̂
v2 = ϕ2,

1̂
v3 = 0. (17)

4. Dynamic equations

4.1. Total Lagrangian formulation

The Green–Lagrange strain tensor in equations (3)–(4) can be
re-written in matrix form as

ε = H1S (18)

in which S is the resultant strain vector, and H1 is the matrix of
23. The physical strain vector ε̂ is obtained by normalization
as

ε̂ = Keε = KenKetε. (19)

Here, the diagonal matrix Ke produced by normalization is
a function of (21,22,23), which can be decomposed into
Ken containing 23 and Ket depending on 21 and 22. The
components of Ket can be integrated into the resultant strain
vector generating the physical resultant strain vector Ŝ as

Ketε = KetH1S = H1NmsS = H1Ŝ. (20)

In order to apply the total Lagrangian method, three
configurations are considered: the initial configuration 0C,
referring to the undeformed configuration; the current
configuration 1C, referring to the deformed configuration;
and the searched configuration 2C, which is a virtual
configuration. The configurations are characterized by left
superscripts 0, 1 and 2, and the reference configurations are
denoted by left subscripts. The physical resultant strain vector
in configuration mC referred to the undeformed configuration
can be expressed as

m
0 Ŝ = Nms(A0 +

1
2 An(

m
0 θ
˜

))m0 θ . (21)

Here, A0 and An(
m
0 θ
˜

) are the linear and nonlinear

strain–displacement matrices, respectively. The increment
and variation of the physical resultant strain vector can be
expressed by a linear part Bl and a nonlinear part Bnl as

1Ŝ =
(
Bl + Bnl

)
1q (22)

2
0δŜ =

(
Bl + 2 Bnl

)
δ1q (23)

with

Bl = Nms

(
A0 + An(

1
0 θ
˜

)
)

GtNt (24)

Bnl =
1
2 NmsAn(1 θ

˜

)GtNt (25)

where the matrix Gt is obtained by normalization and
linearizion, Nt is the matrix of the shape functions, 1
represents the incremental operator, and δ is the variational
operator. Furthermore, the vector θ is defined as

θ =
{

0
v1,1

0
v1,2

0
v2,1 · · ·

1
v3,2

0
v1

0
v2 · · ·

1
v3

}
. (26)
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4.2. Equations of motion

The equations of motion can be built by using Hamilton’s
principle, which is given by

δ

∫ t2

t1
(20T − 2

0Wi +
2
0We) dt = 0. (27)

Here the virtual work of the inertia forces 2
0T , the internal

virtual work 2
0Wi and the external virtual work 2

0We are
respectively obtained as

2
0δT = −

∫
�

2
0δv̂

THu
2
0
¨̂v d� (28)

2
0δWi =

∫
�

2
0δŜ

THc
2
0Ŝ d�+

∫
�

2
0δŜ

THT
e

2
0E d�

+

∫
�

2
0δE

THe
2
0Ŝ d�+

∫
�

2
0δE

THg
2
0E d� (29)

2
0δWe =

∫
V

2
0δû

Tfb dV+
∫
�

2
0δû

Tfs d�+ 2
0δû

Tfc

−

∫
�

2
0δφ

T% d�− 2
0δφ

TQc (30)

with

Hu =

∫
h
ρZT

u Zuµ d23 (31)

Hc =

∫
h

HT
1 KT

encKenH1µ d23 (32)

He = −

∫
h

eKenH1µ d23 (33)

Hg = −

∫
h
εµ d23 (34)

where ρ is the density, and µ the determinant of the shifter
tensor. Additionally, fb, fs and fc represent the vectors of
body, surface and concentrated forces, and % and Qc the
surface and concentrated charges, respectively. Substituting
equations (28)–(30) into (27) yields the equations of motion
and the sensor equations as

1Muu
2
0q̈+ 1K̄uu1q+ 1Kuφ1φa = Fue −

1Fui (35)

1Kφu1q+ 1Kφφ1φs = Gφe −
1Gφi. (36)

Here 1Muu represents the mass matrix, 1K̄uu the total stiffness
matrix containing linear and nonlinear effects, 1Kuφ the
piezoelectric coupled stiffness matrix, 1Kφu the coupled
capacity matrix, and 1Kφφ the piezoelectric capacity matrix.
In the above equations, Fue and Gφe denote the external force
and charge vectors, while 1Fui and 1Gφi are the in-balance
force and charge vectors, respectively. Additionally, q, q̈ are
the nodal displacement and acceleration vectors, while φa
denotes the voltage vector applied on actuators and φs is the
vector of sensor output voltage.

5. Numerical applications

In order to verify the present nonlinear FE method, two
numerical applications have been investigated, namely a

Figure 1. A cantilevered beam bonded with a piezoelectric patch.

cantilevered beam and a fully clamped cylindrical shell, which
were first calculated by Yi et al [30], and later by Lentzen
and Schmidt [25]. The material properties of the piezoelectric
patches bonded on the master structures are E = 67 GPa, ν =
0.33, ρ = 7800 kg m−3, d31 = d32 =−1.7119×10−10 C N−1,
and ε33 = 2.03×10−8 F m−1. Here the piezoelectric coupling
coefficients d31 and d32 are different from those in [30], but
the same as those in [25, 27]. The piezoelectric potential of
the bonded surface is φ = 0, while at the upper surface of the
PZT patch the physical equipotential condition is enforced.
An eight-node piezoelectric coupled shell element with five
mechanical DOFs per node and one electrical DOF per
piezoelectric layer, the element type of which is abbreviated
as SH851URI for uniformly reduced integration and SH851FI
for full integration, are employed in this paper.

5.1. Cantilevered beam

The first example is a cantilevered beam bonded with a
piezoelectric patch, presented in figure 1. The material
properties of the master structure are E = 197 GPa, ν = 0.33,
and ρ = 7900 kg m−3. Two meshes of 5 × 1 and 10 × 1
eight-node elements are used in the following calculations,
respectively. A concentrated step force of 10 N is applied on
the tip point of the free end. The linear dynamic response
is calculated by the Newmark method with a time step
of 1 × 10−3 s. The nonlinear dynamic response using the
SH851FI elements is determined by the CDA method with
a time step of 1 × 10−7 s, while the Newmark method with
a time step of 5 × 10−6 s is applied for the model using
SH851URI elements. The tip displacement and sensor voltage
transient responses obtained by various nonlinear theories
using SH851URI elements are presented in figures 2 and 3,
respectively. It can be seen from figure 2 that LRT56 yields a
stiffer response than RVK5, but a softer one than MRT5 and
LRT5. These simplified nonlinear theories fail because in this
problem really large rotations occur. A deeper investigation of
the structure shows that under a quasi-statically applied tip
force 10 N, the structure undergoes maximum rotations of
more than 50◦. Furthermore, the static deflections predicted
by LRT56 are larger than those by MRT5 and LRT5.

The next group of figures shows the transient responses
obtained by LRT56 theory using both SH851URI and
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Figure 2. Tip displacement of the cantilevered beam using various
theories.

Figure 3. Sensor voltage of the cantilevered beam using various
theories.

SH851FI with two different meshes, which are displayed in
figure 4 for the displacement and figure 5 for the sensor
output voltage along with a comparison with the literature.
From figure 4 it can be seen that the transient response
obtained by LRT56 using discretization by 5 × 1 or 10 × 1
SH851URI elements is almost identical. This indicates that
the 5 × 1 mesh already yields the converged solution. In
figure 4 we have also added a result obtained by a 5 × 1
mesh of SH851FI elements. This was done to compare the
results with those given by Yi et al [30], who used the fully
geometrically nonlinear 3D theory applying a mesh of 5 × 1
20-node solid elements for the master structure and 1× 1 for
the piezoelectric patch without avoiding the locking effects.
That is equivalent to using the present mesh of 5 × 1 8-node
SH851FI elements. It can be seen that these solutions are
indeed in very good agreement. The slight discrepancy of
the amplitude of the sensor output voltage signal in figure 5
is explained by different piezoelectric constants d31 and d32
in [30] as mentioned above. However, due to the locking

Figure 4. Tip displacement of the cantilevered beam using LRT56
theory.

Figure 5. Sensor voltage of the cantilevered beam using LRT56
theory.

effects in the models obtained using SH851FI elements, the
solutions are not well converged. This is shown by increasing
the number of elements from 5 × 1 to 10 × 1 with the
same element type SH851FI which leads to a totally different
dynamic response compared to the one obtained by 5 × 1
elements.

5.2. Fully clamped cylindrical shell

The second example is a fully clamped cylindrical shell with
a piezoelectric patch centrally bonded on the top surface
as depicted in figure 6. The host structure is made up of
orthotropic material, in which the fiber reinforcement is
along the 21 direction. The material properties are E1 =

124 GPa,E2 = 96.53 GPa, ν12 = ν23 = 0.34, G12 = G13 =

G23 = 6.205 GPa and ρ = 1520 kg m−3. Due to the
symmetry, a quarter of the cylindrical shell with a mesh of
8 × 4 SH851URI elements along 21 and 22 axes is used
for computation. The Newmark method is applied with a

5
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Figure 6. A fully clamped cylindrical shell with centrally bonded
piezoelectric.

Figure 7. Mid-point displacement of the cylindrical shell under a
pressure of 6× 104 Pa.

time step 1 × 10−5 s for the linear case and 1 × 10−7 s for
the nonlinear case. The transient responses of the mid-point
displacement and the sensor voltage of the shell structure
subjected to a uniformly distributed step load of 6 × 104 Pa
are displayed in figures 7 and 8, respectively. It can be seen
that there is only a small difference between the results of
both displacement and sensor voltage obtained by LRT56 and
RVK5 theories, implying that the cylindrical shell undergoes
deformations only in the range of moderate rotations. The
dynamic response of the mid-point displacement agrees quite
well with that in [25] using linear and MRT5 theory in
figure 7. Further, increasing the pressure to 6 × 105 Pa, one
obtains the dynamic response of displacement and sensor
voltage shown in figures 9 and 10, respectively. It can be
seen that even at this load only small discrepancies exist
between the results predicted by LRT56 and RVK5 theories.
This indicates that due to the clamped boundary conditions the
cylindrical shell is still undergoing only moderate rotations,
although the sensor voltage output would be beyond the
range of applicability of the linear piezoelectric constitutive
relations in equations (13) and (14).

6. Conclusions and discussions

A large rotation theory, which contains six independent
kinematic parameters (expressed by five nodal DOFs) has

Figure 8. Sensor voltage of the cylindrical shell under a pressure of
6× 104 Pa.

Figure 9. Mid-point displacement of the cylindrical shell under a
pressure of 6× 105 Pa.

Figure 10. Sensor voltage of the cylindrical shell under a pressure
of 6× 105 Pa.

been developed for FE transient analysis of piezolaminated
thin-walled smart structures based on the FOSD hypothesis.
The FE dynamic model has been obtained by using eight-node
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quadrilateral shell elements and linear constitutive equations
with the assumption of constant electric field through the
thickness of piezoelectric layers. Two integration schemes
have been used in the calculations, in which SH851URI stands
for the shell element with uniformly reduced integration
and SH851FI for full integration. The dynamic equations
of both linear and nonlinear cases have been derived by
the CDA and the Newmark method. The results obtained
by LRT56 theory have been compared with those obtained
by simplified nonlinear theories using both SH851FI and
SH851URI elements, as well as those presented in the
literature. The comparisons illustrate that simplified nonlinear
theories can be applied only when structures undergo small
or moderate rotations. However, in the case of large rotations
occurring in structures, LRT56 has to be considered for
dynamic analysis of thin-walled smart structures.
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