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Abstract
This paper studies a piezoelectric impact energy harvesting device consisting of two
piezoelectric beams and a seismic mass. The aim of this work is to find the influence of several
mechanical design parameters on the output power of such a harvester so as to optimize its
performance; the electrical design parameters were not studied. To account for the dynamics of
the beams, a model including the mechanical and piezoelectric properties of the system is
proposed. The impacts involved in the energy harvesting process are described through a
Hertzian contact law that requires a time domain simulation to solve the nonlinear equations. A
transient regime and a steady-state regime have been identified and the performance of the
device is characterized by the steady-state mean electrical power and the transient electrical
power. The time simulations have been used to study the influence of various mechanical design
parameters (seismic mass, beam length, gap, gliding length, impact location) on the
performance of the system. It has been shown that the impact location is an important parameter
and may be optimized only through simulation. The models and the simulation technique used
in this work are general and may be used to assess any other impact energy harvesting device.

1. Introduction

Piezoelectric systems have many applications including the
development of sensors, actuation, and health monitoring. In
this paper piezoelectric cantilevered beams are used to harvest
energy: the ambient vibration energy is converted to electrical
energy by the piezoelectric properties. The ambient vibration
energy produces a base excitation that may be harmonic [1],
broadband random [2], or a set of impulses. Improvements to
the device may increase the deformation of the piezoelectric
material and thus increase the generated current: for example,
a seismic mass may be placed at the tip of the cantilevered
beam [1, 3], or additional impact pulses [3–5] may be used
leading to impact energy harvesting. The latter is the focus of
this paper.

Piezoelectric cantilevered harvesters have been widely
studied. Smits et al [6] derived the constituent equations for
bimorphs. Wang et al [7] and Ballas et al [8] extended this
work to all kinds of piezoelectric systems. However, these

3 On a 6-month academic sabbatical leave at Swansea University in 2011.

analyses are based on continuous beam theory and do not lead
to a simple model with a finite number of degrees of freedom
(dof) that is able to study the dynamic response of piezoelectric
cantilevered beams. For design purposes, single-dof systems
have been developed [9]. Erturk et al [10] highlighted the
fact that these models must be used carefully and may fail to
represent the piezoelectric coupling. Some authors [1, 9, 11]
have proposed a modal approach to deal with the distributed
parameter model of a piezoelectric system. Similarly, a
Rayleigh–Ritz approach was used by several authors [9, 12].
The finite element method [13, 14] has also been considered
to model a piezoelectric harvester. The goal of the Rayleigh–
Ritz approach and the modal model is to obtain closed-form
expressions of the piezoelectric beam response. However, for
impact energy harvesting only numerical responses may be
obtained even though some quantities may be estimated by
simplifying the impact force [4, 15, 16]

The model used in this paper uses the Rayleigh–
Ritz approach. An appropriate choice of the Rayleigh–Ritz
functions/vectors leads to a multi-dof system that may be
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Figure 1. Schematic of the piezoelectric harvester.

considered to be a set of spring–mass systems. This
model [17–19] is referred to as an anti-oscillator (AO) model
and has proved efficient to model impacted structures [20].
Here it will be used to model impacted piezoelectric beams.

This paper provides models and techniques that enable the
optimization of the mechanical design parameters of an impact
energy harvesting device. This is illustrated through an existing
impact energy harvester developed by Renaud et al [3, 4].
This paper is organized as follows. The piezoelectric impact
energy harvesting device studied in this paper is described
first. Then, the AO-model is presented briefly. The equations
that govern the device response are established and then
discretized. Finally a sensitivity analysis is performed to
determine the influence of some mechanical design parameters
on the performance of the piezoelectric device.

2. Description of the system

The system studied was described by Renaud et al [3, 4]
and consists of a box that encloses two identical cantilevered
piezoelectric unimorphs impacted by a sliding mass at the tip
of the beam (see figure 1). d is the distance between the beams.
Each beam shown in figure 2 has its tip displacement limited
by a stop (gap g) between the beam and the box internal wall.
The z-axis is in the beam thickness direction with origin at
the bottom of the beam (free surface of the support). Each
unimorph is characterized by

• the support thickness (hs),
• the piezoelectric thickness (hp),
• the beam thickness (h = hs + hp),
• the beam width (W ),
• the mass density of the constituents (piezoelectric: ρp;

support: ρs),
• the mechanical properties:

* support Young’s modulus (Ys),
* piezoelectric Young’s modulus at a constant electric

field (c̃ E
11 ),

* piezoelectric compliance at a constant electric field
(sE

11 = 1/c̃E
11),

• the piezoelectric constants (ẽ31, d31 = ẽ31 × sE
11),

• the permittivity component at constant strain with the
plane stress assumption (ε̃S

33),

Figure 2. Schematic of the piezoelectric unimorph.

• the permittivity component at constant stress (ε̃T
33 = ε̃S

33 +
d2

31/sE
11).

The rigid box has a translational movement w0(t) which
is the base excitation of the beams:

w0(t) = U0 sin(ωet) (1)

where U0 is a positive constant and ωe is the excitation circular
frequency.

2.1. Beam equations

The beams are modelled as Euler–Bernoulli beams: i.e. small
displacement, small rotation, no transverse shear, and no
rotational inertia. The damping of the structure is not
considered initially, although it may be introduced easily, either
as proportional to the mass and stiffness matrices, or as modal
damping. The displacement equation of each beam is

m ẅ(x, t) + M ′′(x, t) = −m ẅ0(t) + Fimp(t)δ(x − ximp) (2)

where w(x, t) referred to either w1(x, t) or w2(x, t), m =
W (ρshs + ρphp) is the mass per unit length, w is the relative
transverse displacement of the beam with respect to the base,
and M is the bending moment; Fimp is the impact force on the
beam located at x = ximp due to the seismic mass (ms) and the
stop (internal wall of the box). The impact is assumed to occur
at the tip of the beam (ximp = L), except when the impact
location influence is addressed. The contact area is assumed
to be small compared to the beam dimensions and hence the
impact force may be modelled as a concentrated force using
the Dirac delta function in (2).

The bending moment may be easily expressed in terms of
the transverse displacement as

M(x, t) = −W
∫ h

0
z T1(x, z, t) dz (3)

where T1 is the axial stress in the beam and is related to the
strain and the electric field through the following constituent
equations:

∀ z ∈ [0 hs] T1(x, z, t) = YsS1(x, z, t) (4)

∀ z ∈ [hs h] T1(x, z, t) = c̃ E
11 S1(x, z, t) − ẽ31 E(x, z, t)

(5)
with the following definitions.

2
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• E is the electric field, usually supposed to be uniform in a
piezoelectric layer, so that

E(x, z, t) = E(t) 1[0,L](x)

where 1[0,L] is the characteristic function of the interval
[0, L]. This function could be dropped in this formulation,
although it does emphasize the piezoelectric coupling.
Note that the local stress at x generates an electric field
everywhere between the electrodes. The electric field is
derived from the potential P as

E(t) = −∂P
∂z

(z, t) (6)

and the voltage v(t) between the two electrodes is

v(t) = P(h) − P(hs) = −hp E(t). (7)

• S1 is the axial strain in the beam and considering beam
theory one has

S1(x, z, t) = −(z − h0) w′′(x, t) (8)

where h0 is the neutral axis position.

As no longitudinal force is applied to the beam, h0 is
defined as

W
∫ h

0
T1(x, z, t) dx = 0 (9)

which leads to

h0 = Ysh2
s + c̃E

11(h
2 − h2

s )

2(Yshs + c̃E
11hp)

. (10)

Equations (4)–(8) lead to the following expression for the
bending moment:

M(x, t) = Y I w′′(x, t) + C hp E(t) 1[0,L] (11)

with the following definitions.

• Y I is the equivalent flexural rigidity of the beam:

Y I = W

(
Ys

(hs − h0)
3 + h3

0

3

+ c̃ E
11

(h − h0)
3 − (hs − h0)

3

3

)
. (12)

• C = − W ẽ31 hpc is an electromechanical coupling factor.

• hpc is the distance between the neutral axis and the mid-
layer of the piezoelectric.

Combining (2) and (11) the displacement equation for
each piezoelectric beam is

mẅ(x, t) + Y Iw(4)(x, t) + CE(t)(δ′(x) − δ′(x − L))

= −mẅ0(t) + Fimp(t)δ(x − L). (13)

2.2. Electrical equation

According to the integral form of the Gauss law [11, 21–23],
the current i delivered by a pair of electrodes in an admittance
circuit (resistor R) is

i(t) = dQ

dt
(t) = d

dt

∫
A

D(x, z, t) dA = 1

R
v(t) (14)

with the following definitions.

• Q is the electric charge on one electrode.
• D is the electric displacement vector. The second

piezoelectric constituent relation which holds everywhere
in the piezoelectric layer is

D3(x, z, t) = ẽ31 S1(x, z, t) + ε̃S
33 E(t). (15)

• A is the electrode area.

By substituting (8) and (15) in (14), the electric equation
is derived [1, 11, 22, 23]:

Cp v̇(t) + 1

R
v(t) − C

∫ L

0
ẇ′′(x, t) dx = 0 (16)

with the following definitions.

• Cp = ε̃S
33W L

hp
may be considered as the internal capacitance

of the piezoelectric layer.
• C is the coupling coefficient already found in (11).

Considering the beam boundary conditions, (16) may be
rewritten as

Cp v̇(t) + 1

R
v(t) − C ẇ′(L, t) = 0. (17)

2.3. Impact model

The impact between two solids has been extensively studied
and the phenomena involved in such an event depend on the
impact velocity. In the context of impact energy harvesting,
low velocity impacts occur giving rise to only local nonlinear
deformation and hence the global behaviour is still governed
by linear elasticity relationships [15, 16, 24]. The interaction
between the seismic mass and each beam is governed by a
Hertzian contact law [24–26]. Thus

Fimp(t) = kH(w(L, t) − wm(t))(3/2) (18)

where kH is the Hertzian contact stiffness with nominal value
kH = 107 N m−3/2. The interaction force (18) is suitable for
the studied device because the end surface of the seismic mass
is assumed to be smooth and rounded. The contact stiffness
assumes a spherical contact with a radius under 1 μm, and this
is discussed further in section 6.1.

This impact model is nonlinear. The nonlinearities
arise from the exponent (3/2) in relation (18) and from the
contact detection condition. The first nonlinearity implies
that the energy stored during the impact depends both on
the material characteristics and also on the impact condition
(impact velocity). This will be emphasized in section 6.1 and
the discussion associated with (43).

3
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2.4. Equations of the whole problem

The piezoelectric problem to be solved is

mẅk(x, t) + Y I wk(4)(x, t) + Cvk(t)(δ′(x) − δ′(x − L))

= −mẅ0(t) + Fk
imp(t) δ(x − L) (19)

Cpv̇
k(t) + 1

R
vk(t) − Cẇ′k(L, t) = 0 (20)

for each piezoelectric beam k (k = 1 and 2), where wk(x, t)
and vk(t) are the unknowns.

To complete the problem, the displacement equation of the
seismic mass must be added:

ms ẅm(t) = −Fimp, beam1(t) − Fimp, beam2(t) (21)

where Fimp,beamk(t) represents the impact force on beam k due
to the seismic mass. A friction force will often occur between
the seismic mass and the gliding channel, as remarked by
Renaud et al [4]; this effect was neglected by Renaud et al
and is also neglected here.

3. Field displacement discretization

In the following, (19) and (20) are discretized according to a
specific Rayleigh–Ritz procedure defined in [17]:

w(x, t) =
∞∑

i=0

qi(t) φi(x) (22)

with the following definitions.

• ∀ i > 0, φi are the eigenshapes associated with (19) when
the piezoelectric layer is in short circuit for a clamped–
pinned beam. Thus the beam is subject to an additional
boundary condition at the impact location and this system
is referred to as the constraint system. φi is referred to
as a constraint shape and the circular eigenfrequencies are
denoted ωi .

• φst is the solution to the static problem of the cantilevered
beam where a static force is applied at the impact location
(x = L) and the displacement at the impact location
is equal to unity. Further details about the choice of
eigenshapes φi may be found in [17–19].

• φ0 is the so-called residual mode such as

φ0(x) = φst(x) −
∞∑

i=1

ciφi(x) (23)

with the coefficients ci defined so that φ0 is orthogonal to
each constraint shape with respect to the mass operator.

The displacement field is better expressed as a function of
the parameters λi (t) = qi(t)/ci (with c0 set equal to unity).
Hence

w(x, t) =
∞∑
0

λi (t) ciφi (x) (24)

= λ0 φst(x) +
∞∑

i=1

(λi (t) − λ0(t))ci φi (x). (25)

Note that λi does not depend on the normalization of the
eigenshapes, φi(x).

The initial distributed model is then discretized by
considering only the first N + 1 terms in the series:

w(x, t) =
N∑

i=0

λi (t) ciφi(x). (26)

4. Discretized equations

4.1. Discretized displacement equations

By substituting expression (26) into (19), the following
equation is derived:

m
N∑

i=0

λ̈i (t)ciφi(x) + Y I
N∑

i=0

λi (t)ciφ
(4)

i (x)

− Cv(t)(δ′(x) − δ′(x − L))

= −mẅ0(x, t) + Fimp(t)δ(x − L). (27)

This is valid for each piezoelectric beam.
The final set of equations is derived by multiplying (27)

by c jφ j(x) and then by integrating over the beam length. Two
cases have to be considered.

• j = 0:

m0λ̈0(t) + k0λ0 +
N∑

i=1

ki(λ0(t) − λi (t))

+ C0v(t) = −mRB,0ẅ0(t) + Fimp(t). (28)

• j �= 0:

mi λ̈i (t) + ki(λi (t) − λ0(t)) + Civ(t) = −mRB,i ẅ0(t).
(29)

Here:

• some orthogonal properties proved in [17] are used,
• some properties of the δ distribution are used,
• ∀ i > 0, mi = ∫ L

0 mc2
i φi (x)2 dx ,

• m0 is referred to as a residual mass and is the difference
between a ‘static’ mass and the sum of masses {mi}i=1···N :

m0 =
∫ L

0
mc2

i φst(x)2 dx −
N∑

i=1

mi = mst −
N∑

i=1

mi ,

•
∀ i > 0, ki =

∫ L

0
Y Ic2

i φi(x) φ
(4)
i (x) dx,

• k0 is the usual static stiffness:

k0 =
∫ L

0
Y Iφst(x)φ

(4)
st (x) dx,

•
Ci = Cci φ′

i (L),

•
mRB,i = m

∫ L

0
ciφi(x) dx .

4
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Figure 3. Mechanical model of a piezoelectric cantilevered beam:
the piezoelectric coupling is a set of forces included in the forces
Fi(t).

These equations may be rewritten as

m0λ̈0(t) + k0λ0 +
N∑

i=1

ki(λ0(t) − λi (t)) = F0(t) (30)

∀ i > 0, mi λ̈i (t) + ki(λi (t) − λ0(t)) = Fi (t) (31)

where Fi (t) = −mRB,i ẅ0(t) − Civ(t) + Fimp(t)δi0 (δi j is the
Kronecker delta).

Considering the mechanical aspect of the piezoelectric
system, the piezoelectric coupling may be considered as an
additional force described by the lumped system shown in
figure 3.

Each 1-dof system {ki , mi}i>0 is referred to as an anti-
oscillator because it may be shown [17] that its natural
frequency belongs to the antiresonance frequency set of the
studied system. Figure 3 shows that this AO-model extends
the 1-dof model of du Toit [9] and may be derived from the
AO-model when N = 0.

4.2. Discretized electrical equation

By substituting (26) in (20), the discretized electrical equation
is

Cpv̇(t) + 1

R
v(t) −

N∑
i=0

Ci λ̇i (t) = 0. (32)

The electric scheme of this equation is a capacitor in parallel
with a resistor fed by current sources in parallel. The current
delivered by a source is proportional to the velocity.

4.3. Discretized impact model

The definition of eigenshapes φi and relation (25) infer that
λ0(t) has a physical meaning: it represents the transverse
displacement at the tip of the beam,

λ0(t) = w(L, t). (33)

Then equation (18) may be written for each beam as

Fimp(t) = kH(λ0(t) − wm(t))(3/2). (34)

4.4. Discretized equations of the whole problem

For each piezoelectric beam k, the discretized problem to be
solved is

m0λ̈
k
0(t) + k0λ

k
0 +

N∑
i=1

ki(λ
k
0(t) − λk

i (t))

+ C0 vk(t) = −mRB,0ẅ0(t) + Fk
imp(t) (35)

∀ i > 0,

mi λ̈
k
i (t) + ki(λ

k
i (t) − λk

0(t)) + Ci vk(t) = −mRB,i ẅ0(t)

(36)

Cpv̇
k(t) + 1

R
vk(t) −

N∑
i=0

Ci λ̇
k
i (t) = 0. (37)

The displacement equation of the seismic mass is formally
unchanged:

msẅm(t) = −Fimp, beam1(t) − Fimp,beam2(t). (38)

When considering an impact problem, a study in the
frequency domain is not possible. Indeed, an impact problem
is transient by nature and nonlinear: the impact forces
depend on the response. Accordingly the problem must
be simulated in the time domain. In the following, (35)–
(38) are solved by a Newmark-β method for the mechanical
variables and a trapezoidal rule for the electrical variables.
An implicit Newton–Raphson method is used to deal with the
nonlinearities.

The difficulty in solving the problem in the time domain
arises from the two different timescales: the high beam natural
frequencies and nominal contact stiffness kH = 107 N m−3/2

suggest a sampling time of 10 μs whereas the base movement
period is 1 s. In the numerical examples we further discuss the
effect of kH on the sample time.

5. Optimization of the piezoelectric device

This section assesses the influence of several design
piezoelectric beam parameters (d , gap, L, impact location)
on the capability of the studied device to harvest energy.
A sensitivity analysis is performed and for several sets of
parameters the equations of section 4.4 are solved numerically.

5.1. Nominal case

The material and geometrical characteristics of both beams
and the seismic mass are listed in table 1 [3]. The
excitation characteristics are given below. The beam’s first
eigenfrequency in the short-circuit condition is 707 Hz. The
equations derived thus far are undamped; a proportional
viscous damping could be defined by mass and stiffness matrix
proportionality coefficients, as often done in commercial finite
element software. However, here it is more appropriate to
define the damping using a set of viscous dampers {Di} in
parallel with the springs {ki} as

D0 = 2ξ0

√
kstmst (39)

Di = 2ξi

√
ki mi (40)

5
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Table 1. System characteristics [3].

Beam properties L (mm)
10

W (mm)
5

d (mm)
10

hp (μm)
35

hs (μm)
105

PZT-5 properties εS
3 /ε0 ẽ31 (F m−1) ρp (kg m−3) c̃E

11 (GPa)
1500 −10.5 7750 61

Brass properties ρs (kg m−3) Y (GPa)
8500 100

System properties m (g m−1) Cp (nF) C (μC) gap (mm)
5.8 23.3 −3.03 2.0

Table 2. Beam excitation [3] and other system parameters.

U0 (mm) Te = 2π/ωe (s) ms (mg) R (k �)

100 1 750 52

Table 3. The AO piezoelectric beam model.

AO number 1 2 3
Mass mi (mg) 7.1 2.3 1.1
Frequency fAO (kHz) 3.1 10.0 21.0
m0 (mg) 3.1
kst (N m−1) 278.3

Figure 4. Absolute displacement: beam 1 tip (——), beam 2 tip + d
(— · —), seismic mass (· · · · · ·)

where ξ0 is the piezoelectric beam’s first mode damping ratio
and ξi is the i th mode damping ratio of the piezoelectric beam
in the constrained configuration defined in section 4.1. If the
damping is well distributed, and if few modes are required, we
may assume that all of the damping ratios are equal to ξ0, which
may be experimentally determined. In this paper ξ0 is set equal
to 2.7%, as proposed by Erturk and Inman [1].

The base movement parameters and the seismic mass
characteristics are given in table 2. Initially, the seismic mass
is placed at the mid-distance between the two beam tips.

The AO-model was derived from a finite element model of
the cantilevered beam: each finite element is a Euler–Bernoulli
finite element with two dof per node and cubic polynomial
interpolation functions. Each beam has been discretized with

Figure 5. Relative beam tip displacement with respect to the base
movement: beam 1 tip (——), beam 2 tip (— · —).

Figure 6. Impact forces on the beams: beam 1 (——), beam 2
(— · —).

20 elements and 3 AOs are considered. The characteristics of
the AO-model are given in table 3.

Figures 4–7 show the calculated beam tip displacements
(absolute and relative to the root), the impact forces and the
voltages obtained from each beam. In figure 4 the beam 2

6
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Figure 7. Voltage delivered by each piezoelectric beam: beam 1
(——), beam 2 (— · —).

displacement is shifted upward by d , the distance between the
two beams, so as to represent the limits of the seismic mass
displacement. The response has two different behaviours:

• a transient response which lasts mostly during the first
base movement period,

• a kind of steady-state response.

This is better illustrated by figure 8, which shows the mean
electrical power for the i th cycle of vibration defined as

P(i) = 1

R
× 1

Te

∫ (i+1)×Te

i×Te

v2(t) dt . (41)

The mean electric power is almost constant from the second
base movement period whereas the power is much greater for
the transient movement (first period). Thus we define the
transient mean electric power (Ptrans) and a steady-state mean
electric power (Psteady), which is always much lower than the
transient mean electric power. In the following, Ptotal is the
mean electric power over the whole simulation, and thus lies
between Ptrans and Psteady.

The number of dofs has been varied in a convergence
study. The results did not change significantly when only one
AO was considered, compared to many AOs. This means that
each beam is stiff compared to the excitation, and each beam
may be modelled as a single-dof system. In the following, only
one AO is used, except when mentioned.

5.2. Electric load

To maximize the mean electric power P , the load resistor
should be optimized [1, 3]. This resistance is not a mechanical
design parameter, but should be optimized for each physical
device. For example, as the beam length is varied, the optimum
resistor will change. Hence we have to ensure that the optimum
resistor is used when we compare the maximum electric power
that can be achieved by the studied device.

Several simulations were performed where the load
resistance varied from 3 to 300 k�. Figure 9 shows the mean

Figure 8. Mean electric power.

Figure 9. R sensitivity analysis—mean electric power: Ptotal (——),
Psteady (— · —), Ptrans (- - - -).

power produced for the nominal device parameters, and shows
that the maximum mean power is reached for a resistance of
52 k�. However there is a plateau between 30 and 200 k�

where the influence of the resistance is small. The mean power
reduces significantly when the system is close to the short-
circuit condition (R tends to zero) or close to the open-circuit
condition (R tends to infinity). The mean seismic mass kinetic
energy was also evaluated and found to be almost constant.

In the following sections, the resistance used is the
optimum value for the particular device parameters.

5.3. Optimized mass gliding distance, d

The seismic mass gliding distance has a strong influence on
the steady mean electric power as shown in figure 10. Indeed,
distance d governs the coupling between the two beams. When
d is very small, the coupling is very strong and both beams and
the mass move together; accordingly little energy is transferred

7
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Figure 10. d sensitivity analysis—mean electric power: Ptotal (——),
Psteady (— · —), Ptrans (- - - -).

Figure 11. d sensitivity analysis—mean seismic mass kinetic energy.

from the mass to the beams because the impact is very smooth.
That may be seen in figure 11: the mass kinetic energy
increases with d due to a larger relative velocity between the
mass and the beams at each impact. The maximum is reached
just before d is equal to 2 × U0; at this limit case, the mass
does not impact the beams and the power suddenly decreases
to that obtained by the base movement only, which is almost
zero. Moreover, figure 10 shows that d has little influence on
the steady-state mean electric power per unit volume.

No significant influence is detected on the transient
electric power.

5.4. Optimized beam length

The beam length has a significant effect on the eigenfrequen-
cies. Increasing the beam length creates a less stiff device.
A range of beam lengths has been simulated with the largest

Figure 12. L sensitivity analysis—one AO considered—mean
electric power: Ptotal (——), Psteady (— · —), Ptrans (- - - -).

Figure 13. L sensitivity analysis for several load resistors—steady
mean electric power: 5 k� (– – –), 12 k� (— · —), 33 k� (· · · · · ·),
52 k� (——), 470 k� ( ).

length eight times the nominal length, which multiplies the first
eigenfrequency by 64. Figure 12 shows that the influence is
quite weak. However, the influence of the AO number required
to describe the system must be studied to verify whether each
beam should be modelled as a single-dof system for greater
beam lengths. The simulations showed that three AOs are
sufficient to simulate the beam for all lengths and the AO
number influence is quite weak. Moreover, the conclusion that
the length influence is quite weak still holds even when the
first eigenfrequency is lower than 60 Hz (although the effect
is noticeable). This means that if the electric power per unit
volume is the quantity of interest, a short beam is required.

However the optimized resistance must also be addressed.
Indeed, as the dynamics of the system changes, the optimized
resistance may change. Figure 13 shows that when the first
eigenfrequency is above 300 Hz, 52 k� seems to be the
optimized resistance, considering the steady-state. However,

8
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Figure 14. L sensitivity analysis for several load resistors—transient
mean electric power: 5 k� (– – –), 12 k� (— · —), 33 k� (· · · · · ·),
52 k� (——), 470 k� ( ).

below 300 Hz the optimum resistance may be different and this
demonstrates the close connection between the dynamics of a
piezoelectric beam and the optimized resistance. For example,
for f1 = 60 Hz, Psteady is three times greater with R = 470 k�

compared to R = 52 k�. Figure 14 shows that 52 k� is an
optimized resistance for the transient mean power.

5.5. Optimized gap g

The stop against the wall is unavoidable to have a device
volume as small as possible. The stop also limits the beam
deformations and keeps the stresses below the failure stress of
the piezoelectric material. However, if the gap is too small the
beam may be considered as a clamped–pinned beam. As the
impact occurs at the pinned end, then no large deformation is
produced in the piezoelectric beam and consequently the power
generated will be small, as shown in figure 15. Note that the
optimum gap is 1 mm as there is no impact against the stop
beyond this gap limit.

5.6. Optimized impact location

In a static analysis, for a given force, the maximum
deformation energy is reached when the force is applied at
the beam tip. However, the situation may be different for a
dynamic analysis and hence the impact location was varied
from the clamped end to the tip. The stop location is also
supposed to vary similarly. Figure 16 shows clearly that
Psteady is optimized if the impact occurs between 0.20 × L
and 0.25 × L. The optimized resistance varies with the impact
location: for example when ximp = 0.25 × L, Ropt is around
10 k�. However, it was found that even for a resistance equal
to 52 k� (i.e. the optimized resistance when ximp = L) the
steady-state mean power is greater when ximp = 0.25 × L than
when ximp = L. This fact is not predictable and is due to the
dynamics involved in the impact and the beam response. The
large inertial forces from the beam mass close to the beam tip

Figure 15. g sensitivity analysis—mean electric power: Ptotal (——),
Psteady (— · —), Ptrans (- - - -).

Figure 16. Impact location sensitivity analysis—mean electric
power: Ptotal (——), Psteady (— · —), Ptrans (- - - -).

will produce a large deformation in the beam when ximp =
0.25 × L. The deformation shape becomes more complex
and covering the whole beam with piezoelectric material is
likely to be a suboptimal solution. Friswell and Adhikari [27]
considered different sensor shapes and their analysis may be
used to design the optimum coverage of the beam to maximize
the energy harvested.

The conclusions are different for Ptrans although it reaches
a local maximum in the same range of impact location: its
global maximum occurs when the impact is at the beam tip.

5.7. Optimized seismic mass

The harvesting energy device must be as small as possible but
should also be as light as possible. Thus we should assess the
influence of the seismic mass on the electric power. Figure 17
shows that the mean electric power depends strongly on ms:
the relation between Psteady and ms approximates the linear

9
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Figure 17. ms sensitivity analysis—mean electric power: Ptotal

(——), Psteady (— · —), Ptrans (- - - -).

Figure 18. ms sensitivity analysis—mean seismic mass kinetic
energy.

function

P̃steady = 3.3ms (42)

with Psteady expressed in μW and ms in g. However, figure 18
shows that the mean seismic mass kinetic energy does not vary
so much: an increase by a factor of 100 in the mass only leads
to an increase of 17% in the mean kinetic energy. This means
that when the mass is increased the seismic mass moves more
slowly but produces a higher beam deformation. This is in
agreement with the result found by Renaud et al [4]. They
observed that the ratio of the seismic mass to the effective mass
of the beam (constant in this section) has a strong influence on
the efficiency of the energy harvester device: a higher ratio
(equivalent to a higher seismic mass in our study) produces a
higher efficiency.

Figure 19. kH sensitivity analysis—mean electric power per base
movement period—kH (N m−1.5): 104 (· · · · · ·), 105 (——), 106

(— · —), 107 ( ), 108 (- - - -), 109 ( ).

6. Discussions on damping and contact condition

6.1. Contact condition

As mentioned above, the nominal Hertzian contact stiffness
is 107 Hz m−1.5. This corresponds to a sphere plane contact
with the sphere radius lower than 1 μm, which is not very
realistic. In this study the sphere radius is around 2 mm,
which corresponds to a Hertzian contact stiffness of around
5 × 109 Hz m−1.5. The calculations then only converge if the
time discretization is less than 1 μs; thus, for a simulation of
nine base movement periods, nine million sample points are
required and the computational time required for the simulation
would increase significantly.

Figure 19 shows that above 105 Hz m−1.5, kH has almost
no influence on the results, and this justifies the Hertzian
contact stiffness and the time sampling used in the simulations
presented in this paper. Note that all of the curves in
figure 19 have been drawn from results obtained with a time
discretization equal to 10 μs except the one related to kH =
109 Hz m−1.5 which was obtained with a time discretization
equal to 1 μs.

This kH sensitivity analysis shows that beyond kH =
105 Hz m−1.5 the contact duration Timp is almost constant
(around 5 ms) and produces a similar response of the system.
This may be proved by considering the linear stiffness
equivalent to the Hertzian contact stiffness [24]

klin = 0.995(k2
H vimp

√
ms)

2/5. (43)

It turns out that the time duration may be determined as
the half-period of an oscillator (meq, keq) where keq is the
equivalent stiffness of kst and klin in series [24, 16, 15]:

keq =
(

1

kst
+ 1

klin

)−1

. (44)

The simulations carried out provided an impact velocity around
0.2 m s−1 in the steady-state regime. If kH = 104 Hz m−1.5
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then klin is close to the static stiffness whereas the ratio klin/kst

is 4.5 (respectively 28.1, 177.3) for kH = 105 Hz m−1.5

(respectively kH = 106 Hz m−1.5, kH = 107 Hz m−1.5). Thus
keq is almost equal to kst when kH is greater than 106 Hz m−1.5

and the impact duration, and hence the force spectrum, remains
the same. Further details on such studies may be found
in [15, 16].

6.2. Dissipation

In an energy harvesting context, mechanical energy dissipation
is a quantity that must be minimized to increase the efficiency
of the harvester. In a harvesting device many sources of
dissipation may occur. For example,

• the internal damping of the structure characterized by the
damping ratio ξ ;

• the impact dissipation due to the viscoelastic properties
of the materials and the transformation into vibrational
energy;

• the friction between two solids in contact: this occurs
between the seismic mass and the beams as well as the
seismic mass and the guiding channel; and

• the dissipation induced by the energy harvesting process.

The friction may be modelled by a Coulomb damping law
from the normal force acting on the surfaces in contact. For
the beam–projectile contact, no tangential relative movement
is supposed to occur and then this dissipation does not happen.
However the friction between the mass and the surface of
the gliding channel may decrease the performance of the
energy harvester: the friction coefficient may be minimized by
choosing suitable materials.

The local viscoelastic dissipation has been widely studied
and many models have been proposed [26]. In the studied
configuration, multiple impacts occur; by introducing the
viscous effects, fewer impacts would occur, decreasing the
output power. In order to accurately simulate the device,
this dissipation must be included in the model. However,
this is beyond the scope of this paper and it does not affect
the qualitative results obtained in the mechanical optimization
study. Note that experimentally Renaud et al [4] found a
kinematic coefficient of restitution equal to 0.55. In the
model developed here, a kinematic coefficient of restitution of
0.87 was found; this coefficient is lower than one due to the
conversion of the initial energy into vibrational energy.

As usual in structural dynamics, the internal damping
of the beams is modelled by viscous damping. This is the
only mechanical dissipation taken into account in this study
and is characterized by the damping ratio ξ0. In practice
this damping ratio may be identified easily [28]. Once the
materials and the configuration are chosen, it is not possible
to optimize this parameter to reduce the loss of energy in
structural vibrations. However the damping ratio has a rather
small influence on the output power of the energy harvester,
as shown in table 4. In this study, to give a conservative
estimate of the harvested energy a relatively large damping
ratio was used, as proposed by Erturk and Inman [1]. Renaud
et al [4] proposed a mechanical quality factor Q of 50, which
is equivalent to a damping ratio ξ = 1/(2Q), or 1%. The

Table 4. Output power for several damping ratios.

ξ0 (%) Ptrans (μW) Psteady (μW)

5.0 47.0 2.7
2.7 54.4 2.9
1.0 65.0 3.4

simulations have shown that when this lower value is used,
higher output powers are obtained but the conclusions about
the mechanical optimization are the same.

Lesieutre et al [29] investigated the damping that results
from the piezoelectric energy harvesting process. They also
showed that the influence of a nonlinear electronic interface
required to convert and store the electric energy is strong.
Lefeuvre et al [30] studied several electrical interfaces to
improve the efficiency of the electromechanical conversion.
However, the optimization of the electrical design parameters
is outside the scope of this paper.

Dissipation modelling is a difficult task in structural
dynamics and, if possible, must be minimized. However it has
only a small influence on the harvesting problem and does not
influence the conclusions obtained in section 5.

7. Comments and conclusion

A new model for piezoelectric beams has been presented in this
paper which leads to a lumped model where the piezoelectric
effect is described through the applied forces. This model is
especially appropriate to solve impact problems.

A piezoelectric device for impact energy harvesting has
been simulated and two regimes have been identified that
may be described as transient and steady-state. This result
is predictable for harmonic base excitation. However, the
presence of the impacts means that the steady-state response
cannot be obtained directly in the frequency domain.

Sensitivity analysis has been performed with respect
to several design parameters to optimize the device. The
device performance has been quantified by two quantities: the
transient mean electric power Ptrans and the steady-state mean
electric power Psteady, which is much lower than Ptrans. As
the base movement is harmonic, Psteady is the most relevant
quantity to characterize the device. However, Ptrans represents
the maximum mean electric power that could be obtained if the
transient regime persisted.

The sensitivity analysis has shown that an optimal load
resistor may be determined. However, if the electric load is far
from the limit cases (short circuit and open circuit), the electric
load only has a weak influence on the device performance. It
has also been shown that the optimal electric load may vary
significantly with the piezoelectric beam stiffness. The stop
gap is mainly required for safety, and this gap should be as
large as possible providing the maximum beam stress is not
above the elastic yield stress.

The width of the device, which is closely related to the
seismic mass gliding distance, d , should be chosen based on
the base movement amplitude U0: the best performance is
achieved when d is just lower than two times U0. However, a
compromise is required between the output electric power and
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the device width. The length, that is the piezoelectric beam
stiffness, has no significant influence on the performance.

As the output electric power was found to vary linearly
with the seismic mass, the optimal weight of the device is a
compromise between the weight and the performance.

The impact location turned out to be a significant
parameter that does not affect the device volume. The
maximum electric power is not obtained when the impact is
located at the beam tip.

Acknowledgments

The first author acknowledges the financial support from
University of Lyon for his six-month academic sabbatical
leave. This research was performed at Swansea University.

References

[1] Erturk A and Inman D J 2009 An experimentally validated
bimorph cantilever model for piezoelectric energy harvesting
from base excitations Smart Mater. Struct. 18 025009

[2] Adhikari S, Friswell M I and Inman D J 2009 Piezoelectric
energy harvesting from broadband random vibrations Smart
Mater. Struct. 18 115005

[3] Renaud M, Fiorini P and Van Hoof C 2007 Optimization of a
piezoelectric unimorph for shock and impact energy
harvesting Smart Mater. Struct. 16 1125–35

[4] Renaud M, Fiorini P, van Schaijk R and Van Hoof C 2009
Harvesting energy from the motion of human limbs: the
design and analysis of an impact-based piezoelectric
generator Smart Mater. Struct. 18 0035001

[5] Moss S, Barry A, Powlesland I, Galea S and Carman G P 2010
A low profile vibro-impacting energy harvester with
symmetrical stops Appl. Phys. Lett. 97 234101

[6] Smits J and Choi W-S 1991 The constituent equations of
piezoelectric heterogeneous bimorphs IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 38 256–70

[7] Wang Q-M and Cross L E 1999 Constitutive equations of
symmetrical triple layer piezoelectric benders IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 46 1343–51

[8] Ballas R G, Schlaak H F and Schmid A J 2006 The constituent
equations of piezoelectric multilayer bending actuators in
closed analytical form and experimental results Sensors
Actuators A 130/131 91–8

[9] du Toit N E, Wardle B L and Kim S-G 2005 Design
considerations for mems-scale piezoelectric mechanical
vibration energy harvesters Integr. Ferroelectr. 71 121–60

[10] Erturk A and Inman D J 2008 Issues in mathematical modeling
of piezoelectric energy harvesters Smart Mater. Struct.
17 065016

[11] Erturk A and Inman D J 2008 A distributed parameter
electromechanical model for cantilevered piezoelectric
energy harvesters J. Vib. Acoust. 130 041002

[12] Sodano H A, Park G and Inman D J 2004 Estimation of electric
charge output for piezoelectric energy harvesting J. Strain
40 49–58

[13] Ries L L and Smith W 1999 Finite element analysis of a
deformable array transducer IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 46 1352–63

[14] De Marqui C Junior, Erturk A and Inman D J 2009 An
electromechanical finite element model for piezoelectric
energy harvester plates J. Sound Vib. 327 9–25

[15] Pashah S, Massenzio M and Jacquelin E 2008 Prediction of
structural response for low velocity impact Int. J. Impact
Eng. 35 119–32

[16] Pashah S, Massenzio M and Jacquelin E 2008 Structural
response of impacted structure described through
anti-oscillators Int. J. Impact Eng. 35 471–86
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