
Smart Materials and Structures      

A thermodynamically motivated model for
ferroelectric ceramics with grain boundary effects
To cite this article: A Arockiarajan et al 2010 Smart Mater. Struct. 19 015008

 

View the article online for updates and enhancements.

You may also like
Domain switching emission from the
mixed-mode crack in ferroelectrics by
birefringence measurement and phase
field modeling
Qun Li, Suxin Pan, Qida Liu et al.

-

Electrical fatigue behaviour in lead
zirconate titanate: an experimental and
theoretical study
Mainak Bhattacharyya and A Arockiarajan

-

Effect of grain size on the domain
structures and electromechanical
responses of ferroelectric polycrystal
Xinkai Li and Jie Wang

-

This content was downloaded from IP address 18.119.160.154 on 24/04/2024 at 13:24

https://doi.org/10.1088/0964-1726/19/1/015008
https://iopscience.iop.org/article/10.1088/0964-1726/25/7/07LT01
https://iopscience.iop.org/article/10.1088/0964-1726/25/7/07LT01
https://iopscience.iop.org/article/10.1088/0964-1726/25/7/07LT01
https://iopscience.iop.org/article/10.1088/0964-1726/25/7/07LT01
https://iopscience.iop.org/article/10.1088/0964-1726/22/8/085032
https://iopscience.iop.org/article/10.1088/0964-1726/22/8/085032
https://iopscience.iop.org/article/10.1088/0964-1726/22/8/085032
https://iopscience.iop.org/article/10.1088/1361-665X/26/1/015013
https://iopscience.iop.org/article/10.1088/1361-665X/26/1/015013
https://iopscience.iop.org/article/10.1088/1361-665X/26/1/015013
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvbbXN7Ii9Xar3XGsL2JmG6fUskCPjxH_ZVXYVk4XQZjr9SQDgW2c3e_W49idLgX_-Ml86aPVQ4qmSDdxSsKtF7Fg3OgFr8hkCZ1Yzq3V_3iL5ga3SlTPSlYCjtTRnse_-CPo5dWUqdkQyDlmqhsZKAZa_JvImsG_hjBTe7X216b7jrThH4hucPbQcZw66CjcozC_qq0f8Had-1I5JyfLmC0Uv4Uyex-81jd845ga5DxK9_dX07cRs2-39OX7jEbOpdDu_dRq7b39jhlQl7NGy8Z_fyvuJYk5n_rFtRzIfK72b6QQb-FM0_1GEtcnDnhMB0ElKaoVygN_3ZQwMDad8&sig=Cg0ArKJSzFcc43fPC6SR&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


IOP PUBLISHING SMART MATERIALS AND STRUCTURES

Smart Mater. Struct. 19 (2010) 015008 (13pp) doi:10.1088/0964-1726/19/1/015008

A thermodynamically motivated model for
ferroelectric ceramics with grain
boundary effects
A Arockiarajan1, S M Sivakumar1 and C Sansour2

1 Department of Applied Mechanics, Indian Institute of Technology Madras,
Chennai 600 036, India
2 School of Civil Engineering, University of Nottingham, Nottingham NG7 2RD, UK

E-mail: aarajan@iitm.ac.in

Received 6 May 2009, in final form 8 October 2009
Published 24 November 2009
Online at stacks.iop.org/SMS/19/015008

Abstract
The aim of this paper is to capture the grain boundary effects taking into consideration the
nonlinear dissipative effects of ferroelectric polycrystals based on firm thermodynamic
principles. The developed micromechanically motivated model is embedded into an
electromechanically coupled finite element formulation in which each grain is represented by a
single finite element. Initial dipole directions are assumed to be randomly oriented to mimic the
virgin state of the unpoled ferroelectric polycrystal. An energy-based criterion using Gibbs free
energy is adopted for the initiation of the domain switching process. The key aspect of the
proposed model is the incorporation of effects of the constraint imposed by the surrounding
grains on a switching grain. This is accomplished by the inclusion of an additional term in the
domain switching criterion that is related to the gradient of the driving forces at the boundary of
the grains. To study the overall bulk ceramics behavior, a simple volume-averaging technique is
adopted. It turns out that the simulations based on the developed finite element formulation with
grain boundary effects are consistent with the experimental data reported in the literature.

1. Introduction

An active or ‘smart’ material is often defined as one that
responds sharply to an input stimulus. The response can be in
many different forms such as an electrical or magnetic response
to a mechanical or a thermal input stimulus. Active materials
have begun to play an important role in modern structural and
intelligent systems design. Ferroelectric materials represent
a popular class of active materials used in applications
such as transducers, actuators and sensors. The unique
electromechanical coupling in the constitutive behavior of
these materials serves as a key aspect in applying these
materials to smart systems. Currently, ferroelectric ceramics
are widely used in various applications such as MEMS
devices, FRAM (ferroelectric random access memories),
nanopositioning, active damping and ultrasonics (see [33]).
While these materials show a nearly linear response under the
action of low electromechanical loadings, they exhibit strong
nonlinear response under high loading conditions. Domain
switching effects are accepted to be the main source for this

highly nonlinear behavior, stemming from the reorientation of
the underlying polarization directions (see the review article
by [21]). This reorientation additionally causes a change in
strain termed as spontaneous strain. Therefore, it is of cardinal
importance to account for this characteristic constitutive
behavior in sound modeling principles; refer to [26, 15].

Ferroelectric constitutive models can be, in general,
classified as macroscopic (phenomenological) models or
microscopic (subgrain) models. Phenomenological models are
generally derived within the thermodynamic framework. The
state of the material is defined by a set of internal variables
at any given time and the evolution of these internal variables
are defined by means of kinetic equations [19, 24, 20, 32, 30].
Remanent strain and remanent polarization are the primary
internal variables that define the irreversible state of the
material. The models proposed subsequently use a plasticity
approach in which the electric and the stress switching
(yield) surfaces are developed and the macroscopic reversible
behavior is assumed to occur within these surfaces. During
the switching process, the switching surface undergoes an
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irreversible change due to the change in the remanent strain
and the remanent polarization. The switching surface expands
or moves depending upon the hardening rule proposed that
determines the evolution of the new surface [8, 31, 23, 34].
The phenomenological models are computationally effective
and their implementation is quite straightforward. However,
these models require a lot of constants that need to be obtained
from experimental results.

The second approach that focuses on micromechanical
models is based on the internal microstructure and the
microscopic switching mechanisms. These models are set
up with different choices of material behavior and the
substructures to be incorporated into the model depending
on the length scales at which the mechanisms occur. Since
the origin of these models include better physical insight
into the material behavior, these models are believed to be
more appropriate than the phenomenological models; refer
to [16, 5, 14, 2]. In general, the assumption starts with
each grain consisting of a single domain or multiple domains.
It is considered in the modeling and is allowed to switch
when the internal electromechanical fields in the ferroelectric
grain meet some switching criterion. The criterion may
be based on the work done, the total potential, the Gibbs
energy or the internal energy density [6, 12, 28]. The driving
force for each increment of external loads is calculated and
checked for the switching criterion and, upon satisfying the
criterion, the existing domains are converted to another set
of domains that are favorable to the external forcing fields.
The macroscopic material behavior is obtained by microscopic
averaging of the individual grains or domains. The high
computational costs in the simulations using these models
compared to the phenomenological models are offset by the
minimal requirements of material constants that have to be
obtained by conducting experiments.

For the numerical simulation of piezoelectric materials,
the finite element method is one among the tools that can
be used effectively. Allik [1] developed the finite element
formulation for the underlying set of linear piezoelectric
equations based on variational principles. Subsequently,
nonlinear FE settings were formulated by Gaudenzi and
Bathe [10] for the electromechanical coupled behavior of
piezoelectric continua. Several publications are available in
the literature about FEM usage for the simulation of nonlinear
behavior of ferroelectrics [9, 17, 25, 22, 3, 18, 29].

The present paper deals with a thermodynamically
consistent micromechanical model using a domain switching
criterion that includes grain boundary effects. The main
features of the present work are:

• A thermodynamically motivated, dissipation maximization-
based formulation that considers domain switching pro-
cesses under electromechanical coupled loading is devel-
oped.

• Boundary effects between the grains are captured via a
microscopic approach by incorporating an additional term
based on the change in the Gibbs free energy of the
domains in the neighborhood of the switching domain.
This is used as the threshold for the onset of domain
switching.

• In the modeling of perovskite crystallites with tetragonal
microstructure, the material parameters are related to the
unit-cell orientations, i.e. material constants will change
upon domain switching.

• The developed framework is embedded into a coupled
finite element formulation, whereby a straightforward
staggered iteration scheme is applied to solve the
nonlinear coupled problem within each and every
loading/time step. Initially the domains occupying
individual finite elements are assumed to have random
polarization directions.

• The formulation is used to simulate the response for the
ferroelectric, the ferroelastic, the superimposed prestress
loading and the multiaxial loading cases.

The outline of this paper is as follows: fundamental
relations such as balance laws and kinetics are summarized
in section 2. The thermodynamical formulation is discussed
in section 3 based on state variables and thermodynamic
potential. The adopted energy-based switching criterion is
discussed in section 4 together with the underlying basics of
boundary effects by means of a micromechanical approach.
Aspects of the related implementation and algorithmic
treatment embedded into an iterative finite element context
and the numerical examples are included in sections 5 and 6.
Finally, the paper is concluded with a short summary in
section 7.

2. Fundamental equations

The configuration of a ferroelectric body � of interest is
denoted by � ⊂ R

3 and positions of material points are
characterized by means of x ∈ R

3. The governing mechanical
and electrostatic equilibrium conditions for the bulk material
represent in local formats of the balance of linear momentum
(in the absence of acceleration) and Gauss’s law result in

0 = ∇ ·σ +b in B and 0 = ∇ ·D−q in B (1)

where b and q are the mechanical body force components
and the electric charge density, respectively. σ and D

denote respectively the Cauchy stress tensor and the electric
displacement. As essential degrees of freedoms we introduce
the displacement field u ∈ R

3 and the electric potential φ ∈ R,
so that the boundary conditions for the mechanical problem
either prescribing the displacement u on the boundary ∂Bu or
tractions σ · nσ on the boundary ∂Bσ such as

u = up on ∂Bu or t = tp = σ · nσ on ∂Bσ .

(2)
In addition, it is subjected to electric boundary conditions with
prescribed electric potential φ or the surface charge density
D · nD on the boundary. ∂Bφ or ∂BD , respectively, are

φ = φ p on ∂Bφ or q = q p = −D ·nD on ∂BD

(3)
with ∂Bu ∪ ∂Bσ = ∂Bφ ∪ ∂BD = ∂B as well as ∂Bu ∩ ∂Bσ =
∂Bφ ∩ ∂BD = ∅, and nσ,D are outward unit vectors defined
with respect to the surfaces ∂Bσ , ∂BD . The kinematic relations

2
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(between strain tensor and displacements, and between electric
field and potential) in the bulk ceramic are given by

ε = 1
2 (∇ ⊗ u + u ⊗ ∇) together with

E = −∇φ.
(4)

The classical linear ansatz for the modeling of piezoelectric
materials in the piezoelectric phase is

D = d : ε + k ·E and σ = C : ε − dT ·E (5)

wherein the elastic stiffness C = Ct = CT ∈ R
3×3×3×3, the

dielectric permittivity k = kt ∈ R
3×3 and the piezoelectric

tensor d ∈ R
3×3×3.

3. Thermodynamical formulation

Ferroelectric materials exhibit electrical, mechanical and
thermal coupled phenomena, which can be described based on
a thermodynamical approach to model the material behavior.

3.1. State variables

The state variables can be split into two parts such as
the observable variables and the internal variables. The
electric field E, the total strain ε and the temperature θ

are namely the observable variables. The current state for
the ferroelectrics depends on the history, which could be
represented as the internal variables and subsequently these
variables are associated with the dissipation phenomena.
When the ferroelectric materials are subjected to higher
electromechanical loading and unloading, they exhibit some
electrical displacement and the total strain at zero electric
field and/or at zero mechanical stress are denoted as remanent
electric displacement (polarization) and remanent strain. Due
to these unrecoverable values, both the electric displacement
and total strain can be assumed to be decomposable into a
reversible part with a {•r} and an irreversible part with {•i} as
(see also [4])

D = Dr + Di and ε = εr + εi. (6)

At the microscopic level, the unit cell of the considered
ferroelectric material possesses cubic symmetry for operating
temperatures above the Curie temperature. This phase is called
paraelectric whereby the relative atom positions in the crystal
lattice give rise to a vanishing net dipole moment which gives
no piezoelectric effect. However, below the Curie temperature,
the symmetry of the material might switch from simple cubic
structures to tetragonal or rhombohedral arrangements. The
new phase is denoted as the ferroelectric phase, in which
relative atom positions in the crystal lattice might change
which gives rise to nonzero net dipole moments that are usually
introduced as spontaneous polarization (vectors). During such
phase transitions, the movements of atoms apparently result in
lattice distortions which consequently cause mechanical strain,
termed as spontaneous strain. For polycrystalline materials in
the virgin or unpoled state, the polarization vector field is in
general randomly oriented. Practically speaking, each grain

is divided into domains of different polarization orientations.
Since the direction of polarization is equally distributed in the
virgin state, the net polarization and the strain of the bulk
material vanish at the macrolevel. If the material is subjected
to external loads either electrical (a prescribed electric field)
and/or mechanical traction, the lattice structure undergoes a
recoverable change in polarization and strain with the existing
domain type. When the loads exceed a certain limit, the
unit cell may reorient in a way that the polarization vectors
within the grains align according to this loading direction. This
change in domain type in ferroelectrics is referred to as domain
switching and is irreversible in nature. As the external loads
increase, a specific domain type is favored at the expense of
others. Domain switching may initiate at the boundaries, in
general on the surface, and propagates inside, and/or it may
nucleate at various regions in the material and move towards
each other.

In a ferroelectric crystal structure, the remanent quanti-
ties represent macroscopic averages of the microscopic spon-
taneous polarization and strain. Based on this argument, in this
micromechanical model the remanent polarization and strain
are assumed to be equivalent to the spontaneous polarization
P s and strain εs. The nonlinear constitutive equations of the
ferroelectric material additionally incorporate a spontaneous
polarization vector and a spontaneous strain tensor. The ex-
tension of equation (5) consequently renders

D = d : [ε − εs] + k ·E + P s and

σ = C : [ε − εs] − dT · E.
(7)

Experimental investigations reported that, during domain
switching, almost all the material constants of a ferroelectric
polycrystalline will change. Since we are particularly inter-
ested in the modeling of perovskite crystallites with tetragonal
microstructure, the material parameters are incorporated in re-
lation with unit-cell orientations. The elastic tensor, however,
which will be enabled to vary from domain to domain, allows
the representation

C := λI ⊗ I + 2μT Isym + α[I ⊗ M + M ⊗ I]
+ 2μE[I⊗M + M⊗I] + βM (8)

with m as the unit-cell orientation, M := m ⊗ m, M :=
M ⊗ M , μE := [μL − μT ] and Isym := 1

2 [I⊗I + I⊗I].
The non-standard dyadic products (A⊗B)i jkl = AilB jk ,
(A⊗B)i jkl = AikB jl . In view of the piezoelectric tensor,
one similarly ends up with

d := −d31m ⊗ I − d33M̄ − 1
2 d15[I ⊗ m + I⊗m],

dT := −d31I ⊗ m − d33M̄ − 1
2 d15[I⊗m + m ⊗ I]

(9)

wherein M̄ := m ⊗ M and the dielectric permittivity is

k := −2k11I − 2k33M . (10)

3.2. Thermodynamic potential and evolution laws

The dissipation can be derived based on the existence of a
thermodynamic potential as

ρ(θ ṡ − u̇)+σ : ε̇r+E ·Ḋr +σ : ε̇i +E ·Ḋi− 1

θ
q ·Grad θ � 0

(11)

3
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with ρ as the density, θ the temperature, s the specific entropy,
u the specific internal energy and q the heat flux vector.

The Gibbs free energy for a single crystal can be expressed
as the function of observable state variables E, σ , θ and
internal variable ζ α as

G = G(σ ,E, θ, ζ α) (12)

where ζ α is the internal variable for the particular domain type
α among the six distinct domain structures. Here we neglected
the volume fraction within a single crystal and the interface
contributions between the domains:

Ġ = ∂G

∂σ
σ̇ + ∂G

∂E
Ė + ∂G

∂θ
θ̇ + ∂G

∂ζ α
ζ̇ α. (13)

The resulting dissipation inequality can be derived by using
Legendre transformation and equation (13) as

−
[
ρ

∂G

∂σ
+ εr

]
· σ̇ −

[
ρ

∂G

∂E
+ Dr

]
· Ė

−
[
ρ

∂G

∂θ
+ ρη

]
· θ̇ − ρ

∂G

∂ζ α
· ζ̇ α

+ σ : ε̇i + E · Ḋi − 1

θ
q · Grad θ � 0. (14)

Equation (14) holds for σ , E and θ are controllable variables
and will vanish under mechanical, electrical and thermal
equilibrium conditions. Assuming isothermal processes
and homogeneous temperature fields, equation (14) can be
simplified as

σ : ε̇i + E · Ḋi − ρ
∂G

∂ζ α
· ζ̇ α � 0. (15)

The irreversible strain (εi) and polarization (Di) can be
expressed as a function of ζ α as

εi = εi(ζ α) = ε∗ · ζ α and Di = Di(ζ α) = D∗ · ζ α

(16)
where ε∗ and D∗ are transformation strain and electrical
displacement, respectively. Using this assumption, the
generalized dissipation inequality for the ferroelectrics can be
expressed as

σ : ε∗ζ̇ α + E ·D∗ζ̇ α − ρ
∂G

∂ζ α
· ζ̇ α � 0

⇒
[
σ : ε∗ + E · D∗ − ρ

∂G

∂ζ α

]
· ζ̇ α � 0. (17)

4. Switching criterion

4.1. Driving force and critical energy

In this section, the generalized thermodynamic aspects are
narrowed towards the microscopic level of ferroelectrics. The
dissipation potential in equation (17) gives the product of
thermodynamic driving force for transformation (σ : ε∗ + E ·
D∗ − ρ ∂G

∂ζ α ) and the rate at which the volume fraction (ζ̇ α) of
a particular domain type evolves. An application of external
loads, on reaching a critical level, the underlying unit cell or
domain switches from one state to the other possible states;

Figure 1. 90◦ and 180◦ domain switching types for a representative
tetragonal lattice structure.

(This figure is in colour only in the electronic version)

refer to figure 1. The phase transformation refers to a switching
process in which the change in spontaneous polarization and
strain occurs; assume the present domain type β switches to
the other domain type α in the unit cell. The transformation
strain and displacement or polarization yields

ε∗ = εs
β→α = εs

α − εs
β and

D∗ = P s
β→α = P s

α − P s
β.

(18)

The reversible bulk Gibbs energy of this crystal G can be
expressed as (assume only two domain types α and β)

G = ζ αGα + ζ β Gβ = Gβ + Gα−βζ α (19)

where

Gα−β = Gα − Gβ = −[
1
2σ : (Cα − Cβ) : σ

+ 1
2 E · (kα − kβ) · E + E · (dα − dβ) : σ

]
. (20)

Here, ζ α and ζ β refer to the volume fractions of domains
α and β , respectively, and the constraint is ζ α + ζ β = 1.
Inserting equation (18) and the derivative of equation (19) in
equation (17) yields the dissipation potential for the phase
transformation or domain switching occurring from β to α type
in a unit cell of ferroelectrics which can be expressed as(
σ : εs

β→α + E ·P s
β→α + 1

2σ : (Cα − Cβ) : σ

+ 1
2 E · (kα − kβ) · E

+ E · (dα − dβ) : σ
)·ζ̇ α � 0 ⇒ f drv · ζ̇ α � 0. (21)

For the domain switching, the energy is dissipated by domain
wall motion upon transforming a unit volume of crystal from
one state to the next state by operation of the transformation
system. The thermodynamic driving force ( f drv) must satisfy
the following inequality at all times. Then there is a possibility
of phase transformation:

f drvζ̇ α � f critζ̇ α. (22)

4
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For the phase transformations within the 〈100〉 family, six
different states or orientations of the particular unit cell of
interest come into the picture—the initial state, four types
of 90◦ domain switching and 180◦ domain switching. For
the pure mechanical (spontaneous strain) state, four 90◦
strain switching states have to be considered. On the other
hand, for the electrical (spontaneous polarization) state four
90◦ switching states together with one 180◦ switching state
have to be considered. From the experimental results, it is
observed that the switching thresholds are varying throughout
the loading [35]. The present work incorporates the critical
energy barrier in which the underlying mechanism for 90◦
switchings and 180◦ switchings are different, which gives the
critical values for their occurrence are also different. Assuming
the electrical loading contributes for direct 180◦ switching and
apply the condition in equations (21) and (22), which gives the
critical value for 180◦ switching as follows:

f crit
180 = E · P s

β→α + 1
2 E · (kα − kβ) · E

= 2Ec P0 + 0 = 2Ec P0 (23)

where Ec is the coercive electric field; the change in
spontaneous polarization P s

β→α = 2P s = 2P0; P0 is the
spontaneous polarization; the dielectric constant (kα − kβ)

between two states is unchanged for 180◦ switching. The
critical value for 90◦ switching gives

f crit
90 = E · P s

β→α + 1
2 E · (kα − kβ) · E

= Ec P0 + 1
2 E2

c · (k33 − k11). (24)

Regarding the ferroelastic switching case, it exhibits only 90◦
switching due to the application of pure mechanical stress
which yields

f crit
90ela = σ : εs

β→α + 1
2σ : (Cα − Cβ) : σ

= 3
2σcε0 + 1

2σ
2
c · (C3333 − C1111) (25)

where σc is the coercive stress; εs = ε0 is the spontaneous
strain, and C3333 and C1111 are the compliance constants.

4.2. Grain boundary effects

Polycrystalline microstructures often give rise to local loading
levels that could be significantly different from the loading
levels expected from the boundary conditions applied to the
entire specimen. Moreover, individual grains and domains,
possibly possessing different polarization directions, interact
with the neighboring grains which are often described as grain
boundary effects or intergranular effects. Domain switching
might occur at macroscopic loading levels that are different
from the established coercive values of single grains, thus
introducing nonlinear effects even within small loading ranges.
In this model, we consider one crystal per element and the
interactions among the domains are taken into account and
integrated into an electromechanically coupled finite element
formulation.

When no domain switching occurs, the spatial variation
of the Gibbs free energy is expected to be generally smooth.
When the domain switching occurs, there is an abrupt change
of Gibbs free energy in the switching domain that may disturb
the smoothness of the spatial variation of the Gibbs free energy.

In other words, a sharp jump in the Gibbs free energy at the
boundaries of the switching domain occurs in the numerical
setting. To avoid such a non-physical sharp change in the
Gibbs free energy in the computations, a boundary effect
needs to be included to introduce smoothness into the Gibbs
energy function variation. The smoothing can be effected in
much the same way as in stress smoothing procedures. In
this work smoothing of the Gibbs free energy is done using a
simple method proposed in [7]. In smoothing, the free energy
levels get altered and this can be considered to be due to the
interactions between the grains. An approximate numerical
gradient is computed using the difference in the neighboring
domain driving forces and the driving force at the switching
domain. This gradient is assumed, in this model to play a role
in the domain switching criterion, thus introducing the gradient
effects in the model indirectly as

f drv
0 + {gradient at the boundary of the switching domain}

� f crit. (26)

The gradient of the driving force with a neighboring domain
can be approximated by the normalized difference between the
neighboring domain driving forces ( f drv

i ) and the driving force
at the switching domain ( f drv

0 ) as

f drv
0 + f drv

i − f drv
0

d
� f crit (27)

where d is the normalizing-scale-dependent quantity and i
represents the several neighborhood domains. The above
expression can be rewritten as

( f drv
0 )effective = (1 − p̄) f drv

0 + p̄ f drv
i (28)

where p̄ absorbs the effect of the quantity d .

The scale-dependent material parameter d (and thus
p) could be different for different energies—electrical,
mechanical and electromechanical. Therefore, we generalize
the formulation by introducing different parameters for the
different energies and an additional term based on the gradient
with the other domains is used as the threshold for the onset of
domain switching. Thus

[
( f drv

0 )effective =
(

1 − p

2

)
f drv
0 +

(
pi-e

2

)
f drv
i-e

+
(

pi-m

2

)
f drv
i-m +

(
pi-em

2

)
f drv
i-em

]
� f crit (29)

where f drv
0 is the driving force of the switching domain

while f drv
i-e , f drv

i-m, f drv
i-em are the electrical, mechanical and

electromechanical driving forces of the neighboring or
surrounding domains of the switching domain. p =
pdrv

i-e+pdrv
i-m+pdrv

i-em
3 , 0 < p � 1 and pdrv

i-e , pdrv
i-m, pdrv

i-em are the

5
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corresponding material-dependent parameters:

f drv
0 = σ : εs

β→α + E · P s
β→α + Gα−β

f drv
i-e = 1

n

n∑
i=1

[
E(i) · P

s(i)
β→α + 1

2
E(i) · (kα − kβ)(i) · E(i)

]

f drv
i-m = 1

n

n∑
i=1

[
σ (i) : ε

s(i)
β→α + 1

2
σ (i) : (Cα − Cβ)(i) : σ (i)

]

f drv
i-em = 1

n

n∑
i=1

[E(i) · (dα − dβ)(i) : σ (i)]
(30)

where Gα−β = 1
2σ : (Cα − Cβ) : σ + 1

2 E · (kα − kβ) · E
+ E · (dα − dβ) : σ ; {•}(i) indicates the electric field, stress
and material constants for the surrounding domains; n is the
number of surrounding domains. In this model, n is considered
as eight surrounding domains in general. However it will
vary in some specific cases; for instance, if the switching
domains are at the corner of the specimen, then n will be
three surrounding domains; if the switching domains are at the
edges, the number of surrounding domains, n might be five.
Substituting equation (30) in equation (29) yields

( f drv
0 )effective =

(
1 − pi-e + pi-m + pi-em

6

)
f drv
0

+
(

pi-e

2

)
1

n

n∑
i=1

[E(i) · P
s(i)
β→α

+ 1
2 E(i) · (kα − kβ)(i) · E(i)]

+
(

pi-m

2

)
1

n

n∑
i=1

[σ (i) : ε
s(i)
β→α

+ 1
2σ (i) : (Cα − Cβ)(i) : σ (i)]

+
(

pi-em

2

)
1

n

n∑
i=1

[E(i) · (dα − dβ)(i) : σ (i)] � f crit. (31)

5. Algorithmic setting

The subsequent numerical examples are based on a three-
dimensional finite element framework wherein the above
elaborated switching model is embedded. Both spontaneous
polarization P s as well as spontaneous strains εs are thereby
introduced as internal variables stored at the integration point
level or, for the problem at hand, at the element level. Here,
we will not distinguish between grains and domains but
rather attach an individual grain orientation, as represented by
{m1,2,3} by a single (eight-node brick) finite element. For
the computation aspects, the initial unit-cell orientation (m),
which also determines the initial polarization vector (P s =
Psm) and the initial spontaneous strains (εs = εs[3M−I]/2),
for εs > 0 are considered. Random orientations (M =
m⊗m) are applied by using Eulerian angles (�,� ∈ [0, 2π),
sin(� − π

2 ) ∈ [−1, 1]); see the monograph by Goldstein [11]
for detailed background information. In this numerical set-up,
the applied switching criterion will be referred to quantities
averaged over single finite elements, namely

f drv
e (〈σ n〉e, 〈En〉e,mn,mn+1) � f crit (32)

wherein 〈•〉e = [Ve]−1
∫
Be

• dv for Ve denoting the volume of a
particular finite element Be . To compare the simulated results
with experimental data and for the purpose of visualization,
projections with respect to the macroscopic loading direction e

are performed, namely

S = 〈e · σ · e〉, e = 〈e · ε ·e〉,
D = 〈D ·e〉, E = 〈E · e〉 (33)

with the global volume-averaging 〈◦〉 = [V]−1
∫
B ◦ dv, where

V characterizes the volume of the entire body B. The
developed rate-independent evolution is solved by using a
simple staggered iteration technique applied within each load
step to incorporate switching effects as follows:

(i) based on the coupled finite element formulation, compute
u and φ for the initial orientations.

(ii) Fixing u and φ, calculate the energy barrier for switching
based on equations (31) and (32) for all five possibilities
for each element and identify the number of elements
ntot that exceed the critical value based on the largest
energy reduction. Since an element with a higher energy
reduction is more likely to switch than an element with a
lower energy reduction, the ntot elements are prioritized
based on their maximum local Gibbs free energy with
the one possessing the highest maximum energy reduction
ranked first in the list. These elements will be referred to
as switching elements.

(iii) For the first switching element, recompute u and φ for
updated grain orientations for given boundary and loading
conditions.

(iv) Steps (ii) and (iii) are repeated in the sequence of the
second, the third, etc, and finally the ntot switching
elements to obtain a fully equilibrated state.

(v) Finally, at the global level, the volume averaged S, e, E
and D are computed based on the Reuss approximation.

For convenience of the reader, table 1 gives the
algorithmic treatment of the finite element model proposed.

6. Numerical examples

All numerical examples studied in the following refer to a
10×10×10 cube-shaped specimen, whereby the discretization
is performed with 10 × 10 × 10 eight-noded bricks (Q1Q1).
In view of material parameters, representative PIC 151 values
have been adopted from the literature: k11 = 0.0198 (μF m−1),
k33 = 0.024 (μF m−1), d33 = 0.45 × 10−9 (m V−1), d31 =
−0.21 × 10−9 (m V−1), d15 = 0.58 × 10−9 (m V−1), λ =
17.48 (GPa), μL = 2.46 (GPa), μT = 11.65 (GPa), α =
1.67 (GPa), β = −20.74 (GPa), εs = 2.75×10−3, Ps = P0 =
0.3 (C m−2), E0 = 0.7 (MV m−1), σ0 = 75 (MPa), pdrv

i-e = 0.7,
pdrv

i-m = 0.5 and pdrv
i-em = 0.9.

The boundary condition for the specimen under cyclic
electrical loading is represented by a prescribed electric
potential at the top surface φ

p
top and a zero electric potential

at the bottom surface φ
p
bot. In addition compressive stress

(prestress) is uniformly applied to the top surface, t
p
top, and

the bottom surface is clamped such that only the direction in

6
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Table 1. Flowchart of the finite element algorithm: staggered
iteration scheme.

which the traction is applied is set to be zero, i.e. one degree
of freedom. Moreover, the remaining surfaces are free from
traction and charge.

6.1. Cyclic electrical loading

The simulation starts with solely cyclic electrical loading
without any prescribed mechanical stresses. The starting point
for the first cycle is at zero potential for the macroscopically
unpoled ceramic, whereby randomly oriented polarization
vectors, spontaneous strains and material constants are
incorporated, respectively. The electric field is applied
incrementally until +2.0 (MV m−1) and unloaded to zero field.
Subsequently, the field is applied in the reverse direction to
−2.0 (MV m−1) and once again, the load is applied until
+2.0 (MV m−1) as a cyclic loading. Classical hysteresis
and butterfly curves are showed in figure 2, i.e. the electrical
displacement D and total strain e are monitored with respect
to the electric field E. The macroscopic behavior exhibits
linear response starting from the origin to nearer to the coercive
field 0.7 (MV m−1), while the remanent strain remains zero.
The electric field (0.7 (MV m−1)) at which switching initiates
under pure electrical loading is referred to as the coercive
field. Once the applied load exceeds the coercive field,
then switching starts. This causes a change in spontaneous
polarization and strain which obviously renders a nonlinear

macroscopic response of the electric displacement and the
total strain. The applied load then reaches 2.0 (MV m−1),
which is referred to as the saturated level; at this stage,
almost all the domains are closely aligned to the direction of
the applied field. Further increase of the electric field will
cause a linear response, since all the elements are already
switched. When the field is unloaded, the electric displacement
and strain vary linearly. At zero electric field, it exhibits
some electric displacement and strain, which are called the
remanent polarization and strain. Upon the application of a
negative electric field, the switching processes recommence
and a significant reverse poling then takes place. During
the forward loading the elements are oriented in a particular
direction, but in the reverse loading the oriented elements
should be reoriented and aligned along the same axis but in
the opposite direction, which makes the element undergo 180◦
switching. Concerning the strain response, during the reverse
loading, the strain decreases nonlinearly to a minimum level
and then starts increasing as the elements undergo reverse
poling. Since the elements undergo two consecutive 90◦
switches to align with the negative loading direction, the strain
response decreases initially for the first 90◦ switching and
subsequently the second 90◦ switching occurs which makes
the strain increase. The simulated results without considering
the boundary effects (dotted line) show that the curves possess
sharp corners near the macroscopic coercive electric field,
which is not observed in experiments. However, the results
with boundary effects (continuous line) show the smoothness
of the curves near the critical macroscopic electric field. By
comparing the simulated results (with and without boundary
effects) in figure 2, the considered boundary effect plots closely
match the experimental results reported by Zhou [36].

6.2. Mechanical depolarization loading

In the absence of an electric field, i.e. in the ferroelastic
case, the mechanical depolarization response is predicted
in terms of stress S versus strain e and versus dielectric
displacement D as shown in figure 3. The simulation is
carried out considering the test specimen from the unpoled
virgin state, in which the initial random orientations give
rise to net zero strain and dielectric displacement. Once
the incrementally applied compressive stress approaches the
coercive level, say for instance −75 (MPa), then the domain
switching process is initiated. Saturation is reached at a loading
level of −400 (MPa) so that any further increase in the applied
stresses renders an entirely linear response. Considering
the ferroelastic case, the elements will undergo only four
possible 90◦ switchings. Upon reversing the loading direction,
dissipative effects as reflected by the irreversible behavior are
clearly displayed. Moreover, one observes different slopes in,
for example, the stress S versus the strain e response, which
stems from aligning the local material properties according to
the switching directions. From figure 3, the numerical results
are found to compare reasonably well with the experimental
data reported by Zhou [37].

7
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Figure 2. Hysteresis and butterfly curves—cyclic uniaxial electrical loading.

Figure 3. Stress versus strain and versus electric displacement curves—uniaxial mechanical loading.

6.3. Uniaxial ferroelectric response under constant
compressive stress

Lynch [27] conducted an experiment to study the hysteresis and
butterfly curves under constant compressive stress. Therein,
the specimen was first poled by loading the electric field to
certain values and unloaded to zero field, which results in
a remanent polarization in the specimen. Then, a uniaxial
compressive stress was applied on the poled specimen and
the compressive stress was maintained at a certain value and
a cyclic electrical loading was applied to the specimen, to
capture the hysteresis and butterfly behavior under constant
compressive stress. Thus, a previously poled specimen
was first partially depoled by compressive stress, and cyclic
electrical loading was applied to observe the response with
the constant mechanical load. These experiments were
repeated for different values of constant compressive stress
and the ferroelectric responses were obtained. We performed
the subsequent simulations based on the aforementioned
experimental loading procedure. The unpoled specimen is
subjected to incremental electrical load up to the saturation
value, say 2.0 (MV m−1), and unloaded to zero electric
field, which gives the poled specimen a remanent polarization
and strain. Subsequently, the compressive stress is applied

incrementally up to −75 (MPa); refer to figure 4(a)-I, which
causes a partial mechanical depolarization response. At
this stage, the applied uniaxial stress is kept constant and
cyclic electric field loading is applied on the same specimen
to obtain the ferroelectric response. These simulations
are repeated for three different values of mechanical stress
(−150,−225,−300 (MPa)).

The macroscopic coercive electric field, which determines
the threshold for domain switching, decreases for increasing
compressive stress; see figures 4(b) and (c). The main reason
for this behavior stems from the fact that the underlying
types of domain switching, namely 90◦ and 180◦ switching
for the problem at hand, are differently activated under
coupled loading conditions. The second major influence of
the coupled electromechanical loading is the reduction in
remanent and saturation polarization values of macroscopic
electric displacement versus electric field curve. The slope
of the loops at zero electrical field, which can be regarded
as the permittivity, decreases when the magnitude of the
compressive stress increases. Similarly, the area encircled
by the hysteresis decreases with the increase of compressive
stress as well. In addition, 4(b) and (c) clearly monitor that
both the hysteresis as well as the butterfly curves ‘flatten’
with increasing compressive stresses. Considering the butterfly
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Figure 4. Hysteresis and butterfly curves are run at the various constant stress levels (I–IV) in a prepoled specimen (a); the resulting hysteresis
and butterfly curves are subjected to uniaxial cyclic electric loading at different stresses ((b) and (c)).

curve, the longitudinal strain gradually becomes negative when
the compressive stress becomes larger. The range of the strain
variation becomes smaller and smaller as the magnitude of
compressive stress increases. This means that the domain
switching becomes more difficult under a larger magnitude of
compressive stress together with electrical loading. At very
high stress level, say at −300 (MPa), the electric field is not
able to totally overcome the applied stress and there is very
little strain. There is still, however, a noticeable component of
polarization switching, though it is very small.

6.4. Uniaxial ferroelastic response under constant electric
field

Another attempt has been made in simulation in which the
unpoled specimen is subjected to incremental electrical load
up to the saturation value, say 2.0 (MV m−1), and unloaded
to a certain value and maintained thereafter. Subsequently,
the compressive stress is applied on the same specimen
incrementally up to the saturation value and unloaded to zero
stress in order to obtain the ferroelastic response; refer to
figure 5(a). These simulations are repeated for four different
values of electric field (1.5, 1.0, 0.5, 0.0 (MV m−1)).

The macroscopic coercive stress, which determines the
threshold for domain switching, increases on increasing
the electric field. Figures 5(b) and (c) show that, for
the case of zero electric field, the compressive loading
and unloading induces significant domain switching, which
renders unrecovered remanent polarization and strain. In
particular, under zero electric field, 90◦ domain switching
and depolarization occurs when the compressive loading stress
exceeds a critical threshold −75 (MPa) and during unloading,
there is a very little re-polarization. It is further noted
that the unrecovered polarization and hysteresis reduces with
increasing magnitude of the constant electric field, implying
that the electric field hampers the domain switching during
the compressive loading in figure 5(c). The same behavior
of decreased hysteresis on increasing the electric field has
also been observed in figure 5(b) for the strain–stress curves.
Since the constant electric field is in the same direction as that
of the polarization, it in effect enforces the polarization and
makes depolarization difficult during the mechanical loading–
unloading cycle.

9
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Figure 5. Stress versus strain and electric displacement curves are run at the various constant electric field levels (A–E) in a prepoled specimen
(a); the resulting stress versus strain and electric displacement curves subjected to uniaxial mechanical loading at different fields ((b) and (c)).

Figure 6. Experimental set-up for multiaxial loading by Huber and Fleck [13] ((a), (b)); finite element discretization and illustration of the
applied boundary conditions (c).

6.5. Multiaxial electrical loading

Multiaxial electrical loading tests were performed by Huber
and Fleck [13] to investigate the nonlinear ferroelectric
response. The experiment started with an unpoled specimen
and was then poled at room temperature by applying an
electric field of maximum strength 2.0 (MV m−1). As shown
in figure 6(a), rectangular blocks of uniform size were cut
from the large parent specimen with their long axes inclined
at a set of angles (from 0◦ to 180◦, in steps of 45◦) to
the initial poling (remanent polarization) direction. The

multiaxial loading simulations are performed based on the
experimental procedure, in which the poled test specimen
is then subjected to electrical loading of increasing electric
field up to 2.0 (MV m−1). The developed finite element
formulation in the previous sections is used to simulate such
a ferroelectric response. The discretization and the applied
boundary conditions are illustrated in figure 6(c). Figure 7
shows the change in electric displacement and change in the
total strain (3-axis) versus applied electric field (3-axis) for a
selection of specimens at β = 0◦; 45◦; 90◦; 135◦ and 180◦.
Considering the case of β = 0◦, the direction of the applied
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Figure 7. Electric displacement and strain responses (3-axis)—multiaxial electrical loading.

Figure 8. Electric displacement and strain responses (1- and 2-axis)—multiaxial electrical loading.

electric field is parallel to the initial poling direction. The
predicted response is almost linear in the whole course of the
electric displacement and strain verses electric field curves.
This indicates that no switching occurs, since domains are
already oriented in the direction of electric field and/or domain
orientations have been saturated by the original or initial poling
itself. As the angle (β) between the remanent polarization
and the loading electric field increases, the simulated response
changes nonlinearly in the electric displacement, and the strain
due to ferroelectric domain switching becomes more and more
pronounced. Since the direction of domain orientation of the
polycrystals due to initial poling is different from the current
loading directions, the domains which are required to reorient
in line with the present applied loading is greater for higher
angles of β , and thus renders an increase in nonlinear behavior.
Concerning the specimen with β = 180◦, the applied electric
field is anti-parallel to the initial poling direction. The observed
results have the greatest nonlinearity in the displacement and
strain curves, since the existing remanent polarization should
be completely reversed. For the β = 180◦ case, the strain
versus electric field curve shows that the initial strains are
negative and then become positive, which gives an idea that
the 180◦ domain switching is achieved by two consequent 90◦
switching. Figure 8 shows the change in electric displacement

and change in the total strain (1- and 2-axis) versus applied
electric field (3-axis) for a selection of specimens at β =
0◦; 45◦; 90◦; 135◦ and 180◦.

6.6. Multiaxial mechanical loading

Based on the multiaxial electrical loading test mentioned in the
previous subsection, we performed the numerical simulation
under multiaxial pure mechanical loading to investigate the
ferroelastic response. Figure 9 shows the change in total strain
and change in the electric displacement versus applied stress
field for a selection of specimens at β = 0◦; 45◦; 90◦; 135◦
and 180◦. Considering the case of β = 0◦, 180◦, the
direction of the applied compressive stress is parallel to the
initial poling direction. The observed results have the greatest
nonlinearity in the strain and displacement curves, since the
existing poled domains are subjected to compressive loading
and 90◦ switching occurs. For the angle (β = 90◦),
the predicted response is almost linear in the whole course
of the strain and electric displacement verses stress curves,
indicating that no switching occurs, since domains are already
oriented perpendicular to the loading direction. Concerning
the specimen with β = 45, 135◦, the simulated response
shows some nonlinearity in the strain and displacement due
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Figure 9. Strain and electric displacement responses (3-axis)—multiaxial mechanical loading.

Figure 10. Strain and electric displacement responses (1- and 2-axis)—multiaxial mechanical loading.

to restricted domain switchings occurred. Figure 10 shows
change in the total strain and change in electric displacement
(1- and 2-axis) versus applied stress (3-axis) for a selection of
specimens at β = 0; 45; 90; 135 and 180◦.

7. Summary

A three-dimensional micromechanical model has been
developed to simulate the nonlinear behavior of polycrystalline
ferroelectrics. Considering that the virgin state of these
materials is commonly unpoled, initial orientations of
polarization vectors are randomly generated. The onset
of domain switching was introduced by means of a
thermodynamically consistent dissipation threshold. The
adopted model for ferroelectric materials is embedded into
a finite element formulation, with each finite element
representing an individual grain. The grain boundary effects
are incorporated by means of an additional term in the
switching criterion so that switching now depends on the
constraints imposed by the surrounding grains. The material
constants such as elastic, dielectric and piezoelectric constants
are updated according to the switching process. Numerical
tests show that the simulated hysteresis and butterfly loops are
in qualitative agreement with experimental observations. In

particular, the smooth transition of switching initiation near
the coercive electric and mechanical fields is observed upon
introducing this effect.
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