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Abstract. The radiometric brightness theorem for a generalized radiance function is used to
study the propagation of twisted Gaussian Schell-model beams in paraxial optical systems. First
it is shown that a certain unique correspondence exists between the Gaussian radiance and cross-
spectral density functions associated with these beams. The method is then applied to the passage
of the twisted beam field through a thin lens, and the analysis yields algebraic expressions for
the quantities characterizing the transmitted beam. The phenomenon of focal shift occurring in
imaging by wavefields of this kind is examined, and the effects of partial spatial coherence and
beam twist are elucidated.

1. Introduction

Within the last few years considerable progress has been made towards clarifying the
relation between classical radiometry and statistical wave theory [1–16]. In the course of
these investigations several different generalized radiance functions were introduced, which
have some but not all the properties of the radiance function of the phenomenological
radiometry. However, for fields generated by quasi-homogeneous sources [17], all the
different generalized radiances have been found to have the same short-wavelength limit
[18] and, moreover, they then possess the properties that one usually attributes to the
radiance [19].

An important and very useful property of phenomenological radiometry is expressed
by the ‘transport law’ for radiance, which implies, roughly speaking, that the propagation
of radiance through an optical system is governed by the laws of geometrical optics [19].
This feature of the radiance has been justified under special circumstances by a number
of authors. An immediate consequence of this propagation law is the so-called brightness
theorem which relates the brightness in any two planes perpendicular to the axis of a
centred optical system—usually taken to be the object and image planes. Analogues of
this theorem in optical systems have also been found to hold for some of the generalized
radiance functions, at least within the accuracy of the paraxial approximation [20–24].

In the present paper we use the brightness theorem for a particular generalized radiance
function to study the transfer properties of the twisted Gaussian Schell-model (GSM) beams
[25–27], propagating through a thin lens. The twisted GSM beams constitute an extension
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of the usual GSM beams which contain a subtle, rotationally invariant phase factor [25].
The propagation of the various GSM beams in first-order optical systems can be treated
in terms of field quantities, using the extendedabcd-law [23, 25, 28–30]. Our method
deals instead with radiance functions and it yields expressions for the focal shifts arising in
focusing of beams of this kind. Such shifts were previously studied for imaging by fully
coherent (monochromatic) beams [31] and also for partially coherent and twisted GSM
beams [32, 33], using a different approach. The present analysis illustrates in a novel way
the usefulness of the generalized radiometric brightness theorem in problems involving
partially coherent light.

2. Transfer of generalized radiance through a paraxial system

We begin by briefly reviewing the main concepts associated with the passage, within the
paraxial approximation, of partially coherent wavefields through optical systems.

Consider first the paraxial propagation of monochromatic light of frequencyω according
to geometrical optics through a lossless system, whose input and output planes are assumed
to be situated in free space. LetQ be a point specified by a transverse position vector
ρ and lets denote the unit vector along the direction of the ray through that point (see
figure 1). Suppose that after the ray has passed through the system it emerges in a direction
specified by a unit vectors′ and that it intersects the output plane at a pointQ′ specified by
a transverse vectorρ′. The transmission of the ray through the system may be expressed as(

ρ′

s′
⊥

)
= T

(
ρ
s⊥

)
, (1)

wheres⊥ and s′
⊥ are the projections, considered as two-dimensional vectors, of the unit

‘ray vectors’s ands′ onto the input and output planes, respectively. The quantityT is the
so-called ray-transfer matrix, which for a rotationally symmetric system containing no tilted
or misaligned elements takes the form [34, ch 15]

T =
[

a b

c d

]
, (2)

wherea, b, c, andd are constants, and the determinant detT ≡ ad − bc = 1.

Figure 1. Illustration of the notation relating to paraxial propagation through an optical system.

It should be noted that the (forward) ray directions are fully specified by the transverse

components, because the longitudinal (axial) components are given bysz = +
√

1 − s2
⊥ and

s ′
z = +

√
1 − s′2

⊥. Since we assume that the paraxial approximation adequately describes the

propagation, bothsz ands ′
z may be considered to have the value unity.

If instead of using geometrical optics one describes the transmission by physical optics,
then one has to consider a complex field of the form

V (r, t) = U(ρ, ω) exp[i(kz − ωt)], (3)
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where k = ω/c (c being the speed of light in vacuum) is the wavenumber associated
with frequencyω, t is the time, andr = (ρ, z) with ρ denoting the transverse (vector)
component ofr andz the longitudinal component. The complex amplitude factorsU0(ρ, ω)

andU1(ρ
′, ω) in the input and output planes are connected by the relation [35]

U1(ρ
′, ω) =

∫ ∫
G(ρ′, ρ, ω)U0(ρ, ω) d2ρ, (4)

where the propagator (Green’s function of Fresnel diffraction) is expressible in terms of the
elements of the ray matrix as

G(ρ′, ρ, ω) = − ik

2πb
exp

{
ik

2b
(aρ2 − 2ρ · ρ′ + dρ′2)

}
. (5)

Here we have omitted an unimportant constant phase factor associated with axial
propagation. It is also to be noted that ifb = 0, corresponding to imaging with magnification
m = a = d−1, expression (5) must be interpreted through an appropriate limiting procedure.

Suppose now that the system transmits partially coherent light. In place of the complex
amplitudesU0(ρ, ω) andU1(ρ

′, ω) one must then employ a correlation function of the light
in the two planes. For our purposes the most convenient correlation function is the cross-
spectral density function. According to the coherence theory in the space–frequency domain,
the cross-spectral density function may be expressed in terms of ensembles{U0(ρ, ω)} and
{U1(ρ

′, ω)} of complex amplitudes in the two planes in the form [36]

W0(ρ1, ρ2, ω) = 〈U ∗
0 (ρ1, ω)U0(ρ2, ω)〉, (6)

W1(ρ
′
1, ρ

′
2, ω) = 〈U ∗

1 (ρ′
1, ω)U1(ρ

′
2, ω)〉, (7)

where the angular brackets denote the ensemble average.
We are now in a position to introduce a generalized radiance function (generalized

brightness) of partially coherent light which propagates through the system. Of the great
variety of such functions we will employ the one introduced by Walther [1], in a paper on
radiometry and coherence. It may be defined by the formula

B(ρ, s⊥, ω) =
(

k

2π

)2 ∫
W(ρ − 1

2ρd , ρ + 1
2ρd , ω) exp(−iks⊥ · ρd) d2ρd, (8)

where we have replaced the usualsz = cosθ factor by unity, consistent with the fact that
we are considering a paraxial system. This radiance function is analogous to the Wigner
distribution function used extensively in modern optics [37].

Relation (4) between the field amplitude factors implies, through the space–frequency
representation of equations (6) and (7), a certain relationship for the cross-spectral densities
in the input and output planes. Using that relationship and definition (8) of the generalized
radiance one can then show that the generalized radiance functions in the input and output
planes are connected by the simple transport law [21, 23, 24]

B1(ρ
′, s′

⊥, ω) = B0(dρ′ − bs′
⊥, −cρ′ + as′

⊥, ω). (9)

This formula implies that the generalized radiance with arguments(ρ′, s′
⊥) in the output

plane is equal to the generalized radiance with arguments(ρ, s⊥) in the input plane, where

ρ = dρ′ − bs′
⊥ s⊥ = −cρ′ + as′

⊥. (10)

To appreciate the full significance of this result, let us invert relation (1):(
ρ
s⊥

)
= T −1

(
ρ′

s′
⊥

)
, (11)
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where, because detT is unimodular, the inverse matrixT −1 is readily found to be

T −1 =
[

d −b

−c a

]
. (12)

Relation (11) together with expression (12) is seen to be precisely the pair of equations (10).
Hence the important formula (9) implies that in a lossless, paraxial system, the generalized
radiance as defined by equation (8) is invariant along each ray passing through the system.
We emphasize that this result is valid for a field of any state of coherence, and it may be
referred to as the brightness theorem for the generalized radiance. Within the accuracy of the
paraxial approximation this result is an analogue of the brightness theorem of conventional
radiometry, where it is usually justified by heuristic arguments which do not take into
account the coherence properties of the field [19].

Of particular interest is the case when the source, located in the input plane,z = 0 say,
is quasi-homogeneous [17], i.e. when the cross-spectral density of the light in that plane
has the form

W0(ρ1, ρ2, ω) =
{

S0[ 1
2(ρ1 + ρ2), ω]g0(ρ2 − ρ1, ω) whenρ1, ρ2 ∈ σ

0 whenρ1, ρ2 6∈ σ ,
(13)

with σ denoting the source area. HereS0(ρ, ω) denotes the spectral density andg0(ρd , ω)

the complex spectral degree of coherence of the light in the source plane (the input plane),
and S0(ρ, ω) changes much more slowly withρ than g0(ρd , ω) changes withρd at each
frequency for whichS0(ρ, ω) is not negligible. Most thermal, secondary, planar sources,
including the usual Lambertian radiators are well approximated by the quasi-homogeneous
model.

It follows from equations (13) and (8) that for a quasi-homogeneous source, the
generalized radiance has the simple form

B0(ρ, s⊥, ω) = k2S0(ρ, ω)g̃0(ks⊥, ω), (14)

where

g̃0(v, ω) = 1

(2π)2

∫
g0(ρd , ω) exp(−iρd · v) d2ρd (15)

is the two-dimensional spatial Fourier transform ofg0(ρd , ω) and k = ω/c is the
wavenumber. Expression (14) is known to satisfy all the postulates of traditional radiometry
in the source plane [17] and hence it may be identified with the usual source radiance
function. In view of this fact and, because of the transport law given by equation (9), the
brightness theorem for the generalized radiance stated above reduces to the usual radiometric
brightness theorem, having been derived rigorously for lossless paraxial systems whose input
is a quasi-homogeneous source.

We note that the same physical conclusion remains valid for any class of incident fields,
whose generalized radiance functions in the source plane meet the conditions of conventional
radiometry. Examples of such classes are the customary and the twisted Gaussian Schell-
model beam fields, which will be discussed below.

3. Application to twisted Gaussian Schell-model beams

We will now illustrate the use of the brightness theorem by applying it to analyse the
propagation of a twisted Gaussian Schell-model beam through a lossless lens system. We
begin by noting a certain useful one-to-one correspondence between the cross-spectral
density of such beams and the Gaussian radiance function.
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The cross-spectral density of a twisted GSM beam in a transverse planez = constant
has the form [25–27]

W(ρ1, ρ2, ω) =
√

S(ρ1, ω)
√

S(ρ2, ω)µ(ρ1, ρ2, ω), (16)

where the spectral densityS(ρ, ω) and the absolute value of the spectral degree of coherence
µ(ρ1, ρ2, ω) are Gaussian functions:

S(ρ, ω) = s(ω) exp

[
− ρ2

2σ 2
s (ω)

]
, (17)

µ(ρ1, ρ2, ω) = exp

[
− (ρ1 − ρ2)

2

2σ 2
µ(ω)

]
exp

[
−i

k(ρ2
1 − ρ2

2)

2R(ω)

]
exp[−iku(ω)ρ1 · ερ2]. (18)

Here s(ω) is the spectral density at the on-axis pointρ = 0, andσs(ω), σµ(ω), R(ω),
and u(ω) are, respectively, the effective beam width, the transverse coherence length,
the radius of wavefront curvature, and the strength of the beam twist in the chosen
transverse plane. The symbolε denotes the two-dimensional antisymmetric matrix such
thatρ1 · ερ2 = x1y2 −y1x2, with (xj , yj ) being the Cartesian coordinates ofρj for j = 1, 2.
The twist parameteru(ω) must satisfy the condition|u(ω)| 6 1/kσ 2

µ(ω) for the cross-
spectral density (16)–(18) to be a non-negative definite function [25]. Finally, we note that
R(ω) is positive or negative according to whether the beam diverges or converges.

In order to determine the generalized radiance which is associated with this cross-
spectral density function, we first setρ1 = ρ − ρd/2, ρ2 = ρ + ρd/2 and find at once from
equations (16)–(18) that

W(ρ − 1
2ρd , ρ + 1

2ρd , ω) = s(ω) exp

[
− ρ2

2σ 2
s

− ρ2
d

2δ2

]
exp

[
ik

( ρ

R
+ uερ

)
· ρd

]
, (19)

where

1

δ2
= 1

σ 2
µ

+ 1

(2σs)2
. (20)

To keep the notation as simple as possible, we do not display from now on the argument
ω in σs , σµ, R, u, andδ. On substituting from equation (19) into definition (8), we obtain
the important formula

B(ρ, s⊥, ω) = k2δ2

2π
s(ω) exp

[
− ρ2

2σ 2
s

− k2δ2

2

(
s⊥ − ρ

R
− uερ

)2]
(21)

for the generalized radiance of the twisted GSM beam field in the plane considered.
The one-to-one correspondence between twisted Gaussian Schell-model cross-spectral

densities and Gaussian radiance functions is now readily recognized. Given a twisted GSM
cross-spectral density with parametersσs , δ, R, andu, the corresponding (Gaussian) radiance
function can be determined from equation (21). Conversely, suppose that we are given a
Gaussian radiance function of the form

B(ρ, s⊥, ω) = A exp{− 1
2[Cρ2 + D(s⊥ − Eρ − Fερ)2]}, (22)

with A, C, andD being non-negative quantities such thatCD 6 4k2 and with E and F

being constants, we can readily identify the parameters of the corresponding cross-spectral
density by comparing equations (21) and (22). This gives

σ 2
s = 1/C δ2 = D/k2 R = 1/E u = F, (23)
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and s(ω) = 2πA/D. Clearly σµ can be determined fromσs and δ by the use of
equation (20), and one finds that

σ 2
µ = (2σs)

2δ2

(2σs)2 − δ2
. (24)

The unique correspondence between Gaussian cross-spectral densities and radiance functions
is consistent with the (invertible) Fourier-transform property indicated by equation (8). The
main significance of the correspondence in the present context is that it enables us to
characterize the twisted GSM beams directly in terms of the radiance. The general properties
of the Gaussian radiance function (or Wigner distribution) associated with a twisted GSM
beam field are discussed in more detail in [25].

In view of the above correspondence we may analyse the propagation of a twisted GSM
beam in a lossless paraxial system by tracing the radiance through the system, using the
brightness theorem or, equivalently, the transport law expressed by equation (9). We will
illustrate this procedure by considering a simple system consisting of a single thin lens.
For systems that contain several components, the method can be used by repeating it from
component to component.

Let 50 and53 be arbitrary input and output planes, and51 and52 planes immediately
in front and immediately behind the thin lens, all the planes being perpendicular to the axis
of rotational symmetry (see figure 2). We will specify axial distances on the input side with
respect to the input plane50, and those on the output side with respect to the plane52.
Transverse locations with respect to the axis will be denoted by the two-dimensional vectors
ρ = (x, y) on both sides of the lens. In this notation the lens is located at the distance
z = z1 from 50 and the output plane is located at distancez′ = z2 from 52.

Figure 2. Geometry and notation relating to light propagation through a thin lens.

The radiance may be conveniently traced through the lens in successive stages. We
choose the input plane50 to coincide with the waist of the input beam, i.e. the plane in
which |R| = ∞. The cross-spectral density in the plane50 will then have the form

W0(ρ1, ρ2, ω) = s0(ω) exp

[
−ρ2

1 + ρ2
2

4σ 2
s0

− (ρ1 − ρ2)
2

2σ 2
µ0

]
exp[−iku0(ρ1 · ερ2)], (25)

which readily follows from equations (16)–(18) and the fact that 1/R = 0 in the plane50.
The corresponding (generalized) radiance function at points in that plane is, according to
equation (21), given by

B0(ρ, s⊥, ω) = k2δ2
0

2π
s0(ω) exp

[
− ρ2

2σ 2
s0

− k2δ2
0

2
(s⊥ − u0ερ)2

]
. (26)

The subscript zero indicates, of course, that the quantity in question pertains to the field in
the input plane50.
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We may readily trace the radiance from the plane50 to the plane51 by using the fact
that, for propagation through a distancez1 in free space, the elements of the ray-transfer
matrix T area = d = 1, b = z1, andc = 0 [38]. The transport law (9) and equation (26)
then give at once the following expression for the radiance function at points in the plane
51:

B1(ρ, s⊥, ω) = B0(ρ − z1s⊥, s⊥, ω)

= k2δ2
0

2π
s0(ω) exp

{
− (ρ − z1s⊥)2

2σ 2
s0

− k2δ2
0

2
[s⊥ − u0ε(ρ − z1s⊥)]2

}
. (27)

Making use of the identitiesρ · ερ = 0 andερ · εs⊥ = ρ · s⊥, and after rearranging the
terms in the exponent, this formula can be rewritten in the form of equation (22), i.e. as

B1(ρ, s⊥, ω) = k2δ2
1

2π
s1(ω) exp

[
− ρ2

2σ 2
s1

− k2δ2
1

2

(
s⊥ − ρ

R1
− u1ερ

)2]
, (28)

with

σ 2
s1 = σ 2

s01
2
10, (29)

δ2
1 = δ2

01
2
10, (30)

R1 = z1

[
1 +

(
zR0

z1

)2]
, (31)

u1 = u01
−2
10 , (32)

and

s1(ω) = s0(ω)1−2
10 , (33)

where

12
10 = 1 +

(
z1

zR0

)2

(34)

and

z2
R0 = k2σ 2

s0

(
1

4σ 2
s0

+ 1

σ 2
µ0

+ k2σ 2
s0u

2
0

)−1

. (35)

The one-to-one correspondence between twisted GSM cross-spectral densities and Gaussian
radiance functions allows us to draw several physical conclusions from these expressions.

Formula (29) shows that on propagation from plane50 to plane51 the beam width has
increased by a factor of110. For this reason we will refer to110 as the beam expansion
coefficient. Formula (31) implies that the beam has acquired a ‘phase curvature’, given by
the reciprocal of expression (31). Moreover, according to equation (33), the spectral density
along the axis has decreased by a factor of12

10. Further, since according to equation (30)
the δ-factor has increased in the same proportion asσs , it follows from equation (24) that

σ 2
µ1 = σ 2

µ01
2
10. (36)

We see at once from this formula and from equation (29) that the ratioα = σµ/σs , sometimes
called the degree of global coherence, is invariant on propagation in free space not only for
ordinary GSM beams but also for twisted GSM beams. From equations (32) and (36) it
follows as well that the quantityη = kσ 2

µu [25], known as the (normalized) twist parameter
[26, 27], remains unchanged on the beam’s passage from plane50 to plane51. Finally
we note that the parameterzR0, given by equation (35), may evidently be identified with
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the so-called Rayleigh range [34, ch 17] of the incident twisted GSM beam. It is seen to
depend, in addition to the beam width and transverse coherence, on the twist condition of
the wavefield across the source plane50.

The radianceB2(ρ, s⊥, ω) at points in plane52 immediately behind the lens is obtained
from the radianceB1(ρ, s⊥, ω) at points in plane51 right in front of the lens by means
of the following formula, which follows at once from the transfer law (9) and the fact that
the elements of the ray-transfer matrixT for a thin lens of focal lengthf area = d = 1,
b = 0, andc = −1/f [38]:

B2(ρ, s⊥, ω) = B1

(
ρ, s⊥ + 1

f
ρ, ω

)
. (37)

On substituting forB1(ρ, s⊥, ω) from equation (28), we obtain forB2(ρ, s⊥, ω) the
expression

B2(ρ, s⊥, ω) = k2δ2
2

2π
s2(ω) exp

[
− ρ2

2σ 2
s2

− k2δ2
2

2

(
s⊥ − ρ

R2
− u2ερ

)2]
, (38)

where

σs2 = σs1, (39)

δ2 = δ1, (40)
1

R2
= 1

R1
− 1

f
, (41)

u2 = u1 (42)

and

s2(ω) = s1(ω). (43)

On comparing equations (38) and (28) we see that relations (39)–(43) imply that the lens
only changes the beam’s radius of wavefront curvature and leaves all the other parameters
unaltered. In particular, the transverse coherence properties and the twist condition of the
field are in no way modified in passage through the thin lens. We will assume that the focal
power 1/f of the lens is high enough to ensure thatR2 < 0. The beam will then converge
to the right of the lens, forming a (real) waist of the transmitted beam in the image space.
The conditionR2 < 0 is satisfied whenz1 > f .

Finally we consider the propagation of the radiance from plane52 to a plane53 in the
image space (see figure 2). By the same argument as given in connection with equation (27)
we have, for the radiance in plane53,

B3(ρ, s⊥, ω) = B2(ρ − z2s⊥, s⊥, ω), (44)

or, using equation (38),

B3(ρ, s⊥, ω) = k2δ2
2

2π
s2(ω) exp

{
− (ρ − z2s⊥)2

2σ 2
s2

−k2δ2
2

2

[
s⊥ − (ρ − z2s⊥)

R2
− u2ε(ρ − z2s⊥)

]2}
. (45)

After some algebraic manipulations, and on using the identityρ · εs⊥ = −s⊥ · ερ, this
formula may be rewritten in the same form as equation (38), namely

B3(ρ, s⊥, ω) = k2δ2
3

2π
s3(ω) exp

[
− ρ2

2σ 2
s3

− k2δ2
3

2

(
s⊥ − ρ

R3
− u3ερ

)2]
, (46)
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with

σ 2
s3 = σ 2

s21
2
32, (47)

δ2
3 = δ2

21
2
32, (48)

1

R3
=

[
1

R2

(
1 + z2

R2

)
+ z2

z2
R2

]
1−2

32 , (49)

u3 = u21
−2
32 (50)

and

s3(ω) = s2(ω)1−2
32 , (51)

where

12
32 =

(
1 + z2

R2

)2

+
(

z2

zR2

)2

(52)

and

z2
R2 = k2σ 2

s2

(
1

4σ 2
s2

+ 1

σ 2
µ2

+ k2σ 2
s2u

2
2

)−1

, (53)

in complete analogy with equation (35). When equations (29)–(32) and (39)–(42) are used,
it is readily seen thatz2

R2 = z2
R01

4
10.

We note that when 1/R2 = 0, the expressions for132 and 1/R3 are of the same form as
those of110 and 1/R1 (cf equations (34) and (31), respectively). This was to be expected,
because the beam propagates from plane50 to plane51 with no initial phase curvature,
whereas it propagates from plane52 to plane53 with the initial phase curvature of 1/R2.
We also observe that according to equations (47), (48), and (24),

σ 2
µ3 = σ 2

µ21
2
32. (54)

On combining the results of the three successive stages (50 → 51 → 52 → 53) we have
shown explicitly, using the radiometric brightness theorem for a generalized radiance, that
the degree of global coherenceα = σµ/σs and the normalized twist parameterη = kσ 2

µu

associated with twisted GSM beams remain invariant in paraxial lens systems.
Formulae (28)–(35), (38)–(43), and (46)–(53), together with equation (26), provide

a complete solution to the problem of transmission of a twisted Gaussian Schell-model
beam through a thin lens. In figure 3 we illustrate, in various planes of the system, the
angular distribution of the generalized radiance associated with the GSM beam generated
by a slightly twisted, Gaussian quasi-homogeneous secondary source. The (schematic)
drawing pertains to a meridional (yz) plane, though in twisted fields the radiance has also an
azimuthal dependence. The graphs are calculated from the general formulae for a particular
set of parameters indicated in the figure caption.

4. Focal shifts

Next, let us examine the focusing properties of the transmitted beam. It is readily observed
that the waist of the beam in the image space is not formed at the plane onto which the
input plane50 is geometrically imaged by the lens, i.e. it is not at the distance(z2)image

given by the lens formula

1

(z2)image
= 1

f
− 1

z1
. (55)
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Figure 3. Example which illustrates the changes in the angular distribution of the generalized
radiance of a twisted GSM beam on propagation through a thin lens. The symbols50, 51, 52,
and53 have the same meaning as in figure 2, with50 coinciding with the input-beam waist.
The plane5W contains the waist of the twisted GSM beam on exit from the thin lens. Point B
is the geometrical image of point A. For illustrative purposes the plots correspond to the choice
α = 0.1, η = 0.1, kδ0 = 3, 110 = 2, 132 = 0.55, and|R2| = R1. The Gaussian envelope
curves (broken lines) indicate the radiance in the forward direction, which is seen to remain
invariant on propagation.

This can be seen by determining the valuez2 = (z2)min at which the beam widthσs3 in the
image space takes on its smallest value. We readily find from equations (47) and (52) that

1

(z2)min
= − 1

R2
− R2

z2
R2

. (56)

The planez = (z2)min is evidently the plane in the image space which contains the waist
of the transmitted beam. At this plane the phase curvature 1/R3 becomes zero, a fact
which can readily be verified from equation (49). SinceR2 < 0, equation (56) implies that
(z2)min > 0.

We will now show that

(z2)min < −R2 < (z2)image. (57)

SinceR2 < 0, both terms on the right-hand side of equation (56) are positive and so

1

(z2)min
> − 1

R2
. (58)

Now from equations (31) and (41) it readily follows that

− 1

R2
= 1

f
− 1

z1

[
1 +

(
zR0

z1

)2]−1

, (59)

which implies, if we make use of equation (55), that

− 1

R2
>

1

(z2)image
. (60)

Inequality (57) then follows at once on combining equations (58) and (60).
The inequalities of equation (57) imply that the waist of the GSM beam in the image

space is always closer to the lens than is the geometrical image of plane50 containing
the waist of the beam incident onto the lens (see figure 3). This result has been known
in connection with imaging of monochromatic Gaussian beams [39, 40], but now we have
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shown using the radiance transport law that it holds for imaging of twisted GSM beams of
any state of coherence. Some related results were also previously reported for the focusing
of both ordinary and twisted GSM beams [32, 33].

To examine more closely the effects of partial coherence and beam twist on the focal shift
we may use the explicit formulae for the parameterszR0 andzR2 in terms of the quantities
characterizing the input-beam waist and the optical system. Sincez2

R2 = [1+(z1/zR0)
2]2z2

R0,
we find in this way first from equations (31), (41), and (56) that

1

(z2)min
= − 1

R2
− R2z

2
R0

(z2
1 + z2

R0)
(61)

and

− 1

R2
= 1

f
− z1

z2
1 + z2

R0

. (62)

After some algebra we then obtain for the location of the exit-beam waist the expression

(z2)min = − f (f z1 − z2
1 − z2

R0)

f 2 − 2f z1 + z2
1 + z2

R0

, (63)

where, in view of equations (20) and (35),

z2
R0 = k2σ 2

s0δ
2
0

1 + k2σ 2
s0δ

2
0u

2
0

. (64)

The various special cases corresponding to the usual (untwisted) GSM beams can be obtained
from equations (63) and (64) by settingu0 = 0 and varyingδ0 in relation toσs0. Evidently
δ0 = 2σs0 for a Gaussian laser beam, whileδ0 ≈ σµ0 for a Gaussian quasi-homogeneous
beam.

Figure 4. Location of the waist of a focused GSM beam as a function of the global degree
of coherenceα = σµ0/σs0 for selected input-beam widthsσs0. The focal length of the lens is
f = z1/2 = 25 mm and the wavelength corresponds to a HeNe laser,λ = 0.633 µm.

In figures 4 and 5 the focal shifts are illustrated in a typical situation corresponding to a
symmetric geometrical imaging at equal conjugatesz1 = (z2)image = 50 mm. The finiteness
of the lens aperture is ignored. The curves in figure 4 concern untwisted (u0 = 0) GSM
fields; they show the position of the beam waist behind the lens,(z2)min, as a function of the
global degree of coherenceα = σµ0/σs0 for some chosen values ofσs0. It is seen, first, that
in the incoherent limit asα → 0 the output beam waist is located in the geometrical image
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Figure 5. Location of the focused, twisted GSM beam waist as a function of the normalized
twist parameterη = kσ 2

µ0u0. The curves are characterized by the global coherence degree
α = σµ0/σs0, with a fixed input-beam width ofσs0 = 1 mm. The system parameters are as in
figure 4.

plane (i.e.(z2)min = (z2)image); second, that in the coherent limit asα → ∞ the output
beam-waist location approaches the back focal plane of the lens (i.e.(z2)min = f ); and
third, that this transition from(z2)image to f is the faster the wider the input beam is. For
moderate beam sizes in the range ofσs0 ≈ 1 mm or larger the focused beam waist is, except
for nearly incoherent light, approximately atz2 = f as predicted by plane-wave imaging.

The curves in figure 5 pertain to focused twisted GSM beams. In each case the input
beam size isσs0 = 1 mm, the global degree of coherenceα (and hence the transverse
coherence widthσµ0 as well) is fixed, and the twist parameter varies fromu0 = 0
(representing an ordinary GSM beam withη = 0) to u0 = kσ 2

µ0 (corresponding to maximum
twist η = 1). It is observed that as the beam twist increases, the plane of the best focus
moves from its untwisted position towards the geometrical image planez2 = (z2)image, i.e.
the focal shift is reduced. For relatively coherent GSM beams this change is seen to be
minimal. However, in the quasi-homogeneous region represented by valuesα � 1 the
variation in the focused-beam waist location, as a function ofη, is found to cover nearly
the entire range off < (z2)min < (z2)image. This illustrates that inclusion of the twist may
considerably alter the behaviour of a GSM beam in optical systems.

5. Conclusions

The radiance transport law associated with partially coherent fields takes on a particularly
simple form in paraxial optical systems. We have demonstrated that this law may be
used efficiently to analyse the propagation of twisted GSM beams. We have shown, in
particular, that the method readily leads to algebraic expressions for the various quantities
characterizing such beams in free space and in the passage through a thin lens. The results
also allow the assessment of the role of partial coherence and of twist effects in the focal
shifts occurring in imaging by Gaussian beams. An increase in the transverse degree of
coherence generally shifts the location of the best focus away from the corresponding
geometrical image plane, while an increase in the beam twist moves it back towards the
geometrical image. This is consistent with the notion that the twist phenomenon reduces
the beam’s ‘effective’ degree of partial coherence.
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pp 65–87

[38] Hecht E and Zajac A 1974Optics (Reading, MA: Addison-Wesley) section 6.2
[39] Van Nie A G 1964Philips Res. Rep.19 378–94
[40] Kogelnik H 1965Bell. Syst. Tech. J.44 455–94


