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Abstract

This paper discusses a new synthesis approach for electromechanical filters. The structural
dynamics aspects are emphasized and joined with an inverse problem methodology to shape
the spectrum of a signal passing through the device. Using the inverse problem methodology,
the poles and zeros of a multi-degree of freedom structure are assigned, thus shaping the
filter’s frequency response. Several variants are presented for the same topology where the
excitation and sensing locations are chosen according to the desired characteristics of the filter.
The decomposition of the spatial behaviour of the device provides the designer with the ability
to suppress certain structural modes of vibration thus behaving as a bandstop/bandpass filter
for periodic signals. A micro-electromechanical filter was fabricated and a laboratory set-up
was constructed for characterization of the micro-electromechanical filter. A comparison
between the simulated response of the filter and measured response is shown.

1. Introduction

Electromechanical filters have recently received more attention
with the appearance of micro-electromechanical (MEMS)
structures. The reason behind the rapid development and
then adaptation of the mechanical filter is its superior
characteristics, including a high quality factor, good
temperature stability and ageing properties, which are all
critical in achieving low-loss, narrow bandwidth, and high
stability filters [1]. These devices can be incorporated on
a chip level basis with the surrounding electronics, and this
makes them rather attractive [2, 3].

Filters as a unit receive an electrical signal and after
shaping its spectrum, i.e. modifying the signal by affecting
its amplitude and phase over selected ranges of frequency [4],
the mechanical stress waves or deformations are converted
back to electromechanical signals. In electromechanical
filters, the input signal is converted into oscillating mechanical
deformations, the mechanical structure is designed such that
it performs the necessary spectrum shaping and finally the
mechanical oscillations or waves are converted back into
an electrical signal [2, 3, 5]. Indeed, MEMS oscillators
and filters have attracted a number of publications; some
recent developments and concepts can be found in [6, 7].

These references, as well as many others, have exploited the
dynamics and more specifically the modes of vibration of
structures with (effectively) up to three degrees of freedom.

The conceptual design that was investigated so far mainly
comes from classical electric filter theory [4, 8]. An analog
filter circuit consists of a single input and single output.
This topology is often called a two-port network. Different
configurations of mechanical filters can be found in the
literature:

In [9], a single clamped–clamped resonator in lateral
vibration is described. In [7], two clamped–clamped micro-
resonators are coupled together with a soft flexural-mode
coupling beam.

Hence, higher order systems with multiple-coupling
springs enable synthesis of high-quality filters. Highly
selective RF filters between antenna and preamplifier make
sure that only signals from the correct receiver band will
be amplified. Ways of realizing high-order filters are
described in [6], three comb-drive resonators are coupled
together with a flexural coupling beam, creating a third-
order MEMS filter. A method for realizing a fourth-order
micromechanical filter using a disk resonator [10, 11] was
tested. In [12], up to 20 drumhead resonators were coupled
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Figure 1. Symmetric spring–mass and damper system.

and their theoretical and experimental behaviour was studied.
The effect of inter-coupling was discussed. In [3], a series of
micromechanical filters which link two adjacent resonators
and springs is configured to have an improved bandpass
characteristic by a proper selection of mass and stiffness.
A bridged micromechanical filter is presented in [13]. The
filter design utilizes coupling bridging springs to achieve a
low insertion loss frequency shaping transfer function with
sharper roll-offs.

In order to improve the performance of these devices,
higher order filters should be used [8]. To fulfil this task,
concepts taken from structural dynamics and modal-testing
are being employed since current methods are capable of
designing relatively low order micromechanical filters (see,
for example, [6, 7]). A multi-degree of freedom topology
for a mechanical filter is tailored here to possess superior
dynamical behaviour that can produce higher order filters with
improved characteristics (such as sharp roll off, better stop-
band rejection). This topology can be operated with several
different combinations of actuation and sensing locations.
Damping can be applied at certain spatial locations according
to the desired behaviour of this system using mechanical, fluid
(squeeze-film [14]) or external electrical means [15]. Each of
these actuation/sensing combinations can create, for the same
mechanical filter design, a unique spectral shaping.

The performance of filters relies on the obtainable
accuracy of the natural frequencies. The small dimensions
and the limitations of the presently available MEMS
manufacturing methods force the designers to employ tuning
methods or use error compensation techniques [16]. Another
delicate point is related to the controlled resistive or dissipative
response. Dissipation can be employed by regulating the gap
between two vibrating surfaces [5, 14] or by employing an
external force–feedback electrical circuit [15].

A mechanical filter is in fact a dynamical system whose
behaviour can be tailored by an optimization process [17],
but when narrow band processes are involved, the assignment
of eigenvectors and eigenvalues seems more intuitive. In
[18], a method to assign natural frequencies and eigenvectors
by structural modifications is proposed. In the current
application, it seems more suitable to rely on methods
where the entire stiffness and mass distribution alongside the
topology are found from the mechanical filter characteristics.
In this case, it was chosen to use an inverse vibration problem
such as the one described in [16, 19–21]. In particular
the construction method that was described in [20] is being
used whereby an exact solution can be found for a particular
problem of natural frequency assignment [20].

This work seeks to emphasize the role of an appropriate
analysis of the mechanical filter. The analysis shown here
can accommodate any number of degrees of freedom in
contradiction to the usual lumped modelling in terms of an
electrical circuit via the exploitation of mechanical–electrical
analogies and conveniently implemented in a circuit simulator.

The structure of the paper is as follows: first the theory of
the relevant inverse problem is introduced, then the theoretical
simulations of a mechanical filter are presented followed by
some experimental results of a laboratory MEMS filter. Finally
a method to control the bandwidth of a filter using a variation
of the proposed inverse problem is described.

2. Spectrum shaping by tailoring a spring–mass
series’ topology

Filters are frequency selective devices that can be described by
means of the filter’s transfer function expressed by the poles
and zeros. Controlling the latter parameters gives one the
ability to design multi-degrees of freedom structures (MDOF)
leading to a system with the desired properties.

This section introduces sub-cases of the general system
outlined in figure 1. These sub-cases have different
combinations of poles and zeros, where each combination
gives rise to a different type of filtering operation, thus we can
achieve and demonstrate an electromechanical filter for signal
processing of periodic signals. We design the filter using a tool
which is a general lumped modelling approach, although it is
understood that the structure has an infinite number of modes.
Still, a group of modes can be described by a limited number
of lumped masses and springs while there is a group involving
higher order deformations that is far beyond this frequency
range. In practice, the lumped model can be used to refine the
initial design [16] and later a detailed analysis is conducted to
assure that the remaining flexible modes are well out of the
frequency band of interest.

The analytical work presented in [20] is expanded here
to make use of a similar construction of a MEMS scanning
mirror [19] for a mechanical filter design.

Two cases are analysed here: in the first case, the
excitation (input) acts on the first mass while the response
(output) is on the last mass. In this case, the structure has no
zeros and therefore there will not be any frequency in this range
at which a significant attenuation of the signal will occur. With
this design, the width of a bandpass filter can be increased as
will be shown later. The second case deals with a structure
where both the excitation and response are the central mass.
In this case, there will be zeros (as proved below) between

2



J. Micromech. Microeng. 18 (2008) 125018 A Elka and I Bucher

every pair of poles. This construction is adapted here for the
filtration of periodic signals, by instructing notch or high-Q
filters.

Consider a MDOF vibrating system consisting of a spring
(k), mass (m) and damper (c) connected in series; this system
is schematically illustrated in figure 1.

The system has (2N − 1) degrees of freedom and it is
symmetric around the centre of mass (mN). The symmetry
of the proposed topology defines that mi = m2N−i , ki =
k2N−i+1, i = 1, . . . , N .

This system has two types of eigenvectors (mode shapes):
symmetric and anti-symmetric. The asymmetric modes
exhibit zero motion at the central mass. Furthermore, it
was shown in [20] that the point receptance of the middle
degree of freedom (DOF) has anti-resonance (zeros) at the
even numbered natural frequencies. The symmetry of the
proposed topology can be used to convert the problem into
two smaller problems [20, 21]: problem one represents the
symmetric vibration modes and problem two represents the
asymmetric ones. The eigenvalues paired with the symmetric
modes of this matrix are known to be distinct, maintaining 0 <

λ1 < λ2 < · · · < λN that represent the natural frequencies
(poles). For the asymmetric modes the modified eigenvalue
problem has eigenvalues that are μ = μk, k = 1, . . . , N − 1
which represent the anti-resonance frequencies (zeros). It
is well known from system theory that the response to an
excitation at the same location contains the strict interlacing
property λk < μk < λk+1. Each frequency is associated
with a particular pole/zero or resonance/anti-resonance and
the associated eigenvector (mode shape) is at the relevant
frequency.

The topology of the vibrating system is found from a
dedicated inverse problem which was described in [20, 21]
by which a spring–mass system is reconstructed to have
a specified spectrum with prescribed natural frequencies/
vibration modes [21, 22].

The mathematical model involves matrices whose spectral
properties determine the dynamics of the physical system.

For a serially linked mass–spring system with N masses,
fixed at both ends, the equations of motion are given by⎡
⎢⎢⎢⎣

m1

m1

. . .

mN

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎝

ẍ1

ẍ2

ẍN

⎞
⎟⎟⎠

+

⎡
⎢⎢⎢⎣

k1 + k2 −k2

−k2 k2 + k3 −k3

. . . −kN

−kN kN + kN+1

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎝

x1

x2

xN

⎞
⎟⎟⎠ = 0.

(1)

Abbreviated in matrix form as

Mẍ + Kx = 0, (2)

where K is a Jacobi, tridiagonal symmetric matrix.
Using a coordinate transformation

x = M−1/2u (3)

to obtain

(B − λI) u = 0 (4)

and a tri-diagonal equation of motion

ü + Bu = 0, (5)

where B = M−1/2KM−1/2, thus

B =

⎛
⎜⎜⎜⎜⎜⎝

a1 −b1 0 · · · 0 0
−b1 a2 −b2 · · · 0 0

...
...

0 0 0 · · · aN−1 −bN−1

0 0 0 · · · −bN−1 aN

⎞
⎟⎟⎟⎟⎟⎠

, (6)

where B is a tri-diagonal Jacobian matrix. The eigenvalues of a
Jacobi matrix are necessarily real and distinct [21]. The actual
mass and stiffness values can be reconstructed from the Jacobi
matrix. To perform this reconstruction the Lanczos algorithm
is being used [21]. A detailed computer program and a formal
mathematical derivation for reconstructing the matrix from
prescribed spectral data are given in [20]. It has been shown
that the structure is scalable in the frequency domain [16, 20],
thus none of the eigenvectors depends on the minimal actual
frequency, ω0. The basis frequency can be obtained from the
general solution by means of scaling only [16, 20].

Two cases are being proved here. One concerns the case
where the excitation and sensing taking place on the first and
last masses, respectively. The second deals with excitation and
sensing residing at the central mass. The selected cases have
physical meaning in shaping a frequency response function
by assigning and controlling the poles and zeros to obtain a
desired filter for signal processing.

The mass and stiffness matrices that represent the system
in figure 1 (neglecting the damping), are

M =

⎡
⎢⎢⎢⎢⎣

m1 0 · · · 0

0 m2
. . .

...
...

. . .
. . . 0

0 · · · 0 m2N−1

⎤
⎥⎥⎥⎥⎦ ,

K =

⎡
⎢⎢⎢⎢⎣

k1 + k2 −k2 · · · 0

−k2 k2 + k3
. . .

...
...

. . .
. . . −k2N−1

0 · · · −k2N−1 k2N−1 + k2N

⎤
⎥⎥⎥⎥⎦

∈ R
(2N−1)×(2N−1). (7)

With these definitions, it is now possible to develop an
expression for the receptance in two cases. Case 1 deals
with the point receptance of the middle mass and case 2 treats
the receptance where the force is applied at one end of the
structure and the response is measured at the other end.

We denote the receptance of the former as
x1

f2N−1
(ω) = eT

1 (K − ω2M)−1e2N−1, (8)

where en is the nth column of the (2N − 1)×(2N − 1) identity
matrix, while the point receptance at the middle mass as

xN

fN

(ω) = eT
N(K − ω2M)−1eN . (9)

3
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Figure 2. (a) A nine degrees of freedom series spring–mass system. (b) Response magnitude of the central mass in a nine DOF system
versus frequency.

The main thrust of this paper is the ability to selectively assign
poles and zeros to the mechanical filter. This section shows
that poles and zeros can indeed be placed at the correct regions
in the frequency domain. Two brief proofs are brought below
as an aid.

Proof that x1
f2N−1

(ω) has no zeros

x1

f2N−1
(ω) = eT

1 adj(K − ω2M)e2N−1

det(K − ω2M)
. (10)

We can calculate the adjoint of the dynamical matrix in (10)
using the matrix of minors and cofactors, thus the numerator
of the transfer function, eT

1 adj(K − ω2M)e2N−1, is equal to

det

⎡
⎢⎣

−k2 k2 + k3 − ω2m2 −k3

0
. . .

0 0 −k2N−2

⎤
⎥⎦

= k2k3 · · · k2N−2(−1)2N−2. (11)

The determinant of the upper triangle matrix is the product of
the diagonal terms; these terms are constants only, thus there
are no zeros in the transfer function.

Proof that xN

fN
(ω) has the strict interlacing property.

References [20, 22] prove the property of interlacing
poles and zeros through a Strum polynomial for the case of
collocation receptance.

3. Simulated electromechanical filter examples

For generality we selected arbitrarily a nine degrees of freedom
based design as an example. The system has a high compliance
at the odd multiples of frequencies, schematically shown in
figure 2(a). The new design topology can be tuned to have
a large amplification of the excitation voltage at frequencies
ω0, 3ω0, 5ω0, 7ω0, 9ω0 and an extremely high attenuation at
2ω0, 4ω0, 6ω0, 8ω0, figure 2(b).

The damping level can be controlled by a feedback electric
network [15] to selectively attenuate the vibrating amplitudes
as shown in figure 3. A second approach to controlling the
damping, but more sensitive to temperature variations, would
use the squeeze-film effect of the air trapped between one of
the masses and a flat surface in close proximity [14]. For small
vibrations as expected in the present application, the damping
due to the squeeze-film effect is linear and its value can be
determined by designing the geometry of the damper.

Electromechanical feedback or force balancing transducer
allows precise control of the Q of the constituent
resonators, independent of the ambient operating pressure (and
temperature) fluctuations of the micromechanical system.

The detection (sensor) mechanism exploits the fact that,
because the mechanical vibration makes the structure exhibit
a time varying capacitance (change in charge), it can be
detected as a current flow (i) by means of a charge amplifier.
The current flow through the resistor (RL) thus creates a
voltage drop on it. The difference between the output

4
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Figure 3. Schematic of damping control by an electric network.

voltage of the charge amplifier and the voltage on the resistor
is fed back to the actuation capacitor. This generates an
electrostatic force which is proportional to the mass velocity
and which always opposes motion of the mass from the rest
position. This dissipation is equivalent to a mechanical viscous
damper.

It is possible to control the Q factor of the resonator system
(Q of the order 1000) and attenuate the natural frequencies.

In addition, spectral shaping can be achieved by changing
the excitation and sensing positions as this moves the zeros
of the individual transfer functions. For the same structure,
several unique spectral shapes can be formed, depending
on the spatial actuation/sensing/damping properties of the
structure.

Throughout this paper, it is assumed that the structure is
designed such that it is effectively an (2N − 1)-DOF structure
(large masses connected by thin springs). All the (2N − 1)
modes of vibration are accounted for in the design and analysis.
Evidently, since it is a continuum there would be many more
modes of vibration, but when designed properly, these modes
(where the inertia of the thin connecting springs becomes
significant) would have natural frequencies that are much
higher than the ‘operating range’ where the first (2N − 1)
natural frequencies reside. Being so much higher, these modes
are easily filtered out using the simplest of filters (RC).

Some examples of the abovementioned symmetric nine
DOF vibrating system are shown below to demonstrate the
new filter synthesis methodology.

3.1. Example 1. Notch filter for periodic signals

A nine DOF system with natural frequencies that are
odd multiple frequencies of ω0 = 1 MHz (ω2n−1 =
(2n − 1) ω0, n = 1, 2, 3, . . .) and anti-resonances (zeros) at
even frequencies (ω2n = 2nω0, n = 1, 2, 3, . . .) was designed
by employing the algorithm in [20]. The actuation and sensing
of the system are on the central mass (m5), and it is performed

by separate parallel electrodes. This system is shown in
figure 4(a).

The general mode shapes in this system obey

φasym = (α1 α2 0 −α2 −α1)
T ,

φsym = (β1 β2 β3 β2 β1)
T .

With damping acting on the central mass (m5) by an electrical
dissipative network, it is possible to control the Q factor. In
a different approach, a flat surface can be placed in close
proximity to the middle mass thus increasing the squeeze-
film effect until the desired level of damping is formed
[14]. Indeed, the general form of the modes implies that
attenuation of energy takes place on the symmetric modes only.
Consequently, these modes can be ‘flattened’ completely, as
shown in figures 4(b) and (c). A typical response of this filter
is illustrated in figure 5.

Evidently, the symmetric topology has helped with
complete flattening of the response at the odd natural
frequencies while creating narrow bandstops at even multiples
of the basis frequency.

3.2. Example 2. High-Q multiple selective filter for signals
with even periodic frequencies

In this example, the actuation of the system is on mass (m1)

and the sensing is on mass (m9), the damping is acting on the
central mass (m5), as shown in figure 6.

A typical response of this filter is illustrated in figure 7.
This system configuration has no zeros according to the proof
given in the section above. This type of filter will pass
certain periodic signals while attenuating any other frequency
contents.

It can be observed that the damping implies, in this
case, attenuation on the symmetric modes of the system and
therefore the corresponding frequencies are not amplified.

5
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Figure 4. (a) Schematic of MDOF mechanical filter. (b) A typical symmetric mode. (c) A typical anti-symmetric mode.

Figure 5. Response of a MDOF mechanical notch filter.

3.3. Example 3. High-Q multiple selective filter for
signals with odd periodic frequencies

This example uses the actuation on mass (m1) and the sensing
on mass (m5). Here no dissipation mechanism is introduced,
as shown in figure 8.

A typical response of this filter is provided in figure 9
for periodic signals having energy with periodic multiples of
1 MHz.

The anti-symmetric modes of the system are filtered out
in this case due to the configuration of actuation/sensing.

It has been shown that one can obtain reconfigurable filter
characteristics using the same basic structure by choosing the
excitation, response and damping-attachment locations.

4. MEMS filter device with five masses—experiment

To support the abovementioned examples, a MEMS structure
acting as a filter device was designed and manufactured.
Several experiments were performed to examine the validity
of the design algorithm.

6
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Figure 6. Schematic of a MDOF mechanical bandpass filter for even frequencies.

Figure 7. High-Q multiple selective filter for even frequencies.

m1
m2 m3 m4 m5 m6

m7 m8 m9

k1 k2
k3 k4 k5 k6 k7 k8 k9 k10

Actuator electrode Sensor electrode

Figure 8. Schematic of MDOF mechanical bandpass filter for odd frequencies.

A five degree of freedom symmetric structure around the
central mass was designed. The mechanical filter device
is operating in torsion and is driven by spatial electrostatic
electrodes.

Figure 10 shows a photograph of the proposed miniature
filter device (measuring about 2700 × 700 microns).

A local section in the filter device is shown in figure 11.
The substrate contains spatial electrodes (visible through

the partial structure). Differential actuation [5] was used to
drive each individual degree of freedom.

The equations of motion describing the five DOF device
are⎛
⎜⎜⎜⎜⎝

m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m2 0
0 0 0 0 m1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ϕ̈1

ϕ̈2

ϕ̈3

ϕ̈4

ϕ̈5

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

k1 + k2 −k2 0 0 0
−k2 k2 + k3 −k3 0 0

0 −k3 k3 + k3 −k3 0
0 0 −k3 k3 + k2 −k2

0 0 0 −k2 k2 + k1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

Q1

Q2

Q3

Q4

Q5

⎞
⎟⎟⎟⎟⎠ , (12)

where Q, ϕ represent a vector of five moments and angular
displacements, respectively.

The mass and the stiffness coefficients are computed by
solving the inverse eigenvalue problem which is explained
theoretically in [20, 21]. The mass and stiffness elements had

7
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Figure 9. High-Q multiple selective filter for odd frequencies.

Figure 10. Upper view photograph of the MEMS filter under a microscope.

Figure 11. Local section in the filter device.

nominal, unscaled values of

(m1 m2 m3) = α(20 15 14),

(k1 k2 k3) = β(10 18 21).
(13)

These values can all be scaled to obtain a basis frequency of
13 kHz by choosing β

α
= 5(2π · 13 000)2.

The translation of the stiffness and mass values from
the lumped model to physical dimensions is carried out
by standard formulae [23], neglecting the warping function
correction [24] for the estimate of the torsional spring stiffness.
The torsional spring stiffness was defined according to

ki = cGh3t

Li

i = 1, 2, 3, (14)

and the mass moment of inertia is equal to

mi = aibi tρ
(
b2

i + t2
)

12
i = 1, 2, 3, (15)

where h is defined as beam cross section thickness, t is defined
as beam cross section width, G is defined as shear modulus,
Li is defined as beam length, c is defined as numerical factor
depending on the ratio h/t, ρ is defined as density, ai is defined
as inertia length (parallel to the rotation axis) and bi is defined
as width of the ith mass (perpendicular to the rotation axis)

A better accuracy for the geometrical dimensions can
be obtained by optimizing a three-dimensional finite-element

8
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Table 1. Geometrical parameters of the MEMS filter in μm (see
equations (14) and 15)).

Mass dimension = aibi Spring dimension = Lih

i = 1 500 × 500 101 × 15
i = 2 309 × 600 117 × 15
i = 3 411 × 600 211 × 15

model [16]. The effect of the manufacturing process on the
geometrical tolerances cannot be underestimated. Due to
the geometrical imperfections, caused by the manufacturing
process, the vibrating structure will not perfectly match the
frequencies required and thus impose on the filter specification
[16]. This calculation process has resulted in a vibrating device
acting as a filter for periodic signals.

The nominal values of the geometrical parameters of the
MEMS filter device are summarized in table 1.

The thickness of the device is t = 50 μm.

4.1. Fabrication process

The MEMS filter device shown in figure 10 was designed
according to an established process, consisting of a device die
and a substrate die assembled together in a flip chip process
[25, 26]. A SOI wafer consisting of a 50 μm device layer,
a 350 μm handle layer and a 2 μm box layer was micro-
machined by the following four main steps:

Step 1: Deposition of 2000 Å thick gold pads on the device
layer for assembly purposes and serving as electrical
connections to the filter structure.
Step 2: DRIE process on the handle side was used in
order to free the filter structure from the handle layer and
to enable optical access.
Step 3: Etching of the oxide layer is used to free the
structure from the oxide layer.
Step 4: DRIE process on the device side is used in
order to free the filter structure from the device layer
thus completing its mechanical release and enabling it to
vibrate freely.

The substrate die layout is shown in figure 12.
The fabrication of the substrate consisted of a deposition

of 2000 Å thick nickel–chrome–gold electrodes. This layer
was used both for the electrostatic actuation of the filter and
also as a seed layer for the nickel electroplating, implemented
in order to create a highly conductive spacer. This spacer
allowed determining a gap of 15 μm between the electrodes
and the filter structure.

4.2. Experimental set-up

The experimental set-up consisted of a laser vibrometer with
a displacement\velocity sensor, a multi-channel, 16 bit data-
acquisition system sampling at a rate of 200 kHz, oscilloscope
sampling at a rate of 12 MHz and a vacuum chamber. The
vacuum pressure during the measurements was 0.0427 Torr.
Using an optical microscope and a transparent window in the
chamber, the measuring laser beam is reduced to a diameter

Figure 12. Substrate photograph under microscope.

of about 5 μm. The laser beam was located near the edge of
the measured mass far from the rotation axis, thus attaining
maximum sensitivity in the rotational mode of motion. On
each of the two electrodes implanted on the substrate, an equal
dc voltage 15 V with opposite potentials was applied. The
device layer, which the filter structure is part of, was subjected
to an ac voltage 1 Vpp at the excitation frequency.

4.3. Experimental results

We measured the response of the MEMS filter device for
several operational configurations and the FRF results were as
expected and resembled the ones shown in the filter simulation.
The base frequency for all the configurations was designed to
be ω0 = 13 kHz.

4.3.1. Experiment 1. Response for actuation and sensing on
centre of mass. The actuation and sensing of the MEMS filter
structure is on the central mass (m3) performed by separate
parallel electrodes and a laser vibrometer, respectively. The
frequency response function (FRF) amplitude is shown in
figure 13.

Figure 13 shows that the structure behaved according to
the abovementioned theory with the exception of a tiny spike
near 40 kHz, caused by a bending mode of vibration which was
excited by imperfections in the device and small damping [14].
Indeed, the design has a large amplification of the excitation
voltage at frequencies ω0, 3ω0, 5ω0 and an extremely high
attenuation at 2ω0, 4ω0, 6ω0.

4.3.2. Experiment 2. Response for actuation on first mass and
sensing on last. The actuation of the MEMS filter structure,
in this case, is on the first mass (m1) and it is performed by two
separate parallel electrodes while the laser vibrometer senses
the response of the last mass (m5). The measured FRF is
shown in figure 14.

A typical response of this filter is observed, like an all pole
filter. This configuration excites all the natural frequencies of

9
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Figure 13. Response magnitude of the central mass in a five DOF system (measured).

Figure 14. High-Q multiple selective filter (measured).

this device. The design has a large amplification at integer
multiples of the basis frequency, i.e. at nω0 n = 1, . . . , 5.

The Q of the filter is of the order 1000; therefore the pass-
band consists of distinct peaks serving as a narrow bandpassing
filter for periodic signals.

4.3.3. Experiment 3. Response for actuation on first mass
and sensing on the central mass. In the last experiment, the
actuation of the structure was on the first mass (m1) while

sensing took place on the central mass (m3). The FRF is
shown in figure 15.

The design configuration has a large amplification at odd
frequencies ω0, 3ω0, 5ω0.

From a comparison between the simulated response
(figure 9) and the measured response, it can be seen that the
MEMS filter behaves as predicted, thus confirming that this
type of filter operates according to what was suggested.

10
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Figure 15. High-Q multiple selective filter for odd frequencies (measured).
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Figure 16. A MDOF enhanced system.

5. Controlling the bandwidth of a pass-band filter

This section deals with the accurate assignment of a cluster
of natural frequencies as a means to control the bandwidth
of an electromechanical filter [27]. The previously proposed
topology is sensitive to the location of the natural frequencies
whose values affect the shaping of the device’s frequency
response. A solution with a modified topology seeking to
minimize the effect of manufacturing tolerances and frequency
drift is proposed. The band widening is created by assigning
multiple natural frequencies in close proximity.

A new topology that allows us to design such structures
will be presented from a structural vibration point of view.

Once we add an optimal amount of dissipation by adding
damping to the system, we can obtain a flattened response in
the pass-band.

5.1. Proposed topology for a controlled bandwidth filter

So far, several configurations have been synthesized and
studied in this paper. Here, a new, multi-degree of freedom
system with enhanced selectivity on the spectrum is proposed.
The overall suggested topology is shown in figure 16.

The ‘building block’ consists of single degree of freedom
systems having mass m and spring stiffness k, which are
coupled through a relatively weak coupling spring kε to
the adjacent subsystems. The coupling spring affects the
bandwidth of the pass-band, thus spectral shaping can be
achieved.

The equation of motion for the enhanced system is [28]⎡
⎢⎢⎢⎢⎢⎢⎣

m

m

.. .

. . .

m

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẍ1

ẍ2
...
...

ẍN

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

k

k

. . .

. . .

k

⎤
⎥⎥⎥⎥⎥⎥⎦

+ kε

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1
. . .

. . .

. . . 2 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1

x2
...
...

xN

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= 0. (16)

Substituting the assumed sinusoidal solution at steady state
x = x0 ejωt in (16) and normalizing (16) by the spring stiffness,
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one obtains

−
(

ω

ω0

)2

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1

. . .

. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎦

{x0}

+

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1

. . .

. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎦

+
kε

k

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1
. . .

. . .

. . . 2 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

{x0} = 0. (17)

The natural frequency of a single DOF system ‘building block’
is defined by [29]

ω2
0 = k

m
. (18)

Using the former definitions in (17), a normalized set of
equations is formed, where

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1
. . .

. . .

. . . 2 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

A symmetric, tri-diagonal Jacobi matrix

�k
�= kε

k
, σ 2

i

�=
(

ω

ω0

)2

and the eigenvalues of (17) are

σ2 �=

⎡
⎢⎢⎢⎣

σ 2
1

σ 2
2

. . .

σ 2
n

⎤
⎥⎥⎥⎦ . (19)

Indeed, equation (17) can be recast in a generalized eigenvalue
problem Kφ = ω2Mφ form [29],

[I + B�k] φ = σ2φ, (20)

or

�kBφ = (σ2 − 1)φ

and

Bφ = (σ2 − 1)

�k
φ. (21)

1 1 1 1 1 1 1 1
0

0.5

1

1.5

2

2.5

x 10
7

0 1

1 kΔ

Figure 17. A two resonators system.

Defining the eigenvectors V of the matrix B, it is clear that

VT BV = λ =

⎡
⎢⎣

λ1

. . .

λn

⎤
⎥⎦ , (22)

where λ are the eigenvalues of the matrix B.
The matrix [I + B�k] is symmetric, thus the modes {φi}

are orthogonal and hence the eigenvectors of matrix B are
orthonormal, i.e. VT V = I.

After performing some algebraic manipulations on (21) it
can be seen that

VT BV = (σ2 − 1)

�k
= λ. (23)

The solution of the eigenvalue problem, equation (20), can be
simplified into

σ 2
i = 1 + �kVT

i BVi. (24)

From (22), we have that

λi
�= VT

i BVi. (25)

Thus the eigenvalue solution derived from (24) can be rewritten
as

σ 2
i = 1 + λi�k. (26)

For example, we can use (18) to design a system with two
resonators, as shown in figure 17.

Assuming that �k = 1, this system has two natural
frequencies, according to (26), the first frequency is σ 2

0 = 1
and the second frequency is σ 2

1 = 1 + λ1�k = 1.7321.
It was demonstrated that the spectral bandwidth can be

controlled by setting the number of adjacent systems and their
coupling springs.

5.2. Controlling the interval of the frequency bandwidth

In order to control the bandwidth to have a constant shift in the
natural frequencies, we need to select and calculate different
coupling springs. This type of problem belongs to the class of
inverse problems [20, 21].
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Figure 18. Connecting subsystems of springs.

A new topology that enables us to perform precise
bandwidth control is proposed here. The system’s topology
is schematically illustrated in figure 18, the ‘building block’
of a spring–mass consists of a single DOF that is connected
with low coupling independent springs ki and an additional
two ground springs that connect the first and last masses.

The same theory of [20, 21] is being used to design
the subsystem of coupling springs vibrating system with an
assigned spectrum.

The system has n = (2N − 1) degrees of freedom and it
is symmetric around the central mass. The symmetry of the
proposed topology defines that ki = k2N−i+1, i = 1, . . . , N .

Its dynamical behaviour and the values of the individual
coupling springs can be determined by solving the eigenvalue
problem of the tri-diagonal Jacobian matrix.

The equation of motion for the vibrating system shown in
figure 18 is

−ω2

⎡
⎢⎢⎢⎢⎢⎢⎣

m

m

.. .

. . .

m

⎤
⎥⎥⎥⎥⎥⎥⎦

{x0}

+

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

k

k

. . .

. . .

k

⎤
⎥⎥⎥⎥⎥⎥⎦

+ [B]

⎞
⎟⎟⎟⎟⎟⎟⎠

{x0} = 0. (27)

The weak coupling springs are treated as a subsystem defined
by matrix B which is a symmetric, tri-diagonal Jacobian matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

k1 + k2 −k2

−k2 k2 + k3

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Normalizing (27) by the spring stiffness, one obtains

−
(

ω

ω0

)2

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1

. . .

. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎦

{x0}

+

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1

. . .

. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎦

+
1

k
[B]

⎞
⎟⎟⎟⎟⎟⎟⎠

{x0} = 0. (28)

The natural frequency of a single DOF system ‘building block’
is defined by [29]

ω2
0 = k

m
(29)

and the natural frequencies of the enhanced system are

σ 2
i =

(
ωi

ω0

)2

i = 1, . . . , n.

Equation (28) can be recast in a generalized eigenvalue
problem Kφ = ω2Mφ form:[

I +
1

k
B

]
φ = σ2φ. (30)

Defining

B̃ = 1

k
B,

one obtains

B̃φ = (σ2 − 1)φ. (31)

Using V, the eigenvectors of the matrix B̃, it is clear that

VT B̃V = λ =

⎡
⎢⎣

λ1

. . .

λn

⎤
⎥⎦ . (32)

And since the eigenvectors are orthonormal and after
performing some algebraic manipulations on (31), we can
obtain

VT B̃V = (σ2 − 1) = λ, (33)

where λ are the eigenvalues of the matrix B̃. Each eigenvalue
λ is associated with a particular pole/zero.

The solution for the eigenvalue problem, equation (30),
can be simplified into

σ 2
i = 1 + VT

i B̃Vi . (34)
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Figure 19. Symmetric five DOF vibrating system.

From (33), we have that

λi
�= VT

i B̃Vi . (35)

Thus the eigenvalue solution derived from (34) can be rewritten
as

σ 2
i = 1 + λi. (36)

Define a constant shift parameter ωs between the natural
frequencies of the enhanced system

ωs = σi+1 − σi = Const i = 1, . . . , n.

Figure 20. Uniformly spaced natural frequencies for an increased bandwidth.

Thus

σ 2
i =

(
ωi

ω0

)2

⇒ σi =
(

ωi

ω0

)
= 1 + (i − 1) ωs. (37)

For the general case using equation (36), we define

ωs =
√

1 + λi+1 −
√

1 + λi. (38)

From (38), we get

λi+1 = ω2
s + 2ωsσi + σ 2

i − 1. (39)

These are the eigenvalues of the Jacobian matrix B̃.
Substituting (37) in (39), we obtain

λi+1 = ω2
s + (1 + (i − 1) ωs) (1 + (i + 1) ωs) − 1. (40)

Matrix B̃ is thus singular, and the first eigenvector of B̃ is
related to λ1 = 0.

The topology of the subsystem is found by employing
the same algorithm yet again [20] such that a system is
reconstructed to have a specified spectrum [22]. An example
of a symmetric five DOF vibrating system will be used
to demonstrate the new filter synthesis methodology in
figure 19.

The actuation, in this example, is on the first mass and
sensing is on the last mass. The result for this system is shown
in figure 20.

Figure 20 shows the precisely tuned frequency bandwidth
compared with a single DOF system. Zooming on figure 20,
the effect of the constant shift parameter ωs between the
resonances can be seen. In this example ωs = 0.02 [Hz]
was used, and the result, shown in figure 21, clearly shows
that this is indeed the case.

Once we add an optimal amount of dissipation by adding
dampers to the system, we can obtain a flattened bandpass,
shown as the thick black line in figure 21. The bandwidth of
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Figure 21. Uniformly spaced natural frequencies for increased bandwidth—zoomed (red: undamped, black: with damping, blue: single dof
system)

Figure 22. Connecting N identical systems.

the filter was enhanced precisely by adding several degrees of
freedom and choosing appropriate coupling springs.

5.3. Enhanced model topology synthesis—possible extension
to a lattice system

A natural extension to the former analysis would replace
the single DOF system ‘building block’ with a multi-DOF
system ‘building blocks’ having the same masses and springs.
These systems will be coupled through a relatively weak
coupling spring kε to the adjacent system; this assures that the
natural frequencies and anti-resonance frequencies will have
a sufficient width to accommodate manufacturing tolerances.

Figure 23. Example of connecting three identical systems.

In general, there are N identical systems connected with
weak coupling springs, as shown in figure 22.

5.3.1. Example of filter with enhanced topology—lattice
system. As an example of a typical system three ‘building
blocks’ each consisting of a five mass system with equal weak
coupling springs is proposed. The systems and the connecting
springs are shown in figure 23.

This compound system is in fact symmetric around the
middle building block and thus it has symmetric and anti-
symmetric modes of vibration [21]. There are structural modes
where all the ‘building blocks’ move in unison, while there
are anti-symmetric ones for which each building block has
nearly the same vibration mode but the weak coupling springs,
through the anti-symmetric motion, causes a slight frequency
shift causing a peak in the frequency response whose shift is
determined by the weak coupling springs. This phenomenon is
used to widen the bandpass filter’s response around the natural
frequencies.

The frequency response of this compound system is shown
in figure 24. In this case, the actuation is on the central mass
of the first system and the sensing is on the central mass of the
last system.
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Figure 24. FRF of a lattice system.

A close examination of the peaks near the natural
frequencies shows multiple peaks whose number corresponds
to the number of building blocks being used. As before, it
is evident that the concept of periodic signal filtering can
now be enhanced with the proposed topology by widening
the individual pass-bands in a controlled manner.

6. Conclusion

This paper introduces some new ideas for the construction of
mechanical filters alongside new topologies while developing
a synthesis methodology taken from structural dynamics.
An approach relying on basic mechanics recognizes the
contribution of individual mechanical modes of vibration and
thus creates several variants of a mechanical filter.

It was demonstrated with a new method that a narrow
band filter’s width can be precisely controlled by connecting
several identical structures together and by assigning natural
frequencies of the coupling system.

References

[1] Yao J J 2000 Topical review RF MEMS from a device
perspective J. Micromech. Microeng. 10 R9–38

[2] Mason W P 1948 Electromechanical Transducers and Wave
Filters (New York: Van Nostrand Reinhold)

[3] Lin L, Howe R T and Pisano A P 1998
Microelectromechanical filters for signal processing
J. Microelectromech. Syst. 7 3

[4] Johnson R A 1983 Mechanical Filters in Electronics (New
York: Wiley)

[5] Bao M H 2000 Handbook of Sensors and Actuators Micro
Mechanical Transducers: Pressure Sensors, Accelerometers
and Gyroscopes vol 8 (Amsterdam: Elsevier)

[6] Wang K and Nguyen C T C 1999 High-order medium
frequency micromechanical electronic filters
J. Microelectromech. Syst. 8 534–56

[7] Bannon F D, Clark J R and Nguyen C T C 2000 High-Q HF
microelectromechanical filters IEEE J. Solid-State Circuits
35 512–26

[8] Temes G C and Mitra S K 1973 Modern Filter Theory and
Design (New York: wiley)

[9] Hsu W-T, Clark J R and Nguyen C T C 2000 Mechanically
temperature compensated flexural mode micromechanical
resonators Technical Digest of IEEE Int. Electron Devices
Meeting (San Francisco, Los Angeles)
pp 399–402

[10] Demirci Mustafa U and Nguyen Clark C T C 2005 Single
resonator fourth order micromechanical disk filters Proc.
18th Int. IEEE Micro Electro Mechanical Systems Conf.
(Miami, FL) pp 207–10

[11] Clark R, Hsu W-T and Nguyen C T C 2000 High-Q VHF
micromechanical contour-mode disk resonators IEEE Int.
Electron Devices Meeting pp 399–402

[12] Greywell D S and Busch P A 2002 Coupled micromechanical
drumhead resonators with practical applications as
electromechanical bandpass filters J. Micromech. Microeng.
12 925–38

[13] Li S-S, Lin Y-W, Ren Z and Nguyen Clark C T C 2005
Self-switching vibrating micromechanical filter bank Proc.
Joint IEEE Int. Frequency Control/Precision Time & Time
Interval Symp. (Vancouver, Canada)
pp 135–141

[14] Minikes A, Bucher I and Avivi G 2005 Damping of a
micro-resonator torsion mirror in rarefied gas ambient
J. Micromech. Microeng. 15 1762–9

[15] Tilmans H A C 1996 Equivalent circuit representation of
electromechanical transducers: I. Lumped parameter
system J. Micromech. Microeng 6 157–76

[16] Avivi G and Bucher I 2008 A method for eliminating the
inaccuracy of natural frequency multiplications in a multi
DOF micro scanning mirror J. Micromech. Microeng. 18

[17] Bucher I and Braun S G 1994 Efficient optimization procedure
for minimizing the vibratory response via redesign or
modification, part I. Theory J. Sound Vib. 175 433–54

[18] Bucher I and Braun S G 1993 The structural modification
inverse problem: an exact solution Mech. Syst. Signal
Process. 7 217–38

16

http://dx.doi.org/10.1109/84.809070
http://dx.doi.org/10.1088/0960-1317/12/6/325
http://dx.doi.org/10.1088/0960-1317/15/9/019
http://dx.doi.org/10.1088/0960-1317/18/2/025028
http://dx.doi.org/10.1006/mssp.1993.1010


J. Micromech. Microeng. 18 (2008) 125018 A Elka and I Bucher

[19] Bucher I, Zimmerman Y, Velger M and Erlich R 2004 Design
and analysis of a multi-DOF micro-mirror for triangular
wave scanning J. Mech. Behav. Mater. 14 369–82

[20] Bucher I 2008 A mechanical Fourier series generator—an
exact solution J. Vibrat. Acoust. at press

[21] Gladwell G M L 1986 Inverse Problems in Vibration
(Dordrecht: Nijhoff)

[22] Parlett B 1980 The Symmetric Eigenvalue Problem
(Englewood Cliffs, NJ: Prentice-Hall)

[23] Timoshenko S P and Goodier J N 1970 Theory of Elasticity
3rd edn (New York: McGraw-Hill)

[24] Basler K and Kollbrunner C F 1969 Torsion in Structures
(New York: Springer)

[25] Madou M J 2002 Fundamentals of Microfabrication: The
Science of Miniaturization (Boca Raton, FL:
CRC Press)

[26] Maluf N 2000 Introduction to Microelectromechanical
Systems Engineering (Boston, MA: Artech House)

[27] Elka A 2007 A synthesis and modeling approach for
micro-electromechanical filters using structural
dynamics PhD Thesis Technion—Israel Institute of
Technology

[28] Meirovitch L 1980 Computational Methods in Structural
Dynamics (Rockville, MD: Sijthoff & Noordhoff)

[29] Ewins D J 1995 Modal Testing: Theory and Practice (New
York: Wiley)

17


	1. Introduction
	2. Spectrum shaping by tailoring a spring--mass series' topology
	3. Simulated electromechanical filter examples
	3.1. Example 1. Notch filter for periodic signals
	3.2. Example 2. High-Q
	3.3. Example 3. High

	4. MEMS filter device with five masses---experiment
	4.1. Fabrication process
	4.2. Experimental set-up
	4.3. Experimental results

	5. Controlling the bandwidth of a pass-band filter
	5.1. Proposed topology for a controlled bandwidth filter
	5.2. Controlling the interval of the frequency bandwidth
	5.3. Enhanced model topology synthesis---possible extension to a lattice system

	6. Conclusion
	References

