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Abstract
This work deals with the problem of controlling the nonlinear dynamics, in
general, and the dynamic pull-in, in particular, of an electrically actuated
microbeam. A single-well softening model recently proposed by Gottlieb
and Champneys [1] is considered, and a control method previously proposed
by the authors is applied. Homoclinic bifurcation, which triggers the safe
basin erosion eventually leading to pull-in, is considered as the undesired
event, and it is shown how appropriate controlling superharmonics added to
a reference harmonic excitation succeed in shifting it towards higher
excitation amplitudes. An optimization problem is formulated, and the
optimal excitation shape is obtained. Extensive numerical simulations
aimed at checking the effectiveness of the control method in shifting the
erosion of the safe basin are reported. They highlight good performances of
the control method beyond theoretical expectations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Microelectromechanical systems, or MEMS, are an emerging
area with applications to a variety of engineering fields
such as aerospace, mechanics, electricity, communications,
bioengineering and sport devices. MEMS are a
new technology which exploits existing microelectronic
infrastructures to create complex machines with micrometre
feature sizes. These machines have many functions, including
sensing and actuation. MEMS are often constituted by
standard structural elements such as (micro)beams and
(micro)plates, and classical theories usually do apply.

Two main aspects seem to have mostly been addressed
in the recent MEMS literature. The first is the mechanical
modelling [2], required to fill the lack of knowledge of these
relatively new systems. Examples of phenomena which have
been specifically considered are various kinds of nonlinearities
[3], such as nonlinear stiffness [4], thermoelastic damping [5],
micro-impacts [6], complex (Cosserat) models for microbeam
[7, 8], atomic forces [9], and so on.

The second is the dynamic behaviour, which is a key
point from the application viewpoint. Several specific issues
have been dealt with, ranging from dynamical reduced-order
models [10, 11–14], to nonlinear dynamics and chaos [15– 17],
which are sometimes investigated by the Melnikov method
[18, 19] and experimentally [20]. Complex dynamics is seen
to be a common outcome for these strongly nonlinear systems,
although much remains to be done in this area.

Among various nonlinear phenomena, the pull-in, i.e., the
collapse of the microbeam on the charged substrate, is the most
important one, and it has been investigated with both statical
(i.e., dc) [10] and dynamical (i.e., ac) [21, 22] applied voltages.
It has been shown that dynamic excitation usually strongly
reduces the static pull-in threshold. While in micro-switches
this is desirable because it improves the performance of the
system, in common MEMS devices, such as micro-resonators,
micro-sensors, etc, this is unwanted because it leads to
failure of the structures, and must be avoided or properly
detected.
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The dynamic pull-in phenomenon entails overcoming
the energy level of the saddle position(s) in between the
rest state and the substrate(s), for which the electric and
elastic force balance in unstable way. It is similar to
the escape from the potential well observed in classical
mechanical oscillators [23, 24], and is related to the
global (homo/heteroclinic) bifurcation of the hilltop saddle(s)
through a known mechanism [23–25]. A global bifurcation
is the event through which the stable manifold of a certain
saddle becomes tangent to the unstable manifold of the same
(homoclinic) or of another (heteroclinic) saddle. This occurs at
a certain critical value pcr of a varying governing parameter p.
For p < pcr (respectively p > pcr) the manifolds are detached,
while for p > pcr (respectively p < pcr) the manifolds
intersect transversally (see [26] for further details).

Before the global bifurcation, the in-well dynamics is safe;
after, the homo/heteroclinic intersections allow (and somehow
promote) penetration of the fractal tongues of the basin(s) of
attraction of the pull-in attractor(s) into the potential well.
These tongues erode the safe basin, so that the extent (in phase
space) of initial conditions leading to pull-in grows, and system
safety and reliability decrease. When the excitation amplitude
further grows, the erosion proceeds up to complete destruction
of the safe basin; this represents the ultimate state, above which
all initial conditions lead to pull-in, and the MEMS fails.

Previous considerations show that below the global
bifurcation, pull-in does not occur, while above it becomes
impending, although reduced safe dynamics can still occur.
Thus, shifting the global bifurcation threshold permits us to
enlarge the region where pull-in is prevented, and represents
a very desiderable event. This is the main practical objective
of this work, which is also aimed at addressing the issue of
controlling MEMS dynamics; this still deserves much work
because it has only been investigated preliminarily [16, 19],
up to the authors’ knowledge. Furthermore, the application of
control of chaos theories [27] seems to be another element of
novelty of this work (see also [28]).

A method for controlling nonlinear dynamics and chaos
previously developed by the authors [23, 29] and based on
shifting the bifurcation threshold by optimally modifying the
excitation shape, i.e., on adding controlling superharmonics
to a reference harmonic excitation, is employed. The method
is not aimed at controlling a specific orbit of the system, as
in classical control techniques, but rather, as a consequence
of the shift of the homoclinic bifurcation, at obtaining an
overall control of the dynamics, in general, and at enlarging
in parameters space the region certainly safe from pull-in, in
particular.

To analytically detect the homoclinic bifurcation, which is
the keypoint for application of control, the classical Melnikov
method is used [1, 18, 19]. This permits feasible computations
and the use of generic results concerning control obtained
elsewhere [23, 29].

Although the fully nonlinear dynamics is described by
partial differential equations (PDEs), to study the main aspects
of the nonlinear dynamics of MEMS, and to apply the
control method, a reduced-order model, described by ordinary
differential equations (ODEs), can be satisfactory, provided
the initial PDEs are sufficiently accurate. This permits feasible
analyses and computations, without losing the main dynamical

aspects. Indeed, a single degree of freedom model is sufficient
for the purposes of this work. In this respect, we refer to
[1], where a model of a thermoelastic microbeam for a MEM
sensor subjected to electrodynamic actuation is proposed.

Gottlieb and Champneys [1] obtained sophisticated two-
field PDEs taking into account nonlinear membrane stiffness
and the thermoelastic field, and focused on two-field single
mode dynamics. The three resulting ODEs are Hamiltonian
plus perturbations due to electrodynamic force, viscoelastic
damping and thermoelastic dissipation. Because of the
electrical force, the Hamiltonian exhibits the (1 − x)−1

singularity typical of MEMS, which entails a single-well
potential surrounded by the homoclinic loop of a hilltop
saddle. The Melnikov method for determining the homoclinic
bifurcation in the presence of perturbations was applied,
and the resulting threshold was used to estimate the pull-in
threshold from below.

The main modification of the present work to the model
of [1] consists in applying a periodic alternate voltage between
the beam and the substrate, V(τ ) = V1 sin(ωτ + ψ1) +∑N

j=2 Vj sin(jωτ + ψj). This is at the base of the control
method, which uses the superharmonics Vj added to the basic
harmonic voltage V1 to control the dynamics. Indeed, it is the
control itself to suggest the optimal choice of these controlling
terms.

It is worth noting that, although we explicitly refer to the
model of Gottlieb and Champneys [1], similar, or identical,
equations have been independently obtained in the literature to
describe the single mode dynamics of various MEMS devices
[10, 21]. All of them share the property of having the charged
substrate only on one side of the microbeam, so that pull-in
can occur only in one direction. MEMS with substrates on
both sides, and thus with two pull-in directions, have also
been studied [12], but the underlying ODEs are different from
those used in this work, so that the results of this work do not
extend immediately to those cases.

The paper is organized as follows. First, the exact
reduced-order model and its unperturbed dynamics are
addressed (section 2), along with the Melnikov analysis which
permits theoretical detection of the homoclinic bifurcation
(section 3). In spite of the fact that the unperturbed homoclinic
loop can be written in implicit form, the Melnikov function
cannot be computed in closed form, and is determined by
numerically computing the appropriate integrals.

Then, the control method is applied (section 4), by stating
the optimization problem for the best excitation shape. It
is the same problem encountered in the analysis of different
mechanical systems, which (i) further confirms the generality
of the control method discussed in [29], and (ii) permits to take
advantage from previous solutions, which are herein extended
to the present case. Among various possible solutions [29],
those with a finite number of added superharmonics are
considered because they are most interesting for applications.
It is shown that with a single controlling superharmonic the
homoclinic bifurcation threshold increases by a frequency-
independent factor of 1.4142 with respect to the reference
case of harmonic excitation, while the theoretical upper bound
for this ratio, corresponding to infinite superharmonics, is 2.

Finally, the results of numerical simulations aimed
at checking the practical performances of control, and
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microbeam

rigid substrate

electrodes

V t( )

Figure 1. A schematic picture of the electrically actuated
microbeam.

in particular how much its effectiveness extends beyond
theoretical predictions, are reported in section 5, and the paper
ends with some conclusions (section 6).

2. Mechanical model, governing equations and
unperturbed dynamics

We consider the nonlinear dynamics of a thermoelastic
rectangular microbeam subjected to an axial load (possibly
modelling residual stresses due to manufacturing processes)
and to a concentrated electrodynamic transverse force applied
at mid-span (the actuation). The beam is fixed at both ends
and is in an ultra-high vacuum environment (figure 1); the
geometric nonlinearity due to the membrane stiffness is taken
into account.

The two nonlinear partial differential equations governing
the problem and permitting us to determine the unknown fields
of transverse displacement and temperature were determined
by Gottlieb and Champneys [1], who are referred to for the
details of the analysis. The main physical change made in this
work with respect to Gottlieb and Champneys’ model stands in
considering a non-harmonic, though still periodic, oscillating
voltage V(τ ) = V1 sin(ωτ + ψ1) +

∑N
j=2 Vj sin(jωτ + ψj),

while they use only harmonic ac, V(τ ) = V1 sin(ωτ). The
more general excitation will appear to be useful in the control
procedure. In any case, it adds to the electrostatic (dc) voltage
V0.

A two-field (x(t), transverse displacement and z(t),
temperature) reduced-order model was also obtained in [1]
by the Galerkin method. The transverse displacement spatial
mode shape is the first resonant bending mode, while the
temperature spatial mode shape is obtained by solving the
homogeneous governing equations with no heat flow across
the boundaries of the beam. The dimensionless equations of
motion for the modal amplitudes read [1]

ẋ = y,

ẏ = γ

[
1 +

∑N
j=1 ηj sin(j�t + �j)

]2

(1 − x)2

− αx − βx3 − µ1y − µ2z,

ż = −νz + σy, (1)

and represent the starting point for the present analysis. Note
that y(t) is the velocity in the transversal direction. The
dimensionless parameters in (1) have the following meaning:

• α is the linear mechanical stiffness, which accounts for
the bending stiffness plus the effect of the axial force. It
is positive below the critical threshold for buckling, and
negative above it.

• β > 0 is the nonlinear mechanical stiffness parameter due
to the membrane effect, which is approximated to the third
order.

-30

50

12-8

6.75

28.93

(no fixed
points)

two fixed
points

α/γ

β/γ Static pull-in

Figure 2. Regions of different behaviour.

• µ1 > 0 is the viscoelastic structural damping.
• µ2 > 0 and σ are the thermoelastic damping measuring the

energy dissipation due to thermal effects, and the coupling
between thermal and mechanical behaviour of the beam,
respectively. They depend on the relaxation strength
�E of the elastic Young’s modulus, on the coefficient of
thermal expansion, and on the equilibrium temperature.

• ν > 0 is the thermal diffusivity.
• γ > 0 is the magnitude of the electrostatic force, which is

proportional to the square of the constant (dc) part V0 of
the input voltage.

• � is the frequency of the periodic electrodynamic force,
i.e., the frequency of the alternate current.

• �j and ηj = Vj /V0 > 0 are the phases and the relative
amplitudes of the jth harmonic of the electrodynamic
force, i.e., of the oscillating (ac) voltage. In [1] only
the case N = 1 is considered.

The gap between the beam and the source of the electric
force (the substrate) is normalized to 1.

The third-order dynamical system (1) is constituted by
a Hamiltonian part (α, β, γ ), plus visco- and thermoelastic
damping (µ1, µ2, σ , ν) and periodic electrodynamic excitation
(�, ηj ,�j ). The associated Hamiltonian H(x, y) and
potential V (x) are

H(x, y) = y2

2
+ V (x), V (x) = α

x2

2
+ β

x4

4
− γ

1 − x
.

(2)

Qualitatively, there are only two different scenarios for (2).
When the electric force is high enough there are no equilibrium
points and the beam collapses onto the substrate, i.e., we
have static pull-in. When γ is small, on the other hand, the
electric and mechanical forces balance with each other and
two equilibrium positions appear, one elliptic centre xc > 0
and one hyperbolic saddle xs > xc > 0 (figure 3(b)). In the
parameters space the boundary between these two regions is
the curve of figure 2, which corresponds to a SN bifurcation.

The dynamics are non-trivial only in the case of two
fixed points. An archetypal potential and the corresponding
phase space are depicted in figure 3 for α = β = 1 and γ =
0.14. These values correspond to a microbeam–substrate gap
equal to the height of the beam [1], and will be used in the
forthcoming numerical simulations.
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-0.2
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0.4
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x th( )

xe=-0.022
xs=0.5687

xc
=0.219

(a) (b)

Figure 3. (a) The potential V (x) and (b) the unperturbed phase space for α = β = 1 and γ = 0.14.

There is a unique potential well with a right (towards the
substrate x = 1) pull-in direction (figure 3(a)), showing that
the system is of softening type. There are in-well oscillations
around the centre xc = 0.219 03 and out-of-well orbits which
are separated by the homoclinic loop xh(t) of the hilltop saddle
xs = 0.568 71 (figure 3(b)). The homoclinic orbit, which is an
even function of the time t, is implicitly defined by

yh = dxh

dt
= ±

√
2[V (xs) − V (x)] →

t = t (x)

= ±
∫ x

xe

dr√
2[V (xs) − V (r)]

, (3)

where xe = xh(0) is the extreme position of the homoclinic
orbit (figure 3) and the unique solution (apart from xs) of
V (x) = V (xs). Unfortunately, the integral in (3) cannot be
expressed in closed form, but it can be computed numerically
in spite of being singular at both ends x = xe(t = 0) and
x = xs(t = ±∞).

Hereinafter, it is assumed that the electrodynamic force is
a small perturbation of the electrostatic one (ηj = εη̂j , ε is a
smallness parameter), and that the viscous structural damping
is small as well (µ1 = εkµ̂1). The relative sizes of these
quantities, given by k, are very important, especially for
practical applications, and various cases can be considered.
In this paper, only the most simple case of comparable
smallnesses is considered, i.e., we assume k = 1. The other
cases are worth but they are out of the scope of the present
work.

It has been shown in [1] that µ2σ ≈ �E [1].
Consequently, as the relaxation strength �E is typically very
small [5], it makes sense to consider two limit configurations
[1]. In the first, it is assumed that µ2 is not small while σ = εσ̂

and ν = εν̂ are small quantities. In this case, the system (1)
can be rewritten in the form

ẋ = y,

ẏ =
{

γ

(1 − x)2
− αx − βx3 − µ2z

}
(4)

+ ε


−µ1y +

2γ

(1 − x)2

N∑
j=1

ηj sin(j�t + �j)


 ,

ż = ε{−νz + σy},

where the hats are omitted to simplify the notation and the ε2

terms are neglected.
In the second, on the other hand, it is assumed that

µ2 = εµ̂2 is small while σ and ν are large. In this case,
the general solution z(t) = z0 e−νt +σ

∫ t

0 y(τ) eν(τ−t) dτ of the
third equation in (1) can be rewritten in the form

z(t) = z0 e−νt +
σ

ν

∫ 0

−νt

y
(
t +

s

ν

)
es ds, (5)

where the change of variable s = ν(τ − t) has been used in the
integral. When ν is large, we have that e−νt ≈ 0, y(t + s/ν) ≈
y(t),

∫ 0
−νt

es ds ≈ 1, so that (5) simplifies to z(t) = (σ/ν)y(t)

(note that it does not vanish because σ and ν have the same
order of magnitude in this case), namely, the temperature can
be condensed. This yields the following second-order system,

ẋ = y,

ẏ = −V ′(x) + εf (x, y, t)=
{

γ

(1 − x)2
− αx − βx3

}

+ ε


−µ̃y +

η̃

(1 − x)2

N∑
j=1

(
ηj

η1

)
sin(j�t + �j)


 , (6)

where again the hats are omitted and the ε2 terms are neglected.
In equation (6) µ̃ = µ1 + (σ/ν)µ2 > 0 is the overall damping,
η̃ = 2γ η1 > 0 is the overall excitation amplitude, while the
parameters ηj/η1 (together with the phases �j ) simply govern
the shape of the excitation, or, in other words, they measure
the superharmonic relative corrections to the basic harmonic
excitation.

We focus on the one-field system (6). The two-field
system (4) can be dealt with through a modified Melnikov
analysis [26].

3. Melnikov analysis

Figure 3(b) clearly shows how in the Hamiltonian case the
homoclinic loop separates the safe in-well oscillations from
dangerous pull-in motions, and thus represents a barrier for
confined motions. When perturbations are added (ε > 0),
stable and unstable manifolds of xs split, and they may or
may not intersect depending on the relative magnitude of
damping µ̃ and excitation η̃. It is known [23, 24] that
when they intersect the barrier is lost, and the tongues of
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the basin of the substrate attractor penetrate the potential well
(see forthcoming figure 9), erode the safe basin until, for a
sufficiently high excitation amplitude, it is totally destroyed.
This corresponds to the structure being pulled into the substrate
for all initial conditions, i.e., to definitive dynamic pull-in.

The complex mechanism eventually leading to failure is
triggered by the homoclinic bifurcation of the hilltop saddle,
which occurs when the stable and unstable manifolds become
tangent. This important critical threshold can be detected by
the Melnikov method [26].

The Melnikov function measuring the first-order (in ε)
distance between perturbed stable and unstable manifolds is
given by

M(t0) =
∫ ∞

−∞
yh(t)f [xh(t), yh(t), t + t0] dt

= −µ̃

∫ ∞

−∞
y2

h(t) dt + η̃

N∑
j=1

(
ηj

η1

)

×
∫ ∞

−∞

yh(t)

[1 − xh(t)]2
sin[j�(t + t0) + �j ] dt

= −2µ̃I1 + 2η̃

N∑
j=1

(
ηj

η1

)
cos(j�t0 + �j)I2(j�)

= 2µ̃I1

{
−1 + η̃

I2(�)

µ̃I1
h(�t0)

}
, (7)

where the following relations and definitions have been used:∫ ∞

−∞
y2

h(t) dt = 2
∫ ∞

0
y2

h(t) dt = 2
∫ ∞

0
yh(t)

dxh

dt
(t) dt

= 2
∫ xs

xe

yh(x) dx = 2I1 > 0,∫ ∞

−∞

yh(t)

[1 − xh(t)]2
sin[ω(t + t0) + �j ] dt

= cos(ωt0 + �j)

∫ ∞

−∞

yh(t)

[1 − xh(t)]2
sin(ωt) dt

+ sin(ωt0 + �j)

∫ ∞

−∞

yh(t)

[1 − xh(t)]2
cos(ωt) dt

= 2 cos(ωt0 + �j)

∫ ∞

0

yh(t)

[1 − xh(t)]2
sin(ωt) dt

= 2 cos(ωt0 + �j)

∫ xs

xe

1

(1 − x)2

× sin

(
ω

∫ x

xe

dr√
2[V (xs) − V (r)]

)
dx

= 2 cos(ωt0 + �j)I2(ω), ω = j�,

h(m) =
N∑

j=1

hj cos(jm + �j), hj = ηj

η1

I2(j�)

I2(�)
. (8)

Remark 1. Note that h1 = 1, h(m) is 2π—periodic and has
zero mean value, and that 2I1 is the area inside the homoclinic
loop in figure 3(b). Note also that the phase �1 is unessential
and can be chosen freely.

The function I2(�), which is central in the previous
formulae, is depicted in figure 4 for various values of the linear
stiffness α. For next purposes, the most important feature is
that it is an oscillating function exponentially converging to
zero for � → ∞.

-0.3

1.4

40

I2( ) α=0.9; 1.0; 1.1

Ω

Ω

Figure 4. The function I2(�) for α = 0.9, 1.0, 1.1;
β = 1; and γ = 0.14.

The stable and unstable manifolds of xs intersect when the
Melnikov function vanishes for some t0, i.e., when h(�t0) =
(µ̃/η̃)(I1/I2(�)). We must distinguish between two cases.

For the values of � for which I2(�) is positive we have
that the previous equation has solution if and only if

η̃ > µ̃
I1

I2(�)

1

M+
, M+ = maxm∈[0,2π ]{h(m)} > 0, (9)

while in the other case the solution exists if and only if

η̃ > µ̃
I1

−I2(�)

1

M− , M− = −minm∈[0,2π ]{h(m)} > 0.

(10)

If we define

M(�) =
{

M+ if I2(�) > 0,

M− if I2(�) < 0,
(11)

we then have that homoclinic bifurcation occurs for

η̃cr(�) = µ̃
I1

|I2(�)|
1

M(�)
= η̃h

cr(�)
1

M(�)
. (12)

When N = 1, we have h(m) = cos(m + �1) so that
M(�) = 1, and thus η̃h

cr(�) has the meaning of critical
threshold for homoclinic bifurcation in the reference case
of harmonic excitation. This curve is depicted in figure 5.
Below η̃h

cr(�) there is no dynamic pull-in, while above it
the erosion of the safe basin proceeds and dynamic pull-in
becomes first impending (practically occurring only for certain
initial conditions) and then, after complete erosion, inevitable,
as it occurs for all initial conditions.

The most important characteristic of η̃h
cr(�), consequence

of the zeros of I2(�), is that it goes to infinity in correspondence
with some ‘anti-resonant’ frequencies. This behaviour is not
common for Melnikov analyses, but it has also been previously
observed, for example, by Yagasaki [30, figure 3] in the
analysis of the hardening Duffing equation with parametric
and external harmonic excitations, and by the authors
[29, figure 4] in the analysis of the single-well potential
with two asymmetric escape directions (Helmholtz–Duffing
equation) under external excitation.

For the case of figure 5 the first four anti-resonances are
�1 = 1.0998, �2 = 2.0421, �3 = 2.9918 and �4 = 3.9387.
If we proceed further, we note that (�i+2 − �i+1)/(�i+1 − �i)
= 1, i � 1, and this (i) suggests that there is an underlying
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Figure 5. The function η̃h
cr(�)/µ̃ for α = β = 1 and γ = 0.14. (a) Large semi-logarithmic plot; (b) zoom for small and medium frequencies.

structure in the zeros of I2(�) and (ii) permits computation of
further critical frequencies.

Remark 2. From a physical point of view, it seems quite
strange, at a first glance, that for a certain frequency the
manifolds do not intersect even for extremely large excitation
amplitudes. It can be conjectured that this is due to the first-
order nature of the accomplished Melnikov analysis, and that
higher order terms should be taken into account around these
critical �s.

When the excitation is no longer harmonic, M(�) �=
1 and the critical threshold varies. For suitable choices
of the excitation shape we are able to reduce M(�), and
the homoclinic bifurcation threshold increases accordingly,
η̃cr > η̃h

cr. Thus, we benefit from the superharmonics added
to the reference harmonic term. This point is theoretically
investigated in section 4, while numerical confirmation will be
given in section 5.

4. Optimal control of homoclinic bifurcation

In this section, a method previously developed in [23, 29] and
aimed at eliminating the homoclinic bifurcation is employed
to control the nonlinear dynamics and the pull-in of the
microbeam.

The idea of the control method is to increase the threshold
η̃cr(�) for homoclinic bifurcation by optimally modifying
the shape of the excitation. To quantitatively measure
the improvement obtainable with respect to the reference
harmonic excitation, the gain is introduced, which is defined
as the ratio between the critical amplitudes of unharmonic and
harmonic excitations,

G = η̃cr(�)

η̃h
cr(�)

= 1

M(�)
, (13)

and depends only on the shape and not on the amplitude of the
excitation.

It is now clear that the optimal excitation is obtained by
solving the following problem:

Maximize G by varying the Fourier coefficients hj and �j,

j = 2, 3, . . . , of h(m). (14)

This mathematical problem of optimization is exactly the
same encountered in the application of the control method to

other mechanical systems, and we refer, for example, to [23;
section 3] for a detailed discussion and for the solutions under
various assumptions. Here we consider only the case of a
finite number of added superharmonics, which is most useful
for applications.

When the excitation frequency � is such that I2(�) <

0, we have M(�) = −minm∈[0,2π ]h(m) and the problem (14)
reduces to

Maximize min
m∈[0,2π ]

{h(m)} by varying hj and �j, j = 2, 3, . . . .

(15)

The solution of this problem for increasing number N of
controlling superharmonics is given by � j = 0 and by the
coefficients hj reported in table 1 [23]. Note that, as expected,
the optimal gain is an increasing function of N. For N→∞ it
tends to 2, i.e., the homoclinic bifurcation threshold doubles,
while quite good theoretical results can be obtained with even
few added superharmonics.

Once the hj are known from table 1, the excitation is given
by

η(t) = η̃

N∑
j=1

(
hj I2(�)

I2(j�)

)
sin(j�t). (16)

When I2(�) > 0, on the other hand, we have M(�) =
maxm∈[0,2π ]h(m) and the problem (14) becomes

Minimize max
m∈[0,2π ]

{h(m)} by varying hj and �j, j = 2, 3, . . . .

(17)

This problem is only seemingly different from (15). In
fact, from maxm∈[0,2π ]{h(m)} = − minm∈[0,2π ]{−h(m)} we
conclude that they are equivalent [29]. The solution of (17) is
simply the solution of (15) with the even coefficients of table 1
taken with the minus sign, and the optimal excitation is still
given by (16).

Previous optimization problems are frequency
independent, so that their solutions and the associated
optimal gains (table 1) do not depend on � [29]. This means
that we are able to obtain � independent relative increments
of the homoclinic bifurcation threshold. Furthermore, table
1 shows that these gains are large even with a single added
superharmonic (41%) and reach a maximum of 100% with
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Table 1. The numerical results of various optimization problems with an increasing finite number of superharmonics.

N GN MN h2 h3 h4 h5 h6 h7 h8 . . .

2 1.4142 0.7071 0.353 553
3 1.6180 0.6180 0.552 756 0.170 789
4 1.7321 0.5773 0.673 525 0.333 274 0.096 175
5 1.8019 0.5550 0.751 654 0.462 136 0.215 156 0.059 632
6 1.8476 0.5412 0.807 624 0.567 084 0.334 898 0.153 043 0.042 422
7 1.8794 0.5321 0.842 528 0.635 867 0.422 667 0.237 873 0.103 775 0.027 323
8 1.9000 0.5263 0.872 790 0.706 011 0.527 198 0.355 109 0.205 035 0.091 669 0.024 474
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∞ 2 0.5 1 1 1 1 1 1 1 1

infinite superharmonics. In the region between η̃cr and η̃h
cr the

control is theoretically effective: it is called ‘saved region’
and is depicted in figure 6 around � ∼= 0.43, corresponding to
the first minimum of η̃h

cr.
Contrary to the optimal gain, the optimal excitation (16)

is no longer � independent, and thus the actual cost of
control (measured by the relative magnitude of the added
superharmonics) varies with �. A critical case occurs, too. In
fact, if the excitation frequency is such that j�, j = 2, 3, . . . ,

N, equals (or is very close to) one of the zeros of I2(�),
corresponding to the anti-resonance frequencies, the amplitude
of the jth superharmonic tends to infinity (or becomes very
large), and the excitation has no more physical meaning. In
such a case, a different optimal solution of the problem (14)
without the jth superharmonic must be looked for. This issue,
however, is out of the scope of the present work, where it is
assumed that j�, j = 2, 3, . . . , N, is far apart from the zeros of
I2(�). Note, however, that if � is close to one of those zeros,
there is no control needed because no homoclinic bifurcation
is actually predicted by the first-order Melnikov theory (see
remark 2).

As an example, we have that for � = 0.7 the optimal
excitation for N = 2 is

η(t) = η̃[sin(�t) + 1.6591sin(2�t)]. (18)

It will be considered in the numerical simulations of the
following section.

5. Numerical simulations

Some numerical simulations aimed at highlighting system
nonlinear dynamics and checking the practical performances
of control are made. Following other studies [23, 24] which
suggest that erosion is more marked close to resonance, we
focus on the neighbourhood of �res = 0.7457 which is the
resonance frequency of xc = 0.219 03. In this range, we
are not very far from the chaotic resonance � ∼= 0.43, and
the bifurcation threshold occurs for an excitation amplitude
still small (see figure 6; for example, η̃h

cr(0.43) = η̃h
crmin =

0.074 85µ̃ while η̃h
cr(0.7) = 0.107 84µ̃), so that its increment

by means of control is highly welcome. In all forthcoming
simulations, we will assume α = β = 1, γ = 0.14 and
µ̃ = 0.01.

5.1. Resonant behaviour with harmonic excitation

The resonant behaviour of (6) with harmonic excitation has the
typical features of softening oscillators. To illustrate this fact,
two relevant bifurcation diagrams, one for varying frequency

0.05

0.2

0.90.1

h

cr( )

cr( )

saved region

Ω

Ω

Ω

µ

µ

η

η

Figure 6. The homoclinic bifurcation threshold for harmonic (η̃h
cr)

and optimal control (η̃cr) excitations and the saved region for the
theoretical gain G = 1.4142(N = 2) and for α = β = 1 and γ =
0.14.

and the other for varying amplitude, are reported in figures 7(a)
and (b), respectively. The former shows the typical bending of
the resonance curve towards lower frequencies, characteristic
of softening oscillators. The latter shows the classical S-
shape of the amplitude-response curves, and highlights the
occurrence of the solely non-resonant oscillation for very small
amplitudes, which is then flanked by the resonant oscillation
originated from a (lower) SN bifurcation. The two attractors
coexist up to disappearance of the non-resonant oscillation
through an (upper) SN bifurcation. The resonant attractor
survives up to the onset of a period doubling cascade eventually
leading to escape from the potential well, i.e., to dynamic
pull-in.

Several bifurcation diagrams like those of figure 7 have
been made, and the overall scenario is summarized in the
behaviour chart of figure 8, where the boundary crisis threshold
at the end of the PD cascade and the homoclinic bifurcation
threshold are reported, too. Figure 8 shares the same
qualitative features of the behaviour chart of other softening
oscillators, like, e.g., the Helmholtz oscillator [23, 31]. In
particular, the V-shaped region of escape (which herein has
the meaning of ultimate dynamic pull-in), whose vertex is
at about � = 0.655, is clearly recognizable, as well as the
(lower right) degenerate cusp bifurcation at � = 0.737 and
η̃ = 0.000 461 where the two SN thresholds collapse.

5.2. Safe basin erosion with harmonic excitation

The erosion of the safe basins, which entails dynamic pull-
in becoming more and more likely, is now discussed [25]
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by considering the value � = 0.7 as representative of the
resonant behaviour illustrated in the previous subsection. In

Figure 9. Safe basins for � = 0.7 and for η̃ = 0.0000 (upper left), 0.0010, 0.0015, 0.0020, 0.0025, 0.0030, 0.0035, 0.0040, 0.0045 (bottom
right). For each picture −0.1 < x < 0.65 and −0.22 < y < 0.22. The safe basin is the union of all grey basins of attraction. The circles are
those used in the definition of the integrity factor.

this section, harmonic excitation is used to elaborate on
the phenomenon, and is to be used later to estimate, by
comparison, the effectiveness of control. In this case, the
critical amplitude for homoclinic bifurcation is η̃h

cr = 0.001 078
(figure 7(b)). We assume the microbeam to vibrate in a
stationary regime, so that safe basins are just classical basins
of attraction. Indeed, they are the union of the basins of all
in-well bounded attractors (figure 9).

The erosion of the safe basins for increasing excitation
amplitude is depicted in figure 9. The basin boundaries in
the first two pictures are regular according to the excitation
amplitude being less than η̃h

cr. In the first one (the static
case) the unique attractor is xc, while in the second one the
resonant oscillations (dark grey) appear (see figure 7(b)). The
amplitude value of the third picture is just above the homoclinic
bifurcation, and accordingly the (white/greys) basin boundary
has a very low degree of fractality. When the amplitude further
increases, the classical mechanism [24] of incursion of fractal
(white) tongues of the out-of-well attractor into the well is
observed. Initially, it proceeds slowly, but a sudden incursion
is noted at about η̃ = 0.0025, likely due to the heteroclinic
connection between the hilltop saddle xs and the saddle x′

s
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Figure 10. Erosion profiles for two different integrity measures,
� = 0.7.

on the inner boundary separating the basins of resonant and
non-resonant attractors. After this event, the erosion rapidly
develops, and pull-in becomes very likely, although there still
survive initial conditions not leading to pull-in.

It is worth noting that only the resonant attractor basin
is eroded, while the non-resonant one (light grey) remains
uneroded, as being protected by the stable manifolds of
x ′

s , up to finally disappearing through SN bifurcation (see
figure 7(b)). This behaviour is certainly welcome from a
practical point of view. However, it also has a drawback,
because when the non-resonant solution disappears, its
residual basin being surrounded by the white one, the system
certainly undergoes dynamic pull-in. This may be very
dangerous in applications, where for a safe use one must be
sure that the response has previously switched to the surviving
resonant solution.

The final part of the basin erosion phenomenon proceeds
fairly slowly up to complete vanishing of in-well solutions.
The final escape corresponding to ultimate pull-in occurs for a
very large excitation amplitude (η̃ = 0.013 38, see figure 7(b))
and is not shown in figure 9, where the largest considered
amplitude already corresponds to a residual and practically
useless safe basin.

A measure of the integrity of the safe basin must be chosen
to quantify the erosion shown in figure 9. This is a very
important issue which is herein addressed by considering two
different measures [25]: the global integrity measure (GIM),
representing the (normalized) area of the safe basin, and the
integrity factor (IF), representing the (normalized) radius of
the largest circle entirely contained in the safe basin, as shown
in figure 9. The former is a natural and easy measure, but it
does not properly take into account the fractal tongues eroding
the safe basin, which are instead better considered by the IF.
In fact, the latter is a measure of the ‘compact’ core of the safe
basin, to be reliably referred to in practical applications.

By plotting the integrity measure as a function of the
increasing excitation amplitude we obtain the erosion profiles
of figure 10. Both start to significantly decrease at about
η̃ = 0.0025, highlighting the likely occurrence of the secondary
event quoted before. But only the IF profile sharply falls down
due to the instantaneous penetration of white tongues from
outside (see figure 9), with the ensuing safety reduction, which
is correctly accounted for by this measure. Figure 10 further
shows that in any case, i.e., even far from the fall, the IF is more
conservative and thus more reliable for practical applications.

Figure 11. Safe basins for � = 0.7, η̃ = 0.0025 and for (a) η2/η1 =
−1.5 (upper left), (b) η2/η1 = 0 (harmonic), (c) η2/η1 = 0.5 and
(d ) η2/η1 = 1.6591 (optimal, bottom right). For each picture
−0.1 < x < 0.65 and −0.22 < y < 0.22.

5.3. Reduction of erosion by control

In this section, the effectiveness of control in shifting erosion
towards higher amplitudes is investigated. First, it is worth
pointing out what can be theoretically expected, and what
cannot. In fact, by noting that the erosion is triggered by
the homoclinic bifurcation and that this is shifted by control,
we can certainly expect some improvements. What cannot be
predicted, on the other hand, is the actual extent of this benefit.
Indeed, the homoclinic bifurcation is not directly involved in
the successive topological events (e.g., the guessed secondary
heteroclinic bifurcation) underlying the erosion, though being
somehow a relevant basic prerequisite. Thus, the aim of this
section is to quantify the practical performances of control,
possibly above the theoretical predictions.

We consider control with a single added superharmonic,
i.e., we consider the excitation (18) and the saved region
of figure 6. More refined control excitations will certainly
provide better results.

We start by studying the effects of the added
superharmonic for fixed parameters. For � = 0.7, η̃ =
0.0025, we report in figure 11 the basins of attraction for
various superharmonic relative amplitudes η2/η1. The case of
harmonic excitation with the associated eroded basin boundary
is also reported for comparison in figure 11(b). The addition of
the superharmonic term is indeed able to significantly reduce
the erosion, as clearly shown in figure 11(c). Then, by
increasing η2/η1 up to the optimal value 1.6591 (figure 11(d )),
the erosion is further reduced. The crucial role of the added
superharmonic is underlined by figure 11(a), which shows the
dramatic effects obtained if the superharmonic is not properly
chosen, in particular if considering a wrong sign corresponding
to a half period phase shift.

The good practical performance of control clearly visible
in figure 11 is confirmed and summarized by the profiles of
figure 12(a) reporting the normalized IF and GIM, divided by
the value of the harmonic excitation measure, as functions of
the superharmonic relative amplitude η2/η1. Thus, the curves
of figure 12(a) are indeed practical gains.

The resemblance of the numerical profiles with the
theoretical curve G = G(h2), reported in figure 12(b), is
noticeable, from both a qualitative and a quantitative point
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Figure 13. Erosion profiles for harmonic (η2/η1 = 0), control (η2/η1 = 0.5) and optimal control (η2/η1 = 1.6591) excitations for � = 0.7.

of view. In fact, the maximum of all curves is attained for
the same value of the independent variables (remember that,
by (8), h2 = (η2/η1)(I2(2�)/I2(�)) = 0.213η2/η1), proving
that the theoretical optimal superharmonic provides optimal
practical results. We can then conclude that theoretical
predictions are well verified in practice, somehow beyond
expectations, because the controlled homoclinic bifurcation
only triggers the erosion and is not directly involved in the
subsequent basin evolution, so that some major discrepancies
would not actually be surprising.

While sharing these overall features, the three curves of
figure 12 have some specific differences basically due to the
fact that the instantaneous penetration of fractal tongues has
a dramatic effect on safe basins (see figures 9 and 11). This
phenomenon is well described by the IF and poorly described
by the GIM, as already stated, and is responsible for sharpness
of the IF profile versus dullness of the GIM profile (as in
figure 10), and for the difference between theoretical and
practical optimal gains, which stands as the major result. In
particular, with the IF, the optimal gain is about 2.22, which
is significantly larger than the theoretical value 1.41, thus
showing how practical performances are somehow better than
theoretical expectations; instead, with the GIM, the optimal
gain is significantly smaller, being about 1.08. Yet, it is still
larger than 1, thus showing how this measure is also capable of
highlighting the benefits of control, though to a reduced extent.

These results suggest that, again, the IF is a better measure of
integrity in practical applications.

An important conclusion which can be drawn from
figures 11 and 12 is that quite good results can be obtained
with a superharmonic even smaller than the optimal one, at
least for that specific case. This is due to the fact that,
e.g., for η2/η1 = 0.5 the theoretical and practical gains are
still larger than 1, though not being optimal. This may be
useful in applications, because the optimal excitation, which
involves a superharmonic larger than the basic harmonic, may
be too much expensive, and one may prefer cheaper excitations
providing still satisfactory, although not optimal, results.

The erosion profiles obtained around the critical amplitude
η̃ = 0.0025 (see figure 10) with harmonic (η2/η1 = 0),
control (η2/η1 = 0.5), and optimal control (η2/η1 = 1.6591)
excitations are compared in figure 13. The first point
highlighted by the overall shift of the profiles is that the
previous observations on control effectiveness, made for a
fixed amplitude value, do extend and generalize.

Figure 13 shows that, according to theoretical predictions,
when η2 increases, the profile is initially moved towards higher
excitation amplitudes. The forward shift continues up to the
optimal value η2/η1 = 1.6591, above which further increasing
η2 would entail backward shift of the profile towards that of
the harmonic excitation (see figure 12).

Both the considered measures are able to highlight the
improvement of control. In particular, the horizontal shifts of
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the profiles are comparable, while the vertical shift for a fixed
amplitude is more marked with the IF, due to the sharpness
of its profile, thus showing once again to be a better integrity
measure.

Figure 13(a) shows that there is a well-defined interval
of amplitudes where the erosion reduction achieved through
control is very large, the safe basin being almost maintained
with optimal control and more than halved with harmonic
excitation. In particular, the saved interval is approximately
0.0025 < η̃ < 0.0027 with optimal control, while reducing
to 0.0025 < η̃ < 0.0026 with non-optimal control. This
agrees with the theoretical predictions which suggest that the
latter still provides good results (the gain being larger than 1),
although worst than those given by the optimal excitation.

What the control is not able to do is change the pattern
of the erosion profiles. For example, those of figure 13(a)
remain as sharp as the original one, and do not become dull,
which would be desirable from a practical viewpoint because it
would entail a non-instantaneous fall towards unsafe regimes.
However, they do not become sharper, which would be very
dangerous. This conclusion, however, is strictly related to
the considered value of the excitation frequency, and cannot
be generalized. In fact, for the Helmholtz oscillator, which
has similar features for being mechanically comparable, the
erosion becomes sharper for frequencies below the vertex of
the V-shaped region of escape (see figures 13(a) and (b) of
[23]), and this phenomenon is likely to occur also for the
present oscillator.

6. Conclusion

A control method aimed at shifting towards high excitation
amplitudes the homoclinic bifurcation of a nonlinear
thermoelastic electrodynamically actuated microbeam has
been applied. The practical goal of the method is that of
shifthing towards higher excitation amplitudes the dynamic
pull-in representing the failure phenomenon of several MEMS
devices.

The optimization problem for determining the optimal
controlling superharmonics to be added to a basic harmonic
excitation has been stated and solved, by taking advantage
from the fact that it is the same encountered in the application
of the control method to different mechanical systems. As a
matter of fact, this further confirms the generality of the control
method investigated in [29].

Extensive numerical simulations have been performed
with the aim of studying the system nonlinear dynamics and
checking the practical performances of control.

First, the system response with harmonic excitation in the
neighbourhood of classical resonance has been illustrated by
means of bifurcation diagrams and a behaviour chart looking
like the corresponding one of analogous (e.g., Helmholtz)
mechanical oscillators.

Then, attention has been focused on the safe basin erosion
governing the system dynamical integrity, and being thus
related to its practical use. In fact, reduction of dynamical
integrity up to final dynamic pull-in entails a definite loss of
system reliability.

Two integrity measures, GIM and IF, have been
considered and compared with each other making reference

to the erosion profiles for increasing excitation amplitudes,
and it has been shown that the former fails in highlighting the
instantaneous penetration of fractal tongues from outside.

Then, the overall ability of control in shifting the
erosion profiles towards higher excitation amplitudes has been
highlighted. This represents the major practical benefit, and a
very important and somehow unexpected result, which extends
the control effectiveness well beyond the limits corresponding
to theoretical gain. It is also worth mentioning that, in this
work, only one controlling superharmonic has been employed,
and better results can certainly be obtained if using more
superharmonics.

Other system configurations (boundary conditions,
position of the electric force, etc), MEMS devices, and/or
numerical values of the parameters can easily be considered.
However, this is in order mostly to highlight possibly different
features of system response, and is thus left for future works.

A less trivial modification would occur in the case of
two symmetrically placed substrates. In this case, the unique
potential well is laterally bounded by two symmetrically
placed saddles, and is surrounded by two heteroclinic orbits
instead of a single homoclinic one. The control method can
be applied following the lines illustrated in [29] for the case of
the softening Duffing oscillator, which is qualitatively similar
to the two-substrate system.
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