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Abstract
In this paper, the photocatalytic performance and reusability of N-doped MoS2 nanoflowers with
the specific surface area of 114.2 m2 g−1 was evaluated by discoloring of RhB under visible light
irradiation. Results indicated that the 20 mg fabricated catalyst could completely degrade 50 ml
of 30 mg l−1 RhB in 70 min with excellent recycling and structural stability. The optimized
N-doped MoS2 nanoflowers showed a reaction rate constant (k) as high as 0.06928 min−1 which
was 26.4 times that of bare MoS2 nanosheets (k = 0.00262). In addition, it was about seven
times that of P25 (k = 0.01) (Hou et al 2015 Sci. Rep. 5 15228). The obtained outstanding
photocatalytic performance of N-doped MoS2 nanoflowers provides potential applications in
water pollution treatment, as well as other related fields.

S Online supplementary data available from stacks.iop.org/NANO/27/225403/mmedia
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1. Introduction

Persistent organic pollutants in underground water have
already become serious problems that influence the survival
the environment of human beings and other creatures. Efflu-
ents from the textile industries are important sources of water
pollution, because dyes in wastewater undergo chemical as
well as biological changes, consume dissolved oxygen,
destroy aquatic life and endanger human health. It is neces-
sary to disintegrate textile effluents into the receiving-water
standard [2–7]. Hence, in recent years, numerous investiga-
tions have been devoted to developing products to address the
challenges of water pollution, such as TiO2 [8], ZnO [9],

N-TiO2@g-C3N4 [10], N-doped ZnO@g-C3N4 [11], TiO2

hollow fibers [1], etc.
As a representative two-dimensional (2D) layered trans-

ition metal sulfide [12–16], molybdenum disulfide (MoS2)
nanosheets possess many superior photoelectric character-
istics, such as excellent electrocatalytic performance [17],
higher absorbance in the near-infrared region [18], high
chemical stability [19], strong absorption in the visible fre-
quencies [20], large carrier mobility [21], and direct bandgap
[22]. These excellent characteristics of MoS2 drive photo-
catalytic researchers to combine it with other semiconductors,
such as MoS2@BiVO4 hetero-nanoflowers [23], MoS2@g-
C3N4 heterostructures (5 mg sample, 50 ml 5 mg l−1 RhB,
20 min) [24], nano-MoS2@TiO2 composites [25], and
MoS2@CdS branch-like heterostructures (30 mg sample,
50 ml 10 mg l−1 RhB, 50 min) [26]. These composites have
been reported to be used to degrade organic pollution owing
to their highly photocatalytic efficiency, offering potential
applications in future industrial decontamination. However,
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complicated processes and/or poisonous components during
synthesis make them insufficient [27, 28].

An alternative is to search for novel highly efficient
photocatalysts with simple phase structure and synthesis
process. In this paper, we report the excellent photocatalytic
activities of N-doped MoS2 nanoflowers in degrading the
organic dye of RhB, synthesized by a simple sol–gel method.
The fabricated N-doped MoS2 nanoflowers have a high sur-
face area of 114.2 m2 g−1, and possess a high adsorption
property of small concentrations of RhB (see supplementary
data S1 (stacks.iop.org/NANO/27/225403/mmedia)), as
well as excellent photocatalytic activity in degrading
30 mg l−1 RhB. The outstanding photocatalytic activities of
as-prepared flower-like N-doped MoS2 samples could also be
extended to degrade other organic dyes and heavy metal
pollutants, providing potential applications in future water
pollution treatment.

2. Experiment

N-doped MoS2 nanoflowers were synthesized by an opti-
mized sol–gel method as previously reported [29]. In brief,
2 g thiourea was mixed with 0.5 g MoCl5 by dropwise addi-
tion of alcohol. Then the brown gel-like precursor powders
were formed after drying. Next, the precursor powders were
transferred into a quartz boat and heated in a tube furnace for
2 h under 0.1 L min−1 argon flow at 550 °C. To get its bulk
form, we changed the annealing temperature to 1050 °C.

To compare, pure MoS2 nanosheets were prepared by the
hydrothermal method, where 1 mmol ammonium molybdate
tetrahydrate and 30 mmol thiourea were dissolved in 40 ml
deionized water under magnetic stirring. Then, the solution
was transferred to a 50 ml reaction still and maintained at
200 °C for 20 h before being cooled down in air.

α-Fe2O3@N-doped MoS2 heterostructures were synthe-
sized by the hydrothermal method, where 90 mg N-doped
MoS2 was dissolved in 32 ml deionized water. Then, 0.202 g
Fe(NO3)3 · 9H2O and 0.3 g CO(NH2)2 were dissolved in the
above solution under magnetic stirring. After that, 0.006 g
sodium dodecyl benzenesulphonate (SDBS) was added into
the above solution and continuously stirred in a water bath of
60 °C for 30 min. Finally, the solution was transferred to a
40 ml reactor and maintained at 90 °C for 12 h before being
cooled down in air.

The crystal structure of the samples was measured by
x-ray diffractometry (XRD) in a Philips/X, Pert PRO dif-
fractometer with Cu Ka radiation. A scanning electron
microscope (SEM, Hitachi S-4800) and high resolution
transmission electron microscope (HRTEM, TecnaiTM G2
F30, FEI, USA) were used to observe the morphology and
structure of the samples. In addition, x-ray photoelectron
spectroscopy (XPS, VG Scientific ESCALAB-210) was
employed to study the chemical nature of N, Mo, and S with
Al Ka x-ray. The Brunauer–Emmett–Teller (BET) surface
area and pore width were measured using a Micrometrics
ASAP 2020 V403. Meanwhile, Raman spectra were

measured at room temperature using a Jobin-Yvon HR 800
spectrometer.

The photocatalytic activity of the samples was measured
by degradation of RhB with a 175W halogen lamp. 50 ml
RhB (30 mg l−1) was placed in a glass. Meanwhile, 20 mg
photocatalyst was added under constant stirring. Photocalytic
activity of the samples was evaluated under visible light
irradiation. At certain time intervals, 4 ml solution was taken
out, where the photocatalyst was removed by a centrifugal
machine. Then, the filtrates were analyzed by recording var-
iations of the absorption band maximum (553 nm) in the UV–
vis spectra of RhB. In addition, the recyclability of the sam-
ples was also investigated.

3. Results and discussion

3.1. Characterization

As shown in figure 1(a), the obtained products and the used
sample (N-doped MoS2 nanoflowers were used for photo-
catalytic activity testing) were measured by XRD. Results
indicate that all the diffraction peaks can be indexed as hex-
agonal MoS2. For the used sample, the characteristic peaks
were similar to primitive products, indicating our sample has
a stable structure in the photocatalytic process, which is also
confirmed by the further Raman study as illustrated in
figure 1(b). As can be seen, the two distinct peaks located
around 378 cm−1 and 402 cm−1 correspond to the MoS2
characteristic signature, associated with in-plane E1

2g (the in-
plane displacement of Mo and S atoms) and out-of-plane A1g

(out-of-plane symmetric displacements of S atoms along the
c-axis) Raman mode, respectively [12, 30]. SEM and TEM
measurements were employed to study the morphology of the
products. As shown in figure 1(c), the fabricated sample has a
flower-like structure and each of the components shows
nanosheet features. As illustrated in figures 1(d) and (e), the
TEM images also show the nanoflower-structure of the pro-
duct, which is consist with the SEM results. Meanwhile, the
results also reveal the typical structure of the nanosheets,
containing 3–5 layers from the curly edges. Energy-dispersive
x-ray spectroscopy (EDS) mapping was carried out to verify
the element distribution. It clearly shows the presence of
elements Mo, S, and N in the product, and the N element was
evenly distributed in the sample.

The XPS spectrum was employed to examine the surface
electronic state and composition of the flower-like N-doped
MoS2. The whole XPS spectrum further indicates the sample
contains N, S, and Mo elements, as shown in figure 2(a), in
agreement with the EDS mapping results. In addition,
figure 2(b) shows a high-resolution spectrum in the binding
energy range of 390–405 eV. Generally, the peak at 396.2 eV
corresponds to Mo 3p3/2 and there is a hump on the side of
the Mo 3p3/2 peak which originates from the N-Mo bond
[29]. The crossover peak at 399.2 eV corresponds to N 1S
peak from the Mo-N bond [31, 32]. Besides, another peak at
402.1 eV is considered to be the N 1s peak attributed to the
NO absorbed on the surface of the MoS2 [33]. These results
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indicate the S sites were replaced by N on MoS2. In addition,
BET nitrogen adsorption analysis was performed to further
study the specific surface area of the sample. As shown in
figure 2(c), when the relative pressure P/P0 > 0.05, the
amount of absorbed nitrogen increases rapidly with the
increase of the relative pressure, indicating the process of
adsorption of multi-layers [34]. Results indicate that the BET
surface of the N-doping MoS2 nanoflowers is 114.2 m2 g−1

and the size of the pore width ranges from 1.7 nm to 30 nm, as
shown in figure 2(d). These results indicate the fabricated
sample has a large surface area and pore size distribution.

To investigate the optical properties of the fabricated
N-doped MoS2 nanoflowers, UV–vis spectra were considered
and the results are presented in figure 3(a) (the result of the
MoS2 nanosheets is also presented to compare). It can be seen
from figure 3(a) that the samples exhibit an enhanced strong
light absorption in the wavelength range of 200–800 nm. As
shown in figure 3(b), the band gap of the samples is estimated
from the plot of (ahv)n versus hv by extrapolating the straight
line to the X axis intercept. Results indicate that N-doped
MoS2 nanoflowers (2.08 eV) have a narrow band gap in
comparison with MoS2 nanosheets (2.17 eV). The UV–vis
diffuse reflectance spectra (DRS) results indicate that more
photogenerated charges are generated when flower-like
N-doped MoS2 is excited under visible light irradiation,
which enhances the photocatalytic performance [35, 36].

3.2. Photocatalytic activity

Photocatalytic performances of the N-doped MoS2 nano-
flowers were evaluated by degrading RhB aqueous solution at
room temperature under visible light irradiation. As shown in
figure 4(a), the concentration of the RhB decreases as the test
time increases for all the photocatalysts. As can be clearly
seen, the degrading rate of RhB with the photocatalysts fol-
lows the order of: N-doped MoS2 nanoflower > without light
(flower-like N-doping MoS2 heterostructure in a dark
condition) > MoS2 nanosheets > bulk N-doped MoS2. This
result indicates that the prepared N-doped MoS2 nanoflowers
have better photocatalytic properties than others. Meanwhile,
in the dark condition, the degradation efficiency of RhB for
the N-doped MoS2 nanoflowers is only 12%, indicating that
light plays a key role in degradation of RhB. Plots of the
absorbance versus wavelength for degradation of RhB for
N-doped MoS2 nanoflowers at various irradiation times are
shown in figure 4(b). It can be seen that the intensity of the
absorption peaks continuously decreases without any change
in position during the degradation reactions. To further
examine the role of the surface area in photocatalytic reac-
tions, plots of ln(C/C0) versus irradiation time are displayed
in figure 4(c) (the initial concentration of the RhB suspension
was measured and used as the initial concentration C0; in
addition, C is the actual concentration of RhB at the indicated
reaction time). It can be seen that both the curves are linear,

Figure 1. (a) XRD patterns and (b) Raman spectra of fresh fabricated and used sample of N-doped MoS2 nanoflowers. (c) SEM, (d) TEM, (e)
HRTEM image, and (f) EDS mapping of N-doped MoS2 nanoflowers.
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indicating photodegradation of the RhB goes through a
pseudo-first-order kinetic reaction [35]. Besides, the potoca-
talytic activity of N-doped MoS2 nanoflowers under visible
light irradiation is higher than that of MoS2 nanosheets
because N-doped MoS2 nanoflowers have a large surface area
and large pore size distribution (see supplementary data S2
(stacks.iop.org/NANO/27/225403/mmedia)) [37]. N dop-
ing could also extend the spectral response to visible light and
greatly improve the utilization of visible light [38, 39]. The
stability of photocatalysts is a crucial factor for their assess-
ment and practical applications. Figure 4(d) shows the recy-
cling reaction towards degradation of RhB with the catalyst of
N-doped MoS2 nanoflowers, where the sample was separated
by a centrifuge after every 70 min of visible light irradiation.
Results indicate the photocatalytic performance of the
N-doped MoS2 nanoflowers do not decrease obviously after
four consecutive experiments, revealing its excellent recy-
cling and structural stability.

3.3. Discussion of the photocatalytic mechanism of N-doped
MoS2 nanoflowers

In order to give further evidence to support the photocatalytic
mechanism, the transient photocurrent responses of an
N-doped MoS2 nanoflowers electrode were recorded for

several on-off cycles of irradiation. Figure 5(a) shows the
photocurrent-time testing curves of the N-doped MoS2
nanoflowers. Results indicate our photocatalyst has the
highest photocurrent compared to graphene/C3N4 composites
[40], g-C3N4/Zn2GeO4 heterojunctions [41], g-C3N4/NiS
hybrid [42], and grapheme oxide/graphitic-C3N4 nanosheet
hybrid [43]. Generally, the value of the photocurrent indir-
ectly reflects the ability to generate and transfer the photo-
excited charge carrier under irradiation [44]. The higher the
photocurrent is, the higher the e+−h+ separation efficiency
[40, 45]. To further study the photocatalytic mechanism of the
sample, radical trapping experiments were proposed. In
radical trapping experiments, ammonium oxalate (AO, 5 ml),
1, 4-benzoquinone (BQ, 5 ml) and tertiary butyl alcohol
(TBA, 5 ml) were used as scavengers of the photo-induced
holes (h+), superoxide radicals ( )⋅ -O ,2 and hydroxyl radicals
(·OH), respectively [35, 46–48]. Displayed in figure 5(b) is
the degradation efficiency of RhB from 100% to 5% in the
presence of TBA compared to that with no radical scavengers
under visible light irradiation. Meanwhile, the degradation
efficiencies of RhB reach 15% and 40% in the presence of
AO and BQ, respectively. Thus, it is reasonable to conclude
that h+, ⋅ -O2 , and ·OH as oxidation species were indeed
photogenerated on catalyst surfaces and are responsible for
the photocatalytic degradation. In general, the more positive

Figure 2. (a) XPS spectrum, (b) high-resolution XPS spectrum, (c) nitrogen adsorption–desorption isotherm curve, and (d) pore size
distribution curve of N-doped MoS2 nanoflowers.
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Figure 3. (a) UV–vis DRS and (b) estimated band-gap energy of N-doped MoS2 nanoflowers and MoS2 nanosheets.

Figure 4. (a) Photocatalytic degradation of RhB by different photocatalysts under visible light irradiation. (b) UV–vis spectroscopic changes
of the RhB aqueous solution in the presence of N-doped MoS2 nanoflowers. (c) Plot of ln(C0/C) with irradiation time for N-doped MoS2
nanoflowers and MoS2 nanosheets. (d) Reusability experiment for degradation of RhB by N-doped MoS2 nanoflowers under visible light
irradiation.
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the valence band potential, the stronger the oxidation ability
of photogenerated holes, which is favored for better photo-
catalytic activity [49]. So it can be concluded that direct
oxidation by holes is crucial because the potential of photo-
generated holes is so positive that it can effectively oxidize
dyes directly. In addition, hydroxyl radicals are more
important than other radicals for dye degradation due to
transformation of the parts of ⋅ -O2 into ·OH radicals.

Based on above results, N-doped MoS2 nanoflowers with
excellent photocatalytic performance might be explained by
the following factors. First of all, N-doped MoS2 nanoflowers
have larger BET areas (figures 2(c) and (d)), which can not
only improve surface adsorption capacity of the reactants, but
also expose more active sites, guaranteeing higher activity in
degrading RhB [50, 51]. In addition, as shown in figure 3,
N-doped MoS2 nanoflowers have a narrow band gap com-
pared with MoS2 nanosheets, which can extend the spectral
response to visible light and greatly improve the utilization of
visible light [38, 39], guaranteeing higher activity in
degrading RhB. Moreover, N doping extends the visible light
absorption edge and electrons sre excited from the N impurity
level to the conduction band, guaranteeing higher activity in
degrading RhB [52]. Meanwhile, electrons in the CB of
N-doped MoS2 flowers are good reductants that could effi-
ciently change the O2 absorbed onto the catalyst surface into
various reactive species ( ⋅-O ,2 HO2, H2O2), subsequently
leading to the formation of ·OH and oxidation of RhB into
CO2, H2O, etc. Based on the above results and discussion, we
propose a possible mechanism (figure 6) to explain the
degradation of RhB by N-doped MoS2 nanoflowers under
visible light irradiation. The radical production could be
expressed by reactions as follows:

‐ ‐ ( ) ( )+  + -hvN doped MoS N doped MoS h e 12 2 /

( )+  ⋅- -O e O 22 2

( )+  ⋅ ++ +H O h OH H 32

( )⋅ + + - + -O 2H e H O 42 2 2

( )+  ⋅ +- -H O e OH OH 52 2

( )+  ⋅+ -h OH OH 6

( )⋅ ⋅ +  +- +OH, O , h RhB CO H O 72 2 2

Although as-prepared N-doped MoS2 nanoflowers show
obvious photocatalysis, it is not so easy to recycle. Recently,
magnetically separable semiconductor materials have attrac-
ted increasing attention because of their efficient recycling in
water treatment and organic dye pollution. Hence, numerous
investigations have been devoted to developing magnetic
semiconductor materials such as ZnFe2O4@C3N4 [35],
Fe3O4@TiO2 [53], BiOCl@SrFe12O19 [54], etc. Here, α-
Fe2O3@N-doped MoS2 nanoflower heterostructures with
strong magnetic properties were employed to magnetically
separate our catalysts from the solution of RhB. As shown in
figure 7, the degradation rate of RhB is almost the same for
the catalysts of α-Fe2O3@N-doped MoS2 heterostructures

Figure 5. (a) Transient photocurrent responses and (b) radical trapping experiments of flower-like N-doped MoS2 nanoflowers.

Figure 6. Illustration of RhB degradation by N-doped MoS2
nanoflowers.
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and N-doped MoS2 nanoflowers, but with magnetic separa-
tion in 10 s (shown in the upper right of figure 7). These
results indicate that α-Fe2O3@N-doped MoS2 heterostructure
can not only serve as highly efficient photocatalysts, but also
easily separate organic pollutants.

4. Conclusion

In summary, we investigated RhB removal with N-doped
MoS2 nanoflowers and α-Fe2O3@N-doped MoS2 hetero-
structures. Results indicated that the as-prepared N-doped
MoS2 nanoflowers showed excellent photocatalytic activities
and durability on the elimination of the organic pollutants
under visible light irradiation. We also demonstrated that the
α-Fe2O3@N-doped MoS2 heterostructures can be easily
separated from organic pollutants for recycling owing to their
magnetic properties. This work helps us to deeply understand
the uncommon photophysical processes necessary for the
design of highly efficient photocatalysts for environmental
applications in the future.
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