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Abstract
Frequency-modulated atomic force microscopy (FM-AFM; also called
non-contact atomic force microscopy) is the prevailing operation mode in
(sub-)atomic resolution vacuum applications. A major obstacle that
prohibits a wider application range is the low frame capture rate. The speed
of FM-AFM is limited by the low bandwidth of the automatic gain control
(AGC) and frequency demodulation loops. In this work we describe a novel
algorithm that can be used to overcome these weaknesses. We analysed the
settling times of the proposed loops and that of the complete system, and we
found that an approximately 70-fold improvement can be achieved over the
existing real and virtual atomic force microscopes. We show that
proportional–integral–differential controllers perform better in the
frequency demodulation loop than conventional proportional–integral
controllers. We demonstrate that the signal to noise ratio of the proposed
system is 5.7 × 10−5, which agrees with that of the conventional systems;
thus, the new algorithm would improve the performance of FM-AFMs
without compromising the resolution.

1. Introduction

Frequency modulation (FM) mode (also called non-contact
mode) is a promising operation mode of the atomic
force microscope (AFM) in ultrahigh vacuum environment,
reportedly achieving real atomic resolution imaging of various
substrates on a routine basis [1–4]. Besides topography, FM
mode also yields the map of the energy dissipated by the
tip–sample interaction. FM mode has also been used for
measuring the strength of covalent bonds, manipulating atoms
and recording high resolution force–distance curves [5–7].

FM mode image calculations and force–distance curve
simulations, mandatory for the correct interpretation of the
experimental data, have been performed on various pretences.

Most simulations are based on the static approximation [8, 9],
where the tip oscillates at a steady state without frequency
or dissipation transients, and automatic gain control (AGC)
and frequency demodulation loops work ideally. This
approximation is legitimate only at low scan speeds when
the probe has enough time to reach an equilibrium frequency
and dissipation, and the transients in the AGC and frequency
demodulation loops have also been decayed.

Recently, virtual FM-AFM machines were introduced to
overcome the limitations of the static approximation [10–12].
The virtual machine treats the tip and the control loops as
dynamical systems and handles the transients realistically.
Moreover, the structure and the system parameters of the
virtual machine were determined from a precise experimental
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evaluation of a real AFM [10]. Consequently, a virtual
FM-AFM can be used to analyse the image formation and
stability as well as the dynamics of the AGC and frequency
demodulation loops. Virtual FM-AFM simulations provided
the explanation for the spatial shift and contrast inversion
between topographical and dissipation images and also for the
extreme sensitivity of the dissipation to a tip change [12].

Recent image calculations have shown that the slow
response of the AGC and frequency demodulation loops causes
significant image distortion at 100 nm s−1 scan speed [10].
The response time of the control loops is limited by the
low pass filters which are used within the loops. For
example, the automatic gain control loop bandwidth is around
0.5 kHz while the frequency demodulator loop bandwidth is
limited to ∼1 kHz. Assuming 270 kHz cantilever resonance
frequency, one can calculate that during the amplitude and
frequency measurements several hundred oscillations are
averaged. However, even a single oscillation contains the
requested information. Here, we present a complete virtual
FM-AFM which uses fast automatic gain control and frequency
demodulation loops. The algorithm is based on the Fourier
method, which allows the determination of the amplitude and
phase from a single oscillation. Accordingly, the settling time
of the system can be shortened by more than an order of
magnitude. The proposed algorithm is suitable not only for
virtual image calculations, but also could be realized on a real
AFM.

2. Description of the virtual NC-AFM machine

In FM mode, the cantilever oscillation is regulated to provide
a constant amplitude at its resonance frequency by applying
positive feedback through a phase shifter and an automatic
gain control amplifier. The phase shifter is needed to eliminate
the resonance frequency shift caused by the feedback loop.
It has been shown that the ideal AGC loop should have π/2
phase shift at all frequencies [13]. Forces acting on the tip
attached to the lower part of the cantilever cause modulation
of the oscillator output (e.g. frequency), which is determined
by a frequency demodulator. To measure the topography, a
third control loop called the distance regulation loop is applied,
which keeps the frequency shift constant by actuating the base
of the cantilever. The block diagram of the system is shown in
figure 1.

2.1. Cantilever motion and the AGC loop

In our model, the dynamics of the tip is governed by
equation (1):

m∗x ′′(t) = −kd(t) −
(

m∗ω0

Q
− G(t)

)
d ′(t) − Fts(x, x ′).

(1)
Here, x denotes the position of the tip apex relative to

the sample surface while d represents the cantilever deflection.
The following cantilever parameters are included in the model:
spring constant (k), undamped angular resonance frequency
(ω0) and quality factor (Q). The phase shifter and the variable
gain amplifier are modelled by the G(t)d ′(t) term. Here, G(t)
stands for the loop gain and is also used as dissipation signal.

Figure 1. Block diagram of the FM-AFM. The vibration amplitude
of the cantilever is maintained constant by the AGC loop. The
frequency shift (� f ) is continuously monitored by the frequency
demodulation loop. The distance regulation loop holds the
frequency shift at a predefined constant value by actuating the base
position of the cantilever. The overall response speed of the system
is limited since the AGC and frequency demodulation loops average
over several hundred oscillations.

The Q-control technique uses a similar feedback loop having a
constant gain to modify the effective quality factor of the probe
in amplitude modulated mode [13, 14]. In FM mode, the gain
is varied in order to maintain constant vibration amplitude.
Assuming a sinusoidal deflection signal, which is legitimate for
typical operating conditions [15], the phase difference between
d(t) and d ′(t) is exactly π/2; therefore, d ′(t) can be used as the
output of the phase shifter. Although this representation of the
phase shifter is simple and accurate, several papers represent
the phase shifter by a time delayed term [5, 16, 17]. However,
the time delayed representation results in varying phase shift
as the frequency changes. Accordingly, the eigenfrequency of
the system is slightly modulated by the AGC loop, leading to
artifacts in the topography [13]. A further disadvantage of the
time delayed representation is that the accurate solution of the
time delayed model requires significantly shorter integration
steps, which prolongs the calculation time [18].

2.2. Amplitude and frequency demodulation algorithm

To determine the amplitude and phase from a single oscillation
the Fourier method can be used. The integration should be
performed for exactly one (or integer number of) oscillation(s).
However, the oscillation frequency may change in frequency
modulated mode, so the integration time should be varied with
the actual frequency as depicted in figure 2. To determine the
amplitude (A(t)) and phase difference (�φ(t)), equations (2c)
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Figure 2. Block diagram of the proposed AGC and frequency
demodulation loops. Amplitude and phase measured from one
oscillation using the Fourier method. The calculated amplitude
(A(t)) is sent to a PID controller, which controls the gain of the
AGC loop. The phase difference (�φ) between the cantilever
deflection and the local oscillator (LO) signals is also maintained
constant by a PID controller which regulates the LO frequency
(ω(t)). To perform the amplitude and phase difference measurement
for exactly one period, the frequency and phase (u(t)) of the LO
serve as input of the Fourier method.

and (2d) are used, respectively:

Asin(t) = ω(t)

π

∫ 2π
ω(t)

0
d(t − τ) sin(u(t − τ)) dτ (2a)

Acos(t) = ω(t)

π

∫ 2π
ω(t)

0
d(t − τ) cos(u(t − τ)) dτ (2b)

A(t) = [A2
sin(t) + A2

cos(t)]
1/2 (2c)

�φ(t) = arctan
(

Acos(t)

Asin(t)

)
. (2d)

The calculated amplitude is fed into a proportional–
integral–differential (PID) controller, which is implemented
as follows (equation (3)):

wi+1 = wi −P(vi −v0)− I
M∑

j=0

(vi− j −v0)−D(vi −vi−1). (3)

Here, wi , wi+1 and vi , vi+1 stand for the output and input values
in the i th and (i +1)th time steps, while v0 would be the desired
value. The constants P , I and D are the proportional, integral
and differential gains, respectively. Finally, M denotes the
length of the array which is used for summation.

Frequency demodulation is based on the phase locked
loop concept. The phase difference between the deflection
and the local oscillator’s signal (�φ(t)) is calculated using
equation (2d) and is sent to the PID controller (equation (3))
which regulates the frequency of the local oscillator (ω(t)).
The local oscillator frequency is used to calculate the
integration time to be used in the next time step. The phase of
the local oscillator u(t) is the integral of the local oscillator’s
frequency (equation (4)):

u(t) = u0 +
∫ t

0
ω(t) dt. (4)

Figure 3. AGC loop performance. The desired amplitude was set to
60 nm and decreased to 50 nm between 1000 and 1100 oscillations
while it was increased to 70 nm between 1200 and 1300 oscillations.
The settling time of the AGC loop is ∼40 oscillations. In this
simulation, we used a free cantilever whose quality factor was
5 × 104.

The virtual FM-AFM solves the equation of motion of
the probe (equation (1)) using a fourth order Runge–Kutta
algorithm. The cantilever deflection value was stored in a
first-in–last-out array. Next, the amplitude (A(t)) and phase
difference (�φ(t)) were calculated using equations (2c) and
(2d). Typically, 5000 data points were used, which represented
one period. The calculated amplitude and phase differences
were passed to the PID controllers (equation (3)), and the
gain (G(t)) and local oscillator frequency (ω(t)) were updated.
The phase of the local oscillator (u(t)) was determined using
equation (4), and the first-in–last-out array was resized in order
to perform the integration in the next time step for exactly one
period. Finally, the new base position of the cantilever was
calculated from the local oscillator frequency using the PID
algorithm (equation (3)).

3. Results and discussion

First, we tested the AGC loop performance. In this test the
desired amplitude was modulated in steps as can be seen
in figure 3. The desired amplitude was 60 nm, which was
decreased to 50 nm between 1000 and 1100 oscillations and
increased to 70 nm between 1200 and 1300 oscillations. The
settling time of the amplitude signal was ∼40 oscillations,
which is very small if we take into account that the quality
factor was 5 × 104. Since this test was performed for a
free cantilever, that is, the surface forces were neglected, the
settling time without amplitude regulation had been ∼5 × 104

oscillations. We did not observe any significant differences
between the cases when the amplitude increased or decreased,
a result which indicates that the loop gain changes its sign, that
is, it jumps from positive feedback to negative.

Next, we tested the response of the frequency
demodulation loop (figure 4). Here, we applied a sinusoidal
signal to the input of the loop and changed the frequency.
The relative frequency was changed between 0.999 and 1.001,
a range of normal FM operation. The settling time of the
frequency demodulation loop was ∼20 oscillations, which is
slightly better than that of the AGC loop.

The settling time of the frequency demodulation strongly
depends on the type and proper setting of the controller.
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Figure 4. Performance of the frequency demodulation loop and
noise of the amplitude signal. We applied a sin(2π f ) signal to the
input of the frequency demodulation loop and varied f between
0.999 and 1.001. The frequency signal (——) and the amplitude
signal (· · · · · ·) are plotted. Deviation of the amplitude signal from
unity originates from the resizing of the integration array and the
integration time slightly differs from the periodic time of the actual
frequency. In the present calculation, the integration array contained
5000 elements and the relative RMS noise of the amplitude signal
was 5.7 × 10−5.

We experienced that fast settling time was impossible to
achieve using a commonly applied PI controller, but it was
quite easy with a PID controller, which indicates that the
differential gain has a strong influence on the settling time. To
show the importance of the differential gain, let us consider
that there is a constant frequency (ωin) at the input of the
frequency demodulation loop while the frequency of the local
oscillator is ω(t). It is easy to see that the rate of the
phase difference is equal to the difference between the two
frequencies (equation (5)):

(�φ)′(t) = ω(t) − ωin. (5)

When substituting the phase difference as input and the
local oscillator frequency as output into the PID algorithm
(equation (3)) we get the following expression:

ωi+1 − ωi = −P(�φi − �φ0) − I
M∑

j=0

(�φ i− j − �φ0)

− D(�φi − �φi−1). (6)

Here, �φ0 is the desired phase difference which is set
by the user. Hence, we can assume that the desired phase
difference is zero without loss of generality. Moreover, if
we assume infinitely short time steps then we can write time
derivatives instead of the differences. Substituting equation
(5) into (6) we get

(�φ)′′(t) = −P(�φ)(t)− I
∫

(�φ)(t)dt − D(�φ)′(t). (7)

Equation (7) is identical with the equation of motion of a
damped oscillator, provided that the integral term is neglected
(I = 0). In this case, the differential gain plays the same
role as the damping. Hence, the best system performance
can be achieved in the aperiodic case. The importance of the
differential gain is demonstrated in figures 5(a)–(c). Here, we

Figure 5. Importance of the differential gain. We applied the same
signal to the frequency demodulation loop as in figure 4 and varied
the differential gain among values 0.25 (figure 5(a)), 0.17
(figure 5(b)) and 0.1 (figure 5(c)). The proportional and integral
gains were not altered. The proportional gain was 10−5 while the
integral gain was set to zero.

can observe that a decrease of the differential gain results in
more oscillations before reaching the equilibrium state.

Unfortunately, the aperiodic case cannot be achieved since
�φ calculated by the algorithm is averaged for one cycle,
therefore equation (5) does not stand. This is even more
pronounced in real AFMs, where several hundred oscillations
are averaged, therefore the phase signal is not the time
derivative of the frequency difference, but rather an integral
of it; therefore, the integral gain becomes crucial in the phase
locked loop control instead of the differential gain.

Noise of the amplitude measurement can be seen in
figure 4. Amplitude noise originates from the frequency
changes, since as the frequency changes the length of
integration time has to be changed, too. However, the
integration time cannot be modified at will since the deflection
values are available only at those time points where they were
calculated. To minimize this error, we chose 5000 points
per period, which allowed a satisfactorily accurate choice of
integration time. The relative root-mean-square noise of the
amplitude was 5.7 × 10−5. Alternatively, the noise can be
reduced by application of a window function [19].

Finally, we tested the settling time of the whole system.
In this test the base position of the cantilever was modulated
by a 0.5 nm square signal. To compare our virtual AFM to
existing real and virtual machines we used the same parameters
as in [10]. Consequently, the resonance frequency of the probe
was 270 kHz while the quality factor and cantilever spring
constant were 4.5 × 104 and 30 N m−1, respectively. Results
are depicted in figure 6.
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Figure 6. Response time of the complete system. Here we used the
same data as in [10]. The response time of our system is about 0.1
ms while existing real and virtual AFMs’ response time is 7 ms.

The settling time of our virtual AFM is about 0.1 ms,
which is 70 times faster than that of the other machine (7 ms).
The significantly shorter response time is a result of the fast
amplitude and phase measurement as well as the appropriately
tuned controller.

The Fourier method is not the only procedure to determine
the amplitude from a single oscillation. Amplitude can be
measured just by two peak detectors which record the extremal
values of the signal [20, 21]. However, this method is strongly
affected by the noise, since only two data points are used.
In the case of the Fourier method many more data points are
used, leading to significantly lower noise. Similarly, the phase
difference between two sinusoidal signals can be measured
from a single oscillation, but this method has much worse
signal to noise ratio than the Fourier method [22].

We emphasize that the proposed algorithm can be used
not only for virtual FM-AFM calculations, but also for
implementation in real systems, which in turn could open new
fields for fast FM-AFM imaging.

4. Conclusion

In this work, we proposed a novel algorithm for the AGC and
frequency demodulation loops of FM-AFM. By analysing the
settling times of the loops and that of the complete system, we
demonstrated that an approximately 70-fold improvement can
be achieved in comparison to the settling time of existing real
and virtual FM-AFMs. We demonstrated that proportional–
integral–differential controllers perform better in the frequency
demodulation loop than conventional proportional–integral
controllers. A detailed analysis shows that the noise inherent
in the algorithm would fall into the same range as the
noise of the existing virtual and real machines. This fact

promises improved performance without compromising the
resolution. The concepts discussed here are valid for, and can
be implemented in, a real FM-AFM, leading to new avenues
for FM-AFM imaging.
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