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1. Introduction

Rolling element bearings are widely applied in rotating 
machinery and play an important role in modern manufac-
turing industries. The failure of rolling element bearings results 
in the deterioration of machine performance; it is thus neces-
sary to accurately detect faults in the bearings [1, 2]. Vibration 
signal analysis is the most commonly used approach due to 
its easy measurement and high correlation with structural 
dynamics [3–6]. However, there are two challenging issues in 
vibration signal analysis: the non-stationary collected signals 
and signatures usually mingled with heavy noise caused by 
coupled machine components and the working environment 
[7, 8].

For the past few years, a range of methods have been devel-
oped to analyze the measured non-stationary vibration signals 
in the fields of fault diagnosis. For example, wavelet transform 

(WT) becomes a powerful tool for feature extraction because 
of its advantage of multi-resolution analysis [9, 10]. Yan [10] 
presented a review of the recent developments and applica-
tions of WT in the fields of fault diagnosis of rotary machines. 
Actually, similarity between the wavelet basis function and 
the defect-related signal characteristics plays a decisive role 
for successful detection. Thus, wavelet basis function should 
be appropriately selected in the WT. Nevertheless, it is some-
times not practical for a specific application. Some adaptive 
signal decomposition techniques emerge as the time requires, 
for example, empirical mode decomposition (EMD) pioneered 
by Huang in [11]. Subsequently, EMD technique finds wide  
applications in the fault diagnosis of rotating machines  
[12–14], due to its good intrinsic locally adaptive property in 
processing non-stationary signals. However, EMD still has 
some drawbacks, such as mode mixing and end effects. Rilling 
et al [15, 16] first completely probed into these issues of EMD. 
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Chen and Wang [17] presented a new analytical mode decom-
position theorem based on the Hilbert transform which can 
address a number of issues associated with EMD. Ensemble 
empirical mode decomposition (EEMD), an extended version 
of EMD, has been developed to overcome the mode mixing of 
EMD in [18]. However, in order to reduce the errors caused 
by added white noise in EEMD, the algorithm of EMD should 
be conducted many times, which inevitably results in a large 
amount of computation burden [19]. The empirical wavelets 
transform (EWT) is proposed as a new adaptive data analysis 
method in [20], which could also partially address the limita-
tions (sensitivity to noise and sampling) of EMD [21]. But 
EWT relies on robust preprocessing for peak detection, and 
the constructed frequency bands are still slightly strict.

Variational mode decomposition (VMD) has been lately 
proposed by Dragomiretskiy and Zosso [21]. Unlike the 
EMD, VMD is a non-recursive signal processing method with 
a pretty firm theoretical foundation. Meanwhile, its perfor-
mances of no stationary signal analysis have been thoroughly 
studied and compared with other adaptive signal processing 
techniques. For example, the equivalent filter bank property of 
the VMD has been investigated in [22], and the results show 
that VMD can be considered as a wavelet packet decompo-
sition or a generalized short-time Fourier transform with a 
varying window width. It is also demonstrated that VMD 
is more powerful in tone-separation and noise robustness 
in comparison with EMD [23]. In addition, feature vectors 
extracted by VMD are better than those achieved by EWT, 
which is much more suitable for the support vector machine 
based classifications [24]. Due to the advantages of VMD, it 
has been successfully utilized for identifying rubbing faults 
[25], instantaneous detection of voiced/non-voiced regions 
in speech signals [23] as well as trends analysis of financial 
markets [26], etc. However, VMD is still not appropriate for 
analysis of a vibration signal with strong background noise 
[21]. The presence of strong noise in the measured vibra-
tion signal is unavoidable. It is thus necessary to carry out 
denoising preprocessing of the raw signals prior to the VMD 
analysis.

In practice, in order to extract a true signal in noise, the most 
frequently used methods are based on filters. Unlike traditional 
low-pass filter denoising, total variation denoising (TVD) is 
actually defined based on an optimization problem. TVD was 
initially proposed by Rudin and was applied to remove noise 
in images [27]. Since then, TVD has been widely researched 
and extensively adopted in one-dimensional (1D) signal pro-
cessing [28–30] due to its advantages in preserving the sharp 
edges of the given signals. Since the output of the TVD is 
obtained by minimizing a particular cost function, TVD has 
been further developed with the majorization–minimization 
algorithm (TV-MM) [31]. It has been demonstrated that it 
can take little time for TV–MM to achieve a good de-noising 
result [32]. Nevertheless, it is also worth noting that the regu-
larization parameter λ used in TV-MM could seriously affect 
its denoising performance.

Consequently, a hybrid approach based on TV-MM and 
VMD techniques for bearing fault diagnosis is proposed in 
this work. The weighted kurtosis index is also first proposed 

to determine an appropriate λ used in TV-MM. The rest of 
this paper is organized as follows: TV-MM and VMD are 
briefly introduced in section 2. The weighted kurtosis index is 
proposed to select parameter λ in section 3, where its perfor-
mances in denoising are also compared with the morphological 
filter technique through simulated bearing vibration signals. 
In section  4, the effectiveness of the proposed approach is 
further verified using the practical bearing vibration signals. 
Conclusions are drawn in section 5.

2. Background

2.1. A brief introduction of VMD

VMD can non-recursively decompose a multi-component 
input signal into a discrete set of quasi-orthogonal band-lim-
ited intrinsic mode functions (IMFs) (BLIMFs) [21], which 
are in accordance with the new definition of IMF described 
in [33]. Each mode  uk  is almost compact around a matching 
center frequency ωk, and its bandwidth is assessed by means 
of H1 Gaussian smoothness.

The process of VMD can be considered as a constrained 
variational problem, while the formulation of the constrained 
variational problem is written [21]:
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The solution to equation  (1) can be easily achieved via 
an unstrained optimization problem using the augmented 
Lagrangian method [21]
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An alternating direction method of multipliers is adopted to 
solve equation (2). The estimated modes uk and the corresp-
onding updated center frequency in the frequency domain can 
be written as follows:
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where α is the balancing parameter of the data-fidelity con-
straint. More specifically, the process of VMD can be sum-
marized as follows:
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 (1) Initialize mode { }uk
1 , central frequency {ωk

1}, Lagrangian 
multiplier λ1 and iterations n.

 (2) Update uk according to equations (2) and (3)
 (3) For all ⩾ω 0, update λk using

( ) ← ( ) ( ) ( )
⎛

⎝
⎜

⎞

⎠
⎟∑λ ω λ ω τ ω ω+ −+ +�� � �f u

n n

k

n1 1

 (4) ε is denoted as the accuracy for convergence. The itera-
tion of the algorithm does not stop until convergence, i.e.

/∑ − <ε+� � �u u u
k

k
n

k
n

k
n1

2

2

2
2

More details of the VMD algorithm can be found in [21]. 
In addition, initialization and input parameters (balancing 
parameter α and number of modes k) are both key para meters 
of VMD. Compared with uniformly spaced distribution, 
VMD can get much more reliable and meaningful results with 
zero initial for the detecting transient signatures, according 
to the equivalent filter structure of VMD given in [22, 25]. 
Meanwhile, a small value of α parameter will be used for the 
purpose of detecting impacts [22]. Thus, α is set to 2500, and 
the number of mode k is set to 4 in this paper. Lagrangian mul-
tipliers can strictly enforce constraints and it will be shut-off 
when its update parameter τ is  0 [21]. Therefore, an reason-
able update parameter should be considered in a Lagrangian 
multiplier. However, it is very difficult to explicitly determine  
the update parameter τ in theory. It has been demonstrated in the  
following simulations and experimental investigations that 
the update parameter τ  =  0.3 is reasonable. Thus, the update 
parameter used in the Lagrangian multiplier τ is set to 0.3, 
which can ensure the fidelity of the signal decomposition, 
especially in the presence of Gaussian noise. Although VMD 
has some robustness to noise, Lagrangian multipliers are not 
useful for recovering modes any more when the given signal 
contains stronger random noises [21]. Therefore, a proper de-
noising method prior to VMD is necessary for bearing fault 
diagnosis.

2.2. Majoriation–minization algorithm based TV denoising

Considering the presence of strong noise in the raw vibration 
signal, total variation de-noising based on the MM algorithm 
is introduced. The total variation de-noising method can be 
considered as a numerical optimization algorithm involving a 
quadratic data fidelity term and a convex regularization term 
[31, 32]. Given the 1D signal  ( )x n  ( ⩽ ⩽ )−n N0 1 , the total 
variation of signal ( )x n  is defined as:
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−

−

x Dx x n x nTV : 1
n

N

1
1

1

 (5)

in which Dx represents the first order differential, ⋅ p ( ⩾ )p 1  
is the �p norm. Assuming that signal ( )x n  is contaminated by 
additive white Gaussian noise  ( )w n , i.e.

( ) ( ) ( )= +y n x n w n

the estimates of the signal ( )x n  using TV de-noising can be 
written below,

( ) λ= − +F x y x Dx2
2

1 (6)

where −y x 2
2 is referred to as the data fidelity term and ⩾λ 0 

is a regularization parameter. That is to say, the aim is to find the 
signal x that minimizes the objective function with respect to

( )∈ =x R x F x, arg minN

x
 (7)
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As is well known, the MM algorithm is an effective method 
in solving optimization problems that are difficult to solve 
directly. Although the MM algorithm needs to address a linear 
system at each iteration, its rate of convergence is faster than 
that of the ‘iterative clipping’ algorithm [32]. For more dis-
cussions of this algorithm, interested readers can refer to [31]. 
As a result, the optimized objective function given in equa-
tion (7) can be formulated as [32],

( )⎜ ⎟
⎛
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= − ++

−

X y D DX DD Dy
1

diagk
T

k
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 (8)

The TV de-noising algorithm can be achieved based on 
equation (8). However, parameter λ tends to have great influ-
ences on the performance of the TV-MM denoising in prac-
tical applications. Thus, a feasible and effective selection 
of the parameter method for TV-MM should be explored. 
A novel parameter selection method is developed for the 
TV-MM denoising in the following section.

3. The proposed hybrid fault diagnosis approach

3.1. Parameter selection of TV-MM

The parameter λ is important in TV-MM, which may greatly 
affect its denoising performance. As can be found in equa-
tion  (6), λ controls the weight of the second term that indi-
cates the fluctuation. Obviously, as λ is infinitely close to zero, 
the term of the total variation ceases to be a penalty function, 
namely, the signal obtained by this denoising algorithm is the 
same as the original signal. On the contrary, as λ approaches to 
infinity, the total variation is dominant. Meanwhile, the objec-
tive function will be very small. Nevertheless, the fidelity will 
be very poor, which leads to the deviation of the de-noised 
signal from the original signal x. As a result, the denoising 
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performance will be very poor in this case. The influences of 
the parameter λ on the signal to noise ratio (SNR) are illus-
trated in figure 1. As can be seen in figure 1, a large value 
of λ will excessively remove noise as well as fine signatures, 
which results in a large kurtosis of the output signal. On the 
contrary, a small value of λ used in the algorithm will not 
effectively remove noise.

With regards to the selection of parameter λ, an approach 
has been described in [34] based on the Stein unbiased risk 
estimator (SURE). However, the noise variance σ2 is required 
for the SURE, while errors may be caused by the estimation of 

the noise variance. In addition, λ σ= 3  is a usually used and 
verified experimentally in [31, 35]. In this work, a weighted 
kurtosis index approach is proposed to select a suitable λ. The 
weighted kurtosis index (KC_I ) is achieved by the kurtosis 
index (K_I ) and correlation coefficient index (C_I ), as repre-
sented in equation (11). As is well known, the kurtosis of the 
bearing vibration signal is a very important indicator, and its 
maximization is often adopted in fault diagnosis. Whereas it 
is not always appropriate to simply use kurtosis maximiza-
tion as a signal denoising indicator. The reason is that fea-
tures embedded in a given signal may be sometimes removed 
to some extent, if we only consider the kurtosis maximiza-
tion criterion. Correlation coefficients, as a supplement, can 
ensure a certain similarity between the original signal and 
the denoised signal. Therefore, the proposed method can 
still ensure fidelity of the denoised signal. The regularization 
parameter λ is set to ⩾λ 0 which controls the smoothness of 
the signal. It can be seen in figure  1 that SNR is close to a 
constant value when   ⩾λ 0.6 is satisfied. As a result, [0, 1] is 
selected as a region in order to get a more reasonable para-
meter λ.The process of the parameter λ selection is described 
as follows: First, the range of parameter λ is set to [0, 1]. Then, 
the maximum KC_I of the denoised signal will be searched in 
this region. Thus, the parameter λ value and the corresponding 
maximum KC_I are achieved. Finally, the value of parameter 
λ can be considered as an optimal parameter.
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where r is an adjustable positive real number and is applied to 
add fidelity of the denoised signal. In this paper, r is set to 2 
based on the results of the experiment.

3.2. TV-MM denoising combined with VMD

When the parameter λ used in the TV-MM algorithm is deter-
mined, a hybrid approach is developed to detect bearing fault 
based on the TV-MM and VMD. The proposed method for 
bearing fault diagnosis is schematically shown in figure 2.

Figure 1. The influence of parameter λ on the signal to noise ratio.

Figure 2. The flow chart of the proposed method.

Figure 3. Simulated vibration signal ( )s t  without noise.
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3.3. Validations and comparisons

Compared with total variation de-noising, the morphological 
morphology filter (MMF) has been initially used in image pro-
cessing and has attracted lots of attention due to its little com-
putation burden [36, 37]. To further evaluate the performance 
of the TV-MM method, it is compared with MMF through 
simulated signals in this section. A simulated signal of rolling 
bearing failure is written as follows:

( ) ( ) ( ) ( ) ( )∑ τ= − − + = +
=

∞

s t A h t kT n t x t n t
k

k k
0

 (12)

( )π= +A A f t1 sin 2k 0 r (13)

( ) ( )π= −h t f te sin 2Ct
n (14)

where ( )x t  is the original periodical impulsive signal, and ( )n t  
is Gaussian white noise. The fault characteristic frequency 

/=f T10 , random fluctuation of T due to slippage τk, initial 
amplitude of the impulse A0, rotational frequency fr, decay 
factor C and resonant frequency fn have been set to 80 Hz, 0, 
0.3, 20 Hz, 700 and 3 kHz, respectively. In this paper, sam-
pling frequency fs is set to12 kHz, and the data length is 2048.

The simulated signal ( )s t  without Gaussian white noise 
is shown in figure 3. The performance of the two denoising 
methods are evaluated based on SNR and the root mean 
square error (RMSE), which are defined below:
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in which ( ) ( )= …s i i N1, 2,  is the original periodical signal, 
while ( ) ( )= …s i i N1, 2,  is the purified signal.

It can be seen in figure 4 that the SNR and RMSE are better 
when parameter λ is selected based on the proposed weighted 
kurtosis index, rather than using the universal value (λ σ= 3 ).  
Figure  4 also indicates that the TV-MM algorithm is much 
more effective than the MMF algorithm. In what follows, 
the SNR of a noisy signal with 1.5 dB is used to show its 
denoised waveforms. The results of the two methods are 
shown in figure 5. It can be seen that the TV-MM algorithm 
can eliminate noise and preserve impulsive characteris-
tics as much as possible, but several features of the original 
signal are removed when MMF is adopted. Results indicate 
that the TV-MM algorithm outperforms MMF through the 
compariso ns. Thus, TV-MM will be used as a preprocessing 
technique prior to VMD.

VMD is applied to decompose the denoised signal with 
TV-MM and MMF techniques, respectively. The decomposed 
four BLIMFs are shown in figure 6. VMD has a good ability 
to detect impacts hidden in a signal [22]. As is illustrated in 
figure  6, impulsive components have been well extracted. 
Meanwhile, the results indicate that figure 6(b) is better than 

Figure 4. SNR and RMSE of the de-noised signal with TV-MM and MMF.

Figure 5. The time domain waveform of de-noising results obtained 
using two de-noising algorithms. (a) Original vibration signal,  
(b) the filtered signal with MMF, (c) the filtered signal with TV-MM.
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figure 6(a), which demonstrates that the proposed hybrid tech-
nique is effective in detecting periodical impulsive signatures. 
Except for the first low-frequency BLIMF1 components, the 
Hilbert envelope spectra of the BLMF2–BLMF4 components 
are all shown in figure 7. Although both methods can extract 
the fault characteristic frequency, it is obvious that TV-MM 
combined with VMD can achieve a better performance than 
MMF. Its effectiveness will be further investigated using prac-
tical bearing vibration signals.

4. Experimental evaluations

In this section, two kinds of bearing (outer race defect and 
inner race defect) signals acquired on an MFS-Magnum test-
rig are adopted to verify the effectiveness of the proposed 
method. The test-rig is illustrated in figure 8. Type ER-12K 
bearings are used in the experiments, whose specifications 
are provided in table 1. Parameters relating to the fault sig-
nature are listed in table  2, in which the theoretical values 

Figure 6. BLIMFs of the de-noised signal using VMD (a) denoising with MMF (b) denoising with TV-MM.

Figure 7. Envelopes of the BLIMF2, BLIMF3 and BLIMF4.

Figure 8. Machinery fault simulator (MFS)-magnum experimental platform.
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of fault characteristic frequency are calculated via equa-
tions (17) and (18).
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r
d

d
 (17)

⎛
⎝
⎜

⎞
⎠
⎟θ= ∗ ∗ + ∗

N
f

B

P
BPFI

2
1 cosb

r
d

d
 (18)

where BPFO denotes the ball passing frequency of the outer 
race, BPFI is the ball passing frequency of the inner race, Nb is 
the number of balls, fr is the rotational frequency, Bd is the ball 
diameter, Pd is the pitch diameter, and θ is the contact angle. 
Vibration data were collected using a VibraQuest data acqui-
sition system with an accelerometer (sensitivity 98 mV g−1) 
fixed near the bearing bases.

4.1. Bearing outer race fault detection

The raw vibration signal of the bearing with an outer race 
defect is shown in figure 9. As is well known, the vibration 
signal should present the impulsive features due to the pres-
ence of a defect in the rolling bearing. However, weak signa-
tures in the time domain are often contaminated because of 
the existing strong ambient noises.

The purified signal using TV-MM is shown in figure 10. 
Compared with the original signal, noises are successfully 

removed in figure 10, and impulsive features are well retained. 
In addition, characteristic frequencies are concentrated in the 
low frequency band.

The VMD method is then applied to the purified signal, and 
the decomposed results are shown in figure 11. The envelope 
spectra of the BLIMF2–BLIMF4 are shown in figure 12. As is 
illustrated in figure 12, the rotating frequency fr and the outer 
race fault characteristic frequency BPFO is clearly revealed. 

Table 1. Specifications of the bearing.

Inside diameter (mm) Outside diameter (mm) Pitch diameter (mm)
Number of rolling 
elements (mm) Ball diameter (mm)

25.4 52 33.4772 8 7.9375

Table 2. Parameters related to fault.

Defect location
Rotational 
speed (r min−1)

Sampling  
frequency fs (kHz)

Rotation  
frequency fr (Hz)

Fault characteristic 
frequency (Hz)

Outer race 1790 12.8 29.83 90.96
Inner race 1792 25.6 29.87 147.84

Figure 9. Vibration signal of bearing with an outer race fault  
(a) time domain waveform, (b) fast Fourier transform (FFT) spectrum.

 

Figure 10. Result of TV-MM denoising (a) time-domain waveform, 
(b) its FFT spectrum.

Figure 11. The decomposed BLIMFs of the purified signal using 
VMD.
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Moreover, the purified signal using MMF is also decomposed 
with VMD. The achieved Hilbert envelope spectra of the 
BLIMF2–BLIMF4 are shown in figure 13. It can be seen that 
the detected characteristic frequencies are not as good as those 
given in figure 12.

4.2. Detection of bearing inner race fault

In the case of the bearing inner race defect, the vibra-
tion signal is an amplitude modulated waveform due to 
the rotating of the inner race. Therefore, the side-band is 
expected at two frequencies, i.e. ± fBPFI r. The original 
vibration signal and the purified signal using TV-MM are 
presented in figures 14(a) and (b), respectively. The enve-
lope spectrum of BLIMF4 is shown in figure  15(a), which 
contains the most abundant fault information among the four 
BLIMFs. In figure  15(a), it can be seen that BPFI, 2BPFI 
and 3BPFI along with the side bands (147.84  ±  29.87 Hz,  
295.68  ±  29.87 Hz, 443.52  ±  29.87 Hz, 591.36 Hz  +  29.87 Hz)  
are all prominent. It reveals that there exists an inner race fault 

in the bearing. On the contrary, as is shown in figure 15(b), 
the envelope spectrum of BLIMF4 achieved by VMD and 
MMF can only indicate part of the signatures. In addition, 
it is also demonstrated that parameter λ selection technique 
based on the proposed weighted kurtosis index is appropriate 
for TV-MM denoising.

5. Conclusions

In this paper, the weighted kurtosis index is introduced into 
TV-MM de-noising, which can adaptively select an appro-
priate regularization parameter during the iterations. The 
de-noising results are better when the adaptive selection 
of λ is used in TV-MM, compared with the other general 
choice of λ. Moreover, a hybrid method which combines 
TV-MM and VMD is proposed to the bearing fault detec-
tion. VMD is applied to extract impulsive signatures of 
the purified signals via TV-MM denoising. The proposed 
hybrid approach is evaluated by simulated signals and 
real bearing vibration signals. A series of experimental 
tests corresponding to different bearing health conditions 
have demonstrated the superior capability of the proposed 
technique to the related classical bearing fault detection 
methods, especially in the aspect of denoising and non-
stationary feature extraction.
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Figure 12. The envelope spectra of the BLIMF2–BLIMF4 (the 
purified signal with TV-MM).

Figure 13. The envelope spectra of the latter three BLIMFs (the 
purified signal with MMF).

Figure 14. Vibration signal of bearing with an inner race fault  
(a) the raw signal, (b) the purified signal with TV-MM.
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