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1.  Introduction

Particle image velocimetry (PIV) is a well-established mea-
surement technique used extensively to resolve planar velocity 
fields in a variety of flow environments. Due to PIV being 
an image-based technique, the measurements obtained have 
been traditionally limited to two dimensions. Consequently, 
traditional PIV is not capable of capturing the full three-
dimensional (3D), three-component (3C) velocity field instan-
taneously, which is important for quantifying the topology 

and extent of flow structures which pervade most turbulent 
flows. Moreover, turbulence is inherently 3D in nature, and 
a full description requires a measurement of the 3D velocity 
field and derivative quantities such as the stress tensor and 
vorticity vector.

1.1.  Current 3D PIV techniques

These limitations have led to a number of efforts to develop 
3D, 3C PIV-based measurement techniques. Advances such as 
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Abstract
A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) 
technique based on volume illumination and light field imaging with a single plenoptic camera 
is described. A plenoptic camera uses a densely packed microlens array mounted near a high 
resolution image sensor to sample the spatial and angular distribution of light collected by the 
camera. The multiplicative algebraic reconstruction technique (MART) computed tomography 
algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a 
cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed 
particle volumes. This work provides an introduction to the basic concepts of light field 
imaging with a plenoptic camera and describes the unique implementation of MART in the 
context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic 
camera using geometric optics are used to generate synthetic plenoptic particle images, which 
are subsequently used to estimate the quality of particle volume reconstructions at various 
particle number densities. 3D reconstructions using this method produce reconstructed 
particles that are elongated by a factor of approximately 4 along the optical axis of the camera. 
A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic 
PIV to produce a 3D/3C vector field, where it was found that lateral displacements could 
be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the 
depth direction over a × ×300 200 200 voxel volume. The feasibility of the technique is 
demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel 
interline CCD camera and a ×289 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C 
measurements were performed in the wake of a low Reynolds number circular cylinder and 
compared with measurements made using a conventional 2D/2C PIV system. Overall, single 
camera plenoptic PIV is shown to be a viable 3D/3C velocimetry technique.
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stereoscopic PIV (Arroyo and Greated [1], Willert [2]) extend 
traditional PIV to allow 3C measurements within a 2D plane, 
and dual plane stereoscopic PIV (Kähler and Kompenhans 
[3]) applies this technique to two planes which allows the 
derivative quantities of each dimension and each compo-
nent to be calculated. Since these techniques only acquire 3C 
data within a single plane or two planes, these techniques are 
more appropriately labeled 2D/3C. An extension of the afore-
mentioned techniques is scanning PIV (Brücker [4]), where 
high-repetition-rate lasers and camera systems are used to 
illuminate and capture images at multiple planes throughout 
the measurement volume. The advantage of these systems are 
the intuitive setup and data processing steps; however, even 
with kHz-rate lasers the volume scanning time is often large 
compared to the characteristic timescales of the flow under 
consideration and prevents the technique from being applied 
to most practical flows. The use of MHz-rate laser systems 
(Lynch and Thurow [5], Thurow et al [6]) has the potential to 
improve scan rates; however, the complexity and expense of 
the laser and camera systems are currently too prohibitive for 
broad application.

Four other techniques that have recently received attention 
for their ability to perform 3D/3C measurements are defocusing 
PIV (Willert and Gharib [2], Pereira et al [7]), holographic 
PIV (Hinsch [8], Herrman and Hinsch [9]), tomographic PIV 
(Elsinga et al [10]), and synthetic aperture PIV (Belden et al 
[11]). Defocusing PIV is based on the use of a specialized 
aperture near the camera lens to encode the depth of a particle 
into a uniquely sized and shaped blur spot when the particle 
is located off of the focal plane. Computational algorithms 
use the knowledge of the aperture shape to determine the par-
ticle position and depth. More recently, this process has been 
adapted for a multi-camera experimental arrangement, where 
the image formed by each camera represents a different point 
on the overall system aperture. The strength of this technique 
is the relative simplicity of the equipment required, particu-
larly in the single camera case; however, the particle density is 
limited to relatively low levels since the location of individual 
particles must be resolved. Also, in the case of the single 
camera system, the use of a coded aperture greatly reduces 
the amount of collected light. The combination of these fac-
tors typically restricts the application of the technique to water 
tunnels, where particle density can be precisely controlled and 
relatively large particles can be used.

Holographic PIV is based on the recording of the interfer-
ence pattern, or hologram, generated by a reference light beam 
passing through a volume. The volumetric light intensity dis-
tribution is then reconstructed by illuminating the hologram 
with the same reference light beam or a synthetic reference 
beam. The resulting volume represents the light intensity field, 
which can then be evaluated to determine particle positions 
or perform cross-correlation. Current efforts focus on digital 
holographic PIV utilizing CCD sensors and digitized recon-
struction algorithms, most notably a study on wall-bounded 
turbulence (Sheng et al [12]). Nevertheless, these techniques 
are limited to small measurement volumes, while maintaining 
a high optical complexity, thus precluding the wide spread 
adoption of the technique in the near future.

Tomographic PIV has seen rapid development and matura-
tion, and is now offered as a commercially available system; 
for a comprehensive review of tomographic PIV see Scarano 
[13]. Briefly, in this technique, four or more high-resolution 
CCD cameras are used to image a particle field illuminated 
by a thick laser sheet. Tomography algorithms are used to 
reconstruct the 3D light intensity distribution discretized over 
voxels, after which cross-correlation algorithms are used 
to determine the particle displacement. This technique has 
been demonstrated in a variety of flows including turbulent 
boundary layers (Schroder et al [14]), cylinder wakes (Scarano 
et al [15]), and shock-wave/turbulent boundary layer interac-
tions (Humble et al [16]). It has also been adapted to kHz 
rates using high-speed cameras for aeroacoustic studies (see 
Violato et al [17]). Tomo-PIV, however, has some rather sig-
nificant restrictions that limit its use in many situations. These 
include the relatively thin (∼10 mm depth) volume over which 
a measurement can typically be made, errors in the volume 
reconstruction process due to the limited number of viewing 
angles (e.g. the generation of image artifacts known as ghost 
particles), the limited particle number density, the complexity 
of the experimental arrangement and the expense of the overall 
system. Nonetheless, tomo-PIVs success in obtaining 3D, 3C 
velocity measurements in a multitude of facilities is notable 
and has revitalized recent research in 3D flow diagnostics.

Synthetic aperture PIV (SAPIV) is another multi-camera 
3D PIV technique, described by Belden et al [11]. This tech-
nique uses a large camera array (eight or more cameras) to 
capture multiple views of the measurement volume simulta-
neously. In contrast to tomo-PIV, the map-shift-average algo-
rithm is used to construct synthetically refocused images from 
the individual views by projecting each view onto a common 
focal surface. In the resulting image, particles that lie on the 
focal surface are sharp and in-focus, whereas particles off of 
the surface are blurred. By thresholding the refocused images, 
the 3D intensity field is compiled and is used as the input 
to cross-correlation algorithms. The technique is limited by 
many of the same restrictions as tomo-PIV, and unfortunately 
uses an even greater number of cameras.

1.2.  Light field imaging

The field of light field imaging has experienced significant 
growth over the last couple decades and has evolved into a 
rich and active area of research. In this section, we attempt to 
provide a basic overview of the history and fundamental con-
cepts of light field imaging; however, the reader is encouraged 
to consult other sources, such as Adelson et al [18, 19], Levoy 
et al [20, 21], Ng et al [22], and Lumsdaine and Georgiev 
[23], for more detailed information.

Historically, the notion of a light field is over a century 
old, with its roots outlined in Lippman [24]. The modern defi-
nition of a light field comes from Adelson and Bergen [18], 
where space is described as being filled with a dense array of 
light rays of varying intensities. These light rays contain infor-
mation about our world and can be described in a systematic 
manner using the plenoptic function. The plenoptic function 
refers to the parameterization of the light field, where each 
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light ray is represented by its 3D position in space (x, y, z) and 
its angle of propagation θ ϕ( ), , thus forming a 5D function3 
representing all light rays traveling through space. Assuming 
the constant intensity, or more precisely irradiance, of a light 
ray along its path of propagation, the plenoptic function is typ-
ically reduced to a 4D function, denoted as θ ϕ( )L x y, , , . In this 
context, a conventional photograph or image can be thought 
of as a 2D projection of the 4D light field where the angular 
dimensions have been integrated out at the sensor plane.

Adelson and Wang [19] utilized this concept to estimate the 
depth and shape of objects by measuring the plenoptic func-
tion with a single camera, referred to as a plenoptic camera. 
The camera utilized a specialized optical design to encode 
both the spatial (x, y) and angular θ ϕ( ),  components of the 
light field onto a 2D image sensor. In a conventional camera, 
a main lens collects light across a range of input angles bound 
by the size of the aperture and focuses the light directly onto 
the image sensor, which records the total light intensity at 
each pixel regardless of the angle of incidence. In contrast, 
in a plenoptic camera the main lens focuses the entire angular 
distribution of light onto an array of microlenses. Each micro-
lens covers a small number of pixels on the image sensor and 
can be thought of as forming a macropixel. In this configu-
ration, the microlenses capture the spatial information con-
tained in the light field, while the pixels contained under the 
microlens record the angular distribution. This relationship 
will be described in greater detail in the following section. 
Adelson and Wang’s version of the plenoptic camera utilized 
a ×500 500 pixel CCD with a microlens array of ×100 100 
microlenses. This results in a camera with a spatial resolution 
of ×100 100 pixels with an angular sampling of ×5 5.

Capturing and altering the light field is not limited to using 
a plenoptic camera. Levoy [20, 21] describes several methods 
of obtaining the light field in order to computationally gen-
erate an image or rendering of an object. One method places 
the object of interest at the centre of a sphere, then, using a 
spherical gantry, thousands of images can be taken at different 
positions along the sphere’s surface. The resulting collection 
of 2D images taken at discrete angles is a representation of the 
4D light field. Another method is to mount multiple cameras, 
Levoy [21] used 128, in an array allowing an instantaneous 
light field to be acquired. These techniques utilize multiple 
2D images to build the 4D light field. In this vein, we note 

that defocus PIV, tomo-PIV and SAPIV are implicitly meas-
uring the light field, albeit with relatively low angular resolu-
tion. In contrast, the plenoptic camera directly captures the 4D 
light field on a single image sensor in a single snapshot, with 
a fairly dense angular sampling over a limited angular range.

As camera and microlens technology has improved, the 
interest in plenoptic cameras has grown. Of the more recent 
developments we particularly note the work of Ng [25, 26], 
who designed a hand-held plenoptic camera for digital pho-
tography. The camera consisted of a modified DSLR with a 
16 megapixel image sensor and a microlens array of ×296 296 
microlenses. Ng’s research focused on computationally ren-
dering conventional 2D images from the light field data col-
lected by the plenoptic camera in a single snapshot. They 
demonstrated the ability to computationally generate, after 
the fact, photographs with a different focal position or a shift 
in the perspective. Examples of refocused images acquired 
with our plenoptic camera (described later) are shown in 
figure 1. The three images represent the focus shifted toward 
the camera, stationary, and shifted away from the camera rela-
tive to the nominal focal plane. In figure 2, the perspective of 
the observer is shifted with one image showing a ‘left’ view 
and the other showing a ‘right’ view. These images serve 
to illustrate the unique information obtained by a plenoptic 
camera and how it can be used for computational imaging. 
Recently, commercial variants of plenoptic cameras have 
become available. For consumer photography Lytro (Founded 
by Ng) offers a point-and-shoot plenoptic camera with built in 
refocusing capabilities. In the field of machine vision Raytrix 
offers a ‘plenoptic 2.0’ camera that offers a similar ability to 
change the perspective of an image after the fact.

More recently, Levoy et al [27, 28] developed a light field 
microscope based on the plenoptic camera. The fundamental 
principle remains the same; however, their work focused on 
additional challenges associated with microscopic imaging. 
For one, wave optics and diffraction must be considered in a 
microscopic environment, whereas geometrical optics is suf-
ficient for macroscopic imaging. In addition, a typical micro-
scope objective functions differently from a normal camera 
lens, producing orthographic rather than perspective views. 
Next, most objects in microscope images are partially trans-
parent, whereas the previous effort had focused on scenes 
with opaque objects.

The objective of the current work is to utilize the infor-
mation obtained about the light field by a plenoptic camera 
to obtain 3D/3C PIV measurements. Section 2 describes the 

Figure 1.  Computationally refocused images generated from a single exposure, focused: (left) on an alarm clock that is in front of the 
nominal focal plane, (center) at the nominal focal plane, and (right ) on a student behind the nominal focal plane.

3 In a general sense, one can also include the wavelength, polarization and 
time dependency of light in space such that the full light field may be con-
sidered as an 8D function. This is known as the radiance function.
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fundamentals of plenoptic imaging as well as the details 
of a prototype plenoptic camera built in our laboratory. 
Then, the process for building the light field from the data 
obtained by the camera, computational refocusing and the 
generation of perspective views are detailed in section  3. 
In order to facilitate the development of the reconstruction 
algorithms, a synthetic plenoptic image generation tool was 
developed. This tool allows the reconstructed volumes to be 
compared against a true solution, and is discussed in sec-
tion 4. Section 5 discusses the coupling of the 4D light field 
to tomographic algorithms in order to reconstruct a volume 
of particles. In so doing, the unique relationship between the 
image and the volume, known as the weighting matrix, is 
defined. The weighing matrix is shown to be an evolutionary 
step forward from the computational rendering algorithms. 
In section  6, the reconstruction algorithms are tested with 
synthetic data (generated with the plenoptic simulation tool) 

in a number of cases. Finally, experimental results are pre-
sented in section 7.

2. The plenoptic camera

Figure 3 schematically illustrates the fundamental concept of 
a plenoptic camera by contrasting it with the familiar picture 
of a conventional camera. The main function of a plenoptic 
camera is to measure both the position and angle of light rays 
collected by an imaging lens. This is in contrast to a conven-
tional camera which records only spatial information about 
incident light rays through the integration of the angular infor-
mation at the sensor plane. In both cases, geometric optics 
can be used to map an arbitrary location (x, y, z) on the world 
focal plane to a corresponding location on the image plane 
( )x y,p p . In a conventional camera (figure 3, left), the angular 

Figure 2.  Computationally rendered image where the viewpoint of the observer has been changed to (left) the left side of the aperture and 
(right) the right side of the aperture.

Figure 3.  Illustration of the differences between a conventional camera (left) and a plenoptic camera (center, right) in how they sample 
the light field. The centre figure shows a single pixel’s line of sight as captured by the plenoptic camera, collecting all light rays emanating 
from a point on the focal plane and propagating with angles contained in the green area. The left figure shows all of the pixels beneath a 
microlens’ line of sight.

Meas. Sci. Technol. 26 (2015) 115201



T W Fahringer et al

5

information is integrated, and therefore lost, as the image 
sensor records the amount of light striking that position, but 
not the angle. The separation between the imaging lens and 
sensor plane is typically chosen, via the thin lens equation, 
such that all rays converge to the same point leading to an 
in-focus image. If the sensor plane is not coincident with the 
image plane, the image will be out-of-focus with point sources 
on the world focal plane forming blur spots that are dependent 
on the size of the lens aperture and the position of the image 
sensor. This leads to a loss of spatial resolution in the image 
and the familiar concept of depth-of-field, where reducing the 
lens aperture leads to increased depth of field.

In a plenoptic camera, on the other hand, a microlens 
array is positioned at the image plane with the image sensor 
shifted back by one microlens focal length. The func-
tion of the microlens array is to direct light incident on 
the microlens at a particular angle onto one of the pixels 
located behind the microlens. This is depicted in figure 3, 
centre, which shows the point-of-view of a single pixel. 
Neighbouring pixels contained under the same microlens 
are exposed to light at different incident angles, as shown 
in figure 3, right where each colour represents a different 
subset of angles captured by each pixel. As such, each 
microlens in the array determines the position (x, y) of 
the light rays collected by the main lens and each pixel 
determines the angle θ ϕ( ),  of the light rays striking that 
particular microlens. Alternatively, each microlens can be 
thought of as forming a micro-image of the main lens aper-
ture. By considering the full array of micro-images formed 
under each microlens, the resulting 2D image recorded on 
the image sensor represents a multiplexed sampling of the 
4D light field captured by the camera lens.

2.1.  Prototype camera

As part of the development of the plenoptic PIV technique, 
a prototype plenoptic camera has been constructed using an 
Imperx Bobcat ICL-B4820 camera as its base. This camera 
uses the Kodak KAI-16000 image sensor, which at the time of 
fabrication was the highest resolution commercially available 
interline CCD. The choice of an interline CCD is motivated 
by the need to perform a double exposure similar to traditional 
PIV cameras. Figure 4 shows a photo of the camera without a 
lens attached, and a US quarter to provide scale. The compact 
design of the camera is evident.

The microlens array was fabricated by Adaptive Optics 
Associates, a subsidiary of Northrup Grumman. Specifically, 
the microlenses are manufactured using a proprietary pro-
cess, where an epoxy-filled mold is used to print the micro-
lenses onto the glass surface. The primary challenge faced in 
constructing the prototype camera was fabricating a custom 
mounting device for the microlens array to position it accu-
rately over the sensor. A custom mount was designed by Light 
Capture, Inc. and manufactured in-house. The mount consists 
of a series of positioning screws to adjust the height of the 
microlens array above the sensor and to adjust the orientation 
of the array with respect to the sensor. To align the camera, 

we follow a similar procedure to that outlined in Ng et al [22].  
In this procedure, the main lens of the camera is removed and 
the microlens and image sensor are exposed to an approxi-
mately collimated beam of light (a point source at a distance). 
In this configuration, each microlens forms a small spot on 
the image sensor with a diameter determined by its distance 
from the image sensor. For proper alignment (image sensor 
at the focal plane of the microlenses), the microlens mount 
is adjusted until the spot size reaches a minimum value. To 
determine this, the image captured is displayed on a monitor 
while adjustments are made to the mount. This is accom-
plished in a few iterations. The alignment procedure is accu-
rate, for this microlens array, within a range of 36 μm [22]. 
The full parameter list for the CCD and microlens array are 
shown in table 1.

To test the camera, a simple scene was set up using some 
objects set up at different depths. As with a conventional 
camera, the field of view was adjusted by changing the main 
lens attached to the camera body. This is seen later in this 
work where we focus nominally on a :1 1 magnification. The 
objects were set up with one in the foreground (alarm clock), 
some in focus (camera box, hat), and one in the background 

Figure 4.  Prototype plenoptic camera.

Table 1.  Prototype plenoptic camera parameters.

Parameter Symbol Value

Microlens pitch pl 0.125 mm
Microlens focal length fl 0.5 mm
Number of microlenses: X-direction nlx 289
Number of microlenses: Y-direction nly 193
Pixel pitch pp 0.0074 mm
Number of pixels: X-direction n px

4904
Number of pixels: Y-direction n py

3280
Microlens array material BK7/epoxy

Meas. Sci. Technol. 26 (2015) 115201
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(graduate student). A raw image of this scene is shown in 
figure  5, left. From the raw image it is hard to discern the 
differences from a conventional photograph as each micro-
lens image is vanishingly small when viewed in such a small 
format. A close look at the top left corner of the Imperx box, 
as shown in figure  5, right, shows the individual microlens 
images that comprise the larger image.

3.  Light field rendering

3.1. Two-plane parameterization

The preceding discussion parameterizes a light ray by its posi-
tion on the world focal plane and angle of propagation. An 
alternative, and often more convenient, way to parameterize 
the light field is known as the two-plane parameterization. The 
discussion herein is derived from Levoy [20]. Figure 6, left 
describes a light ray by its position (x, y, z) and its angle of 
propagation θ ϕ( ), . Figure  6, right shows a light ray that is 
defined by pairs of points, (x, y) and (u, v), located on two 
planes separated by a known distance. These two descriptions 

of the light ray are equivalent, since they can be derived from 
each other using simple trigonometric relations.

The plenoptic camera lends itself to this type of param-
eterization due to it inherently having two primary planes 
that light rays intersect: the microlens plane and the aperture 
plane, separated by a fixed distance, si. As discussed previ-
ously, the microlenses are responsible for discretizing the 
spatial location of all the incoming light rays. The second 
plane, the aperture, represents the angular information, where 
each microlens is effectively forming an image of the aper-
ture on the image sensor. Therefore, each pixel of the image 
sensor is associated with a discretized point on the microlens 
plane (x, y coordinate) as well as a point on the aperture plane 
(the u, v coordinate) separated by the image distance of the 
main lens.

The two-plane parameterization offers a more straightfor-
ward and convenient representation of the light field as the 
upper and lower bounds of the aperture plane are fixed and 
constant for every microlens. This is in contrast to the angular 
parameterization, where the range of sampled angles varies 
with each microlens.

Figure 5.  Raw image taken with prototype plenoptic camera (left) and a close up of the same raw image, showing individual microlenses 
(right).

Figure 6.  Two geometric representations of a light ray. The first parameterizes the light ray by its position and angle of propagation (left) 
and the second parameterizes the same light ray by a pair of points on two planes (right). Adapted from Levoy [21].

Meas. Sci. Technol. 26 (2015) 115201
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3.2.  Building the light field

Using the above-mentioned two-plane parameterization, the 
recorded light field can be fully described through determina-
tion of the (x, y, u, v) position of each pixel. For experimen-
tally obtained images, the exact locations of the microlenses 
relative to the image sensor are not known. As such, a calibra-
tion procedure was developed to determine the positions of 
the microlenses and the pixels beneath them. This procedure 
begins by taking a calibration image. This image is obtained 
by minimizing the aperture of the camera (i.e. increasing the 
f -stop to its maximum value) and imaging a uniformly illumi-
nated white surface, such as a piece of paper, while keeping 
the focal position of the camera constant. The last statement is 
very important as the positions of the microlens images on the 
CCD shift depending on the main lens configuration. A sample 
calibration image is shown in figure 7, left. The white dots 
are the centres of the reduced aperture image formed by each 
microlens. In terms of the two-plane parameterization these 
dots represent the centre of the aperture ( )x y u v, , ,0 0 . Since the 
aperture is not closed to a perfect point and the centre of a 
microlens may not fall directly on a single pixel, the exact 
location of each microlens is calculated to sub-pixel accuracy 
using a simple centroid fit. An example of the centroid fit is 
shown in figure 7, right, where the centre of each group of 
pixels is shown as a green ‘x’.

The calibration procedure uses a priori knowledge of the 
microlens array, specifically we assume that they are arranged 
in a rectilinear fashion with a pitch of 125 microns. According 
to the manufacturer specifications the pitch of the microlens 
is subject to a ±3% non-cumulative error. From the calibra-
tion procedure, the (x, y) values for each pixel can be assigned 
using the value of the microlens in front of them. To determine 
the angular components for each pixel the distance between 
the microlens array and main imaging lens, si, must be deter-
mined. To do this an image of a ruler is taken at the nominal 
focal plane, allowing for the calculation of the nominal mag-
nification. From this, and the definition of magnification, the 
distance si can be determined. The u and v values are locations 
on the main lens that correspond to the pixels themselves. 

Their calculation takes the difference between their position 
and the centre of the microlens (x, y) and converts it to a dis-
tance away from the centre of the aperture using similar trian-
gles. This expression is given for the u component by

= ( − )u x x
p s

f
i i

p i

l
� (1)

where the subscript i represents the current pixel. A similar 
expression using y values is used for the v component.

Once the centres of the microlenses are known, the (x, y, u, v)  
values for each pixel can be determined. The x and y values 
for each pixel are the microlens centre (in mm) determined 
earlier in the calibration process. The u and v values are the 
position on the main lens aperture that each individual pixel 
is imaging. To calculate these positions the distance from the 
centre of the microlens (centre of the aperture) is measured 
to the centre of each pixel. Then, using similar triangles, the 
measured distance is converted to a distance away from the 
centre of the aperture in millimetres. This fully parameterizes 
each pixel recorded in the raw image.

3.3.  Computational refocusing

A simple introduction into manipulating a light field is to resa-
mple the light field at a new focal plane. This process, termed 
computational refocusing, has been adapted from the work of 
Ng [25] and relies on the two-plane parameterization of the 
light field. One consequence of the refocusing algorithm was 
the insight needed to construct a physically accurate weighting 
function for tomography, to be discussed in a later section.

Conceptually, the rendering of a traditional 2D image from 
the 4D light field is achieved by selecting a subset of rays 
from the complete 4D light field and integrating out the two 
angular dimensions for a pre-determined focal plane. Using 
the two plane approach a simple interpolation scheme can 
be applied to re-sample the light field inside the camera at a 
virtual image sensor location creating a refocused image. An 
illustration of the geometry used in the refocusing process is 
shown in figure 8.

Figure 7.  Subset of an experimental calibration image (left) and corresponding centroid fit (right).
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To generate a refocused image, the light field is resampled 
at a virtual image sensor ′x  located at a distance ′si from the 
aperture plane. The virtual light field ′L  can be written in terms 
of the original light field L through a linear projection oper-
ator, as shown graphically in figure 8, where the desired vir-
tual light field being resampled at ( )′x u,  is projected onto the 
original sensor yielding the point (x, u) in the recorded light 
field. Mathematically, the location of this projection from ′x  
onto x for a single u value, denoted xfind is given by

⎜ ⎟
⎛
⎝

⎞
⎠α α

= − + ′
x u

x
1

1
find� (2)

where α = ′s s/i i. Substituting xfind into the plenoptic function 
results in an equation  for the light field located at a virtual 
image sensor ( )′ ′x y,  expressed in terms of the original light 
field, and is given by

⎜ ⎟ ⎜ ⎟
⎛
⎝
⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠
⎟

α α α α
( ) = − + − +′ ′ ′ ′ ′

L x y u v L u
x

v
y

u v, , , 1
1

, 1
1

, , .� (3)

To generate a refocused image at the synthetic image sensor 
plane, the angular information contained in the light field is 
integrated such that the final value for each microlens is the 
sum of all its angles. This is expressed in equation form by

⎜ ⎟ ⎜ ⎟
⎛
⎝
⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠
⎟∫ ∫ α α α α

( ) = − + − +′ ′ ′ ′
I x y L u

x
v

y
u v u v, 1

1
, 1

1
, , d d .

� (4)
Due to both the non-uniformity of the u, v sampling caused 
by each microlens being displaced differently from the optical 
axis, and that the projection xfind may not necessarily coincide 
with a single microlens, a 4D interpolation scheme is required 
to determine the contribution of each pixel. An example of the 

refocusing algorithm applied to actual image data was shown 
in figure 1.

3.4.  Perspective shift

Another benefit of capturing the entire light field is the ability 
to change the perspective of the scene, or in other words 
to change the angle at which the scene is presented. These 
images are generated by only considering a single angle (i.e. 
aperture position) in the light field. Similar to the refocused 
image, a single value is used to represent a microlens; how-
ever, instead of summing the angular information into a single 
value, a specific angle (u, v) is chosen and that value is used. 
As the u, v plane corresponds to the aperture plane, we can 
generate perspectives where the viewer is located at different 
points across the aperture. Some sample images of this effect 
are shown in figure 2.

4.  Synthetic image generation

While the previous discussion about manipulating the light 
field is useful for understanding its unique capabilities, it does 
not directly apply to 3D fluid velocimetry measurements. To 
develop this technique synthetic data is needed to test the 
overall accuracy of the particle reconstruction algorithm. 
Specifically, synthetic data allow the reconstructed volumes to 
be compared against a known solution, whereas experimental 
data do not allow for such a comparison. To do this a plenoptic 
camera simulator has been developed and is detailed herein.

4.1.  Overview

At the core of the simulation is the use of linear (Gaussian) 
optics to geometrically trace the path of light through space 
and the various optical elements that comprise the plenoptic 
camera. The application of Gaussian optics used in this work 
is similar to ray tracing from computer graphics. Briefly, ray 
tracing is a rendering technique in which a large number of 
light rays from a scene are used to form an image at arbitrary 
locations or viewpoints. Rays of light are initialized at the light 
source by specifying an initial position and direction. Ray 
transfer matrices are used to simulate optical elements and the 
propagation of light through free space [29]. The intersection 
that each ray makes with a sensor plane or designated view-
point defines the generated image. An extension of Gaussian 
optics, known as affine optics (Georgeiv and Intwala [30]), 
was developed to apply linear optics to light field imaging. 
The synthetic plenoptic image tool discussed herein uses ray 
transfer matrices, with the affine optics extension, to simulate 
3D particle fields imaged by a plenoptic camera.

As mentioned previously, the optical configuration for a 
plenoptic camera differs from a conventional camera with the 
addition of a microlens array. In order to construct the sim-
ulator, the following variables and relationships are defined 
in figure 9. Due to the nature of the ray transfer matrices all 
parameters are measured relative to the optical axis in both 
the x- and y-directions. The origin of the z-axis is defined at 

Figure 8.  Illustration of interpolation for refocusing using the two-
plane parameterization. Adapted from Ng [25].
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the nominal focal plane of the camera with positive z pointing 
away from the camera.

Particle positions are defined by their position relative 
to the centre of a volume positioned at the nominal focal 
plane of the main lens, where the main lens is modeled as a 
thin lens with focal length, fm, and an aperture with diam-
eter, pm. Similarly, the microlenses are defined by their focal 
length, fl, and pitch, pl. The physical image sensor is defined 
by a pixel pitch, pp, which denotes the size of a pixel. The 
distances separating the elements are the object distance, 
so, which separates the focal plane of the camera and the 
main lens and the image distance, si, which separates the 
main lens and the microlens array. The image and object 
distances are related by the thin lens equation, as shown in 
equation (5), which makes the assumption that the thickness 
of the lens is negligible relative to the length of the optical 
system itself.

+ =
s s f

1 1 1
.

i o m
� (5)

We note that modern camera lenses, which typically con-
tain multiple lens elements, can be approximated by a thin lens 
where si and so are measured relative to the principal planes of 
the lens. While not considered here, the present framework 
also allows for more detailed modeling of these additional 
lens elements. si and so are related to the magnification of the 
imaging system through equation (6).

= − = −M
h

h

s

s
.i

o

i

o
� (6)

In combination with equation (5), this equation allows for 
the calculation of si and so knowing only the magnification, 
which can be obtained by imaging a ruler, and the focal length 
of the main lens.

The optical parameters are now divided into two cat-
egories: input and fixed parameters. The input variables can 
change with each experiment and include the main lens focal 
length, aperture diameter and magnification. The object and 
image distances are also variable; however, as shown previ-
ously, they are dependent on the main lens focal length and 
magnification. The second class of parameters are set through 

hardware design and cannot be modified once the camera 
has been assembled. These include microlens pitch, micro-
lens focal length, pixel pitch and the number of pixels. These 
parameters can be modified in the simulator to accommodate 
testing and camera design, but are not varied in this work.

One consequence of the microlens parameters being fixed 
is a forced condition known as f -number matching. This con-
dition, recognized by Ng et al [25], states that the image-side 
f -number of the main lens must be equal to or greater than 
the f -number of the microlenses. This condition prevents any 
overlap between adjacent microlens images, which would 
otherwise cause ambiguity in the light field parameteriza-
tion. The equation for calculating the image-side f -number, as 
described by Ng [22], is shown in equation (7), where f is the 
focal length, and f /# is the f -number, which is defined as the 
focal length divided by the size of the aperture.

( ) = ( ) ( − )f f M/# /# / 1 .m l� (7)

In this work, we simulate a nominal :1 1 imaging mag-
nification such that =h hi o and M   =   −1. In the future, the 
parameterization of the plenoptic camera as a function of 
magnification needs to be considered; however, in order to 
keep the number of variables used in this work manageable 
only a single magnification is used. The fixed parameters used 
in the present simulation are shown in table 1 and are used 
throughout this work unless otherwise noted. The input or 
variable parameters used throughout this work are shown in 
table 2.

In this regard, it is worth commenting that the degree of par-
allax observed in the perspective views is limited by the size 
of the lens aperture used to form the image and the object’s 

Figure 9.  Optical configuration of the plenoptic camera.

Table 2.  Variable parameters for plenoptic camera simulation.

Parameter Symbol Value

Main lens focal length fm 50 mm
Main lens F-number ( )f /# m 2
Magnification M −1
Number of microlenses: Y-direction nly 193
Object distance so 100 mm
Image distance si 100 mm
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location relative to the main lens. Ultimately, the aperture 
size is limited by the requirement that the f -number of the 
microlenses must be matched to the image-side f -number of 
the main imaging lens. In the work described herein, we focus 
on :1 1 imaging with f /4 microlenses. Under these condi-
tions, the f -stop of the imaging lens is set to f /2 with a nom-
inal working distance equal to 2 f (i.e. :1 1 magnification is 
achieved at a working distance equal to twice the focal length 
of the imaging lens).

The process of the ray-tracing simulation is shown sche-
matically in figure 10. For each synthetically generated par-
ticle, represented as a point source located at (x, y, z), a large 
number of rays (typically  >10 000) are used to simulate the 
light emanating from that point. Each light ray is given an 
initial position, determined from the particle’s location, as 
well as an initial angle. The angle is generated as a random 
number between θmin and θmax, which are determined based on 
the distance to the lens and the aperture size. In figure 10 the 
maximum angles are shown as the outermost blue rays, and 
the expressions for the maximum and minimum angles are 
given. From this initial state the ray is propagated to the main 
lens using the first ray-transfer matrix, labeled as 1. From 
there the use of a lens ray-trace matrix, number 2, is used to 
model the main lens, then the light ray is propagated to the 
microlens array using matrix 3. Once at the microlens array, 
the individual microlens that the ray has struck is determined. 
From there the affine optics adaptation of the lens ray-trace 
matrix is used to model the microlens, as shown in matrix 4, 
which also includes a matrix addition term. Finally, the ray is 
propagated to the image sensor using the final matrix, 5. Once 
at the image sensor the pixel which the ray hits is determined 
and its value is increased.

It should be noted that the simulator takes into account 
diffraction effects by randomizing the spatial coordinate of 

each light ray at the microlens plane and sensor plane through 
a normally distributed random number generator, set in a 
manner that the standard deviation is equal to the diffraction-
limited spot size. For both the microlens array as well as the 
main lens the diffraction-limited spot size is 5.2 μm. Analysis 
at the condition presented here indicates that diffraction does 
not result in a substantial change in the simulator results. This 
is due to the large f -number of the main lens and the micro-
lenses, where the diffraction limited spot size is smaller than 
the characteristic spatial dimensions (microlens and pixel 
pitch) of the camera.

4.2.  1D simulations

A 1D simulator was constructed as a simple means to eval-
uate basic camera concepts without requiring a full image 
simulation, and is far easier to visualize. A detailed descrip-
tion of the simulator construction in Lynch [31], but the 
results are shown here to illustrate the ray tracing process. 
Figure 11 (top) shows a particle simulated at the focal point 
of the optical system. The red lines represent the ray propa-
gation from the particles position through the entire optical 
system culminating at the image sensor. The blue line, shown 
behind the CCD, is the integrated signal resulting from the 
ray tracing procedure. In this case the rays converge onto a 
single microlens, then spread out onto the image sensor. In 
figure  11(a)–(d), the particle is moved in the volume illus-
trating the unique signal patterns formed by the plenoptic 
camera. In figure  11(a), all of the light rays converge in 
front of the microlens plane in a manner that is consistent 
with the image plane moving closer to the main lens as the 
object plane moves further away. After passing through this 
focal point, the rays spread out and intersect several micro-
lenses. Depending on the incident angle, the microlenses 

Figure 10.  Schematic of the ray-tracing process for a plenoptic camera.
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redirect the incident light to different pixels on the image 
sensor forming a unique image pattern corresponding to 
the particle positions. Conversely, in figure 11(b), the light 
rays are intersected by the microlens array prior to reaching 
their focal point forming a distinctly different image pattern. 
Figures 11(c) and (d) show the effect of shifting the particles 
position in the y-direction. The effect shown is that the signal 
is simply shifted. This fundamental relationship between 
position in the volume and the pattern formed on the image 

sensor will be described later in terms of a weighting matrix 
for tomographic reconstruction.

4.3.  2D simulations

A sample of the full 2D simulator is shown in figure  12, 
left. The image provided is a subset of a full image whose 
size is set in accordance with the KAI16000 image sensor to 

×4872 3248 pixels. This image was generated using a particle 

Figure 11.  1D simulations at different lateral positions. 1 out of every 100 rays shown. The integrated signal is shown in blue. (a) = +zd 30 
mm. (b) = −zd 30 mm. (c) = +yd 0.1 mm. (d) = −yd 0.1 mm.
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volume ranging from z   =    −10 mm to  + 10 mm and a particle 
density of 0.5 particles per microlens (ppm) or 0.0017 par-
ticles per pixel (ppp) resulting in a particle concentration of 
2.32 part mm−3. Upon a visual inspection of the image, the 
particles that lie near the focal plane produce nearly circular 
images that stand out from the rest of the field. The remaining 
particle images are distributed across multiple microlenses 
and are difficult to distinguish. As a comparison an experi-
mental image taken with the prototype plenoptic camera is 
provided in figure 12, right.

5. Tomographic reconstruction

To reconstruct a volumetric intensity field useful for PIV, 
tomo-PIV principles are used with appropriate modifications. 
The working principle of tomo-PIV as detailed in Elsinga  
et al [10] is used to reconstruct a volume of particles based on 
a finite number of 2D projections of the volume. Plenoptic PIV 
is similar in that the recorded angular information is equiva-
lent to a projection image acquired in a tomo-PIV experiment. 
A significant difference is that plenoptic PIV records a much 
higher density of projections on a single camera, albeit at the 
expense of spatial resolution.

5.1.  Basic concept

For plenoptic PIV the reconstruction of particle fields is in 
general an ill-posed problem whose system of equations  is 
underdetermined leading to ambiguity in the solution.  
A special class of reconstruction algorithms are better suited 
for these problems and are known as algebraic methods as 
described by Herman and Lent [32]. These methods rely on 
iteratively solving a system of linear equations which model 
the imaging system. As with conventional tomo-PIV the 3D 
volume to be reconstructed is discretized into cubic voxel 
(volume equivalent of a pixel) elements, with intensity E(x, y, z).  
The size of the voxel was chosen to be similar to that of a 
microlens, since they nominally govern the spatial resolution 
of a plenoptic camera. The problem can be stated as the pro-
jection of the volumetric intensity distribution E(x, y, z) onto a 
pixel located at ( )x y,i i  yields the known intensity of that pixel, 
( )I x y,i i . In equation form this is given by

∑ ( ) = ( )
∈

w E x y z I x y, , ,
j N

i j j j j i i,

i

� (8)

where Ni represents the number of voxels in the line-of-sight 
of the ith pixel. The weighting function wi, j describes the 
relationship between the recorded image (ith pixel) and the 
3D volume of interest ( jth voxel), and is detailed in the next 
section. In order to solve this set of equations, iterative tech-
niques have been developed that update the current solution 
for E based on the previous solution. For additive techniques 
such as the algebraic reconstruction technique (ART [32]) the 
update is based on the difference between the image inten-
sity data and the projection of the volume such that when 
they are equal the update added to the solution is zero. For 
multiplicative techniques such as the multiplicative algebraic 
reconstruction technique (MART [32]) the update is based on 
the ratio of the image intensity data to the projection of the 
volume such that when they are equal the update multiplied to 
the solution is unity.

The algorithm used in this work is the standard MART 
algorithm, which was shown by Elsinga et al [11] to work 
well in multi-camera tomo-PIV. Starting from an initial guess 

of the volume ( ) =E x y z, , 1j j j
0  MART is updated via the fol-

lowing expression
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where k is the number of iterations and μ is a relaxation 
parameter which must be less than or equal to one. The expo-
nent restricts updates to parts of the volume affected by the ith 
pixel by raising the argument to 0, therefore multiplying the 
current voxel by 1, if the voxel is not affected by the ith pixel.

5.2.  Calculation of the weighting function

In order to use tomographic reconstruction, a weighting func-
tion describing the unique relationship between the plenoptic 
camera and the volume must be determined. In techniques 
such as tomo-PIV, the weighting function is based on a straight 
line projection of a pixel through the volume. The weighting 
coefficients are calculated as the overlapping volume between 

Figure 12.  Example plenoptic image generated using the ray-tracing simulator (left) as well as an experimental image taken with the 
prototype plenoptic camera (right).
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the pixel’s line-of-sight and the voxel’s elements normalized 
by the volume of a voxel. This weighting function works well 
when the entire volume is in focus, such that the line-of-sight 
of the pixel is a decent approximation for the formation of 
the image. Due to the unique point spread function of the ple-
noptic camera as well as the fact that the volume is ideally 
out-of-focus (at least in a conventional sense), this method of 
calculating the weights is not applicable. With this in mind, 
a new method for determining the weighting function was 
developed by considering the unique nature of the plenoptic 
camera. This approach, inspired by our experience with the 
computational refocusing algorithm [33], is based on inter-
polating a distribution of light rays passing through a virtual 
point within image space.

The method begins by defining the discretized volume in 
object space that we wish to reconstruct. In this work, we 
assume a conventional Cartesian grid with uniform spacing 
between all the volume elements. The coordinates in object 
space are then transformed into image space (i.e. inside the 
camera), where the light field was measured. Each voxel ele-
ment ( )x y z, ,o o o , with the subscript o referring to a location in 
object space, uses the following transformation for z:

= +′s s zo i o� (10a)

= ⋅ ( − )′ ′ ′s f s s f/i m o o m� (10b)

α = ′s s/i i� (10c)

where ′so is the distance from the main lens to the voxel and ′si 
is its image space counterpart, calculated using the thin lens 
equation. The term α, the ratio of the voxel’s image space 
location to the nominal image distance, is used instead of the 
actual location in image space. For x and y the following trans-
formations are used: = −′ ′ ′M s s/i o, = ⋅′ ′x x Mo , and = ⋅′ ′y y Mo , 

where ′M  is the magnification of the voxel. The result is a voxel 
in image space whose position is given by α( )′ ′x y, , .

Once the discretized volume has been transformed into 
image space, each slice of the volume in the depth direction 
can be treated like a focal plane for refocusing, except instead 
of considering the distribution of rays as converging toward a 
voxel, they are considered as emanating away from the voxel 
towards the plenoptic camera. Figure 13 shows a distribution 
of rays passing through a particular voxel, denoted by ′x , that 
are defined by first specifying their position on the (u, v) plane. 
The number of rays intersecting the (u, v) plane and projected 
through the volume is chosen such that the resulting spacing 
at the x-plane is less than one microlens dimension. For ′x  
planes that are relatively distant from the x-plane, this results 
in an oversampling of the (u, v) plane relative to the nominal 
angular sampling rate (i.e. the number of pixels under each 
microlens) of the camera. Additional oversampling on the  
(u, v) plane results in additional computational expense, but 
does not contribute additional information to the calculation 
of the weighing matrix.

In contrast to refocusing, where we are interested in inter-
polating the light ray’s intensity through a particular voxel, we 
utilize the interpolation coefficients themselves as a measure 
of the weighting between the voxel and the image pixels. For 
a single light ray passing through a voxel ( )x y u v, , ,2 2 2 2 , where 
the subscript 2 refers to the point of interpolation in interpo-
lation space, there are sixteen coefficients that are used to 
interpolate the irradiance of the light ray from the measured 
light field. These coefficients can be more easily visualized 
by considering the interpolation process as a series of two-
dimensional interpolations, one for each plane. First, we con-
sider the intersection of the light ray with the (x, y) plane to 
determine the distribution of the light ray on the nearest four 
microlenses. This is represented schematically in figure 14(a), 
where the green ‘x’ is the point where the projection strikes 
the microlens plane, the blue dots represent the centre of 
each microlens, and the shaded area enclosed by the dotted 
lines is the interpolation domain. In this representation, each 
ray is implicitly assumed to have a finite width equal to the 
size of one microlens, which is consistent with the physical 
function of the microlenses within the camera. The sur-
rounding microlens positions are determined, in microlens 
coordinates, by using the floor and ceiling operators, where 
the subscript 0 is associated with the floor operator and the 
subscript 1 with the ceiling operator. This allows the relative 
position of the light ray to the neighbouring microlens centres 
to be easily calculated, and it has the benefit of auto-normal-
izing the coefficient since the separation is equal to one (i.e. 

( ) − ( ) =x xceil floor 12 2 ). Once the interpolation coefficients 
for the four microlenses have been calculated the u, v interpo-
lation can take place. Figure 14(b) shows the discretization of 
the aperture plane as viewed from the pixel behind microlens 
( )x y,1 0 . The green ‘x’ refers to where the projection strikes the 
aperture plane, in this case one of the designated plaid (u, v) 
values. The red dots represent the centres of each (u, v) loca-
tion on the aperture. As with the (x, y) interpolation ( )u v,2 2  
is expressed in terms of pseudo-pixel coordinates using the 
floor/ceiling operators.

Figure 13.  Demonstration of two-plane projection of ′x  and u in 
two dimensions.
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Once the sixteen locations for which we need to calculate a 
coefficient have been found, the value of the coefficient must 
be determined. To do this we employ a simple linear interpola-
tion scheme in which the coefficient is the combined value of 
the (x, y) and (u, v) interpolation steps. The distance from the 
(0, 0) point in both interpolation schemes is all that is needed 
to calculate the coefficient. The relative distances, t, are  
given by

= − = − = − = −t x x t y y t u u t v vx y u v2 0 2 0 2 0 2 0
�

(11)

Using these and simple geometry the sixteen coefficients can 
be calculated. The interpolation coefficients, Nxyuv, have sub-
scripts that represent their location relative to the voxel to be 
interpolated. For example, N0000 is the coefficient for point 
( )x y u v, , ,0 0 0 0 . The coefficients are calculated by using the nor-
malized distances and are shown to be
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The result of this procedure can be seen in figure  14(c), 
where the red border represents the four microlenses shown 
in figure 14(a) with the (u, v) distribution behind it. The six-
teen interpolation coefficients are shown as the shaded squares 
with intensity depending on their weight (white = 0, black = 1). 
In other words, figure 14(c) shows the relative distribution of 
intensity on the image sensor that results from a single light ray.

In the formulation of the weighting function no considera-
tion was made for the aperture edges that are contained in the 
overall microlens image. Since the edge of the aperture image 
will fall partially on a pixel, its weight toward the reconstruc-
tion is diminished. To account for this a sequence of images are 
taken of a white background with the aperture open such that 
the intensity should be constant for all pixels under a microlens. 
These images are averaged together and normalized such that 
if the pixel falls completely inside the microlens image it yields 
a one, thus not affecting the weight, to zero if the pixel falls 
completely outside the microlens image. This is shown sche-
matically in figure 15, where the green ‘x’ represents the centre 
of the microlens, and the green circle is the outer edge of the 

microlens image. Once the corrective image has been normal-
ized it is multiplied by the weights to correct for the boundaries.

The final step necessary for the calculation of the weighting 
function is to normalize the weights for each voxel by the sum 
of the weights for that voxel. This is done so that the intensity 
contained in a voxel is conserved. In equation form the nor-
malization process is given by

=
∑

w
w

w
.i j

i j

i
i j

,
,

,� (13)

This forces the condition ∑ =w 1i i j, , such that all the light 
emanating from the voxel j must strike the image sensor.

To validate the weighting function, a comparison is drawn 
from that of a particle simulation. The particle simulator, 
which treats a particle as a point source of rays, simulated 
400 particles distributed uniformly within the boundaries of a 
single voxel. This was determined to be the best comparison 
since the weighting coefficient should be representative of the 
entire voxel not just the centre. The simulation of 400 particles 
within a voxel does produce an accurate weighting function; 
however, it has considerable computational costs that prevent 
it from being used for the computation of the entire weighting 
matrix. As an illustration, consider that each voxel is simulated 

Figure 14.  Determination of the weighting function coefficients via linear interpolation for the x, y plane (left), the u, v plane (center). The 
final result of the interpolation procedure is shown on the right. 

Figure 15.  Schematic of the white image weighting correction.
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in this way, using 10 000 rays for each particle such that the 
distribution at the image sensor is accurate and continuous. In 
contrast, the interpolation process uses 244 u and v values to 
represent the same data. Figure 16 shows both the weighting 
coefficients of the affected pixels as well as the particle simu-
lation described previously. It can be seen that the weights are 
in fact representative of the particle simulation and are taken 
to be accurate, with the exception of some minor discrepan-
cies. Specifically, the simulation produces higher weights in 
the centre of each microlens when compared to the weighting 
matrix. Differences can be seen along the boundaries as well 
with the weighting matrix showing contributions from pixels 
which are not illuminated by the simulation. This is attrib-
uted to the interpolation process blurring the ray across extra 
pixels.

5.3.  Implementation and computational considerations

The implementation of the above mentioned MART algo-
rithm was not as simple as the single equation seems. First, 
the weighting matrix is calculated on a per voxel basis, which 
is reversed from conventional tomography. This necessitates 
a pre-calculation of the summation term in the denominator 
of the MART equation, essentially adding an additional itera-
tion of computational time. In conventional tomography the 
weighting matrix is stored on a per pixel basis making a sum-
mation over all voxels affected by a pixel straightforward. 
Compounding this, is the size of the weighting matrix. For a 
weighting matrix of size × ×300 200 200 voxels the weighting 
matrix is 350 GB, storing only non-zero values. This makes 
storing the weighting matrix in memory impractical, therefore 
the data is stored on a hard disc in slices (1 slice per z loca-
tion), in this case 200 slices, allowing for smaller chunks to be 
read into memory. The algorithm was implemented in C   +  +, 
and uses binary files for faster processing. Using a 12 core 
workstation (Intel Xeon E5-2697 v2 at 2.7 GHz) with 64 GB 
of RAM and a RAID 0 array with 2 1 TB solid state disks, the 

weighting matrix takes approximately 1 h to complete and the 
MART algorithm takes approximately 30 min per image (run-
ning 50 images simultaneously takes approximately 1 day).

5.4.  Sample reconstruction results

As a qualitative illustration of the capability of the recon-
struction algorithm to reconstruct particles, a small group 
of particles were simulated using the aforementioned ple-
noptic simulator. For this exercise a smaller version of the 
prototype camera was used to cut down on computational 
time. Specifically, the synthetic camera has an image sensor 
of ×850 850 pixels behind a ×50 50 microlens array, and all 
other parameters were kept constant. Twenty particles were 
randomly generated inside a × ×5 5 5 mm volume. The raw 
image is shown in figure 17.

Figure 16.  Weighting function comparison to particle simulation. (a) Weighting matrix. (b) Particle simulation.
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Figure 17.  Synthetic raw image.
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As a means of comparison a volume using the actual par-
ticle positions was generated using a × ×3 3 3 voxel Gaussian 
blob fit to the particle positions. The final reconstruction of 
the particles is shown in figure 18 and the true particle posi-
tions are shown in figure 19. Figure 18(b) shows a front view 
of the reconstructed volume. When compared to the actual 
particle positions (figure 19(b)) the reconstructed particles 
are shown to match the actual particles in both size and loca-
tion. Alternatively, when the reconstructed particles are com-
pared to the actual particles in depth (figures 18(c) and 19(c)) 
they are shown to match locations, but the reconstructed par-
ticles are elongated in depth. This can be attributed to the 
limited range of angles that a plenoptic camera measures. 
Fortunately, the intensity in depth is not a constant. Figure 20 
shows a single reconstructed particle iso-surface as well as a 
slice through the centre of the particle on the YZ-plane. The 
particle has a ‘hot’ centre with decreasing intensity at the 
front and back, as shown in figure 20(b). This allows for the 
resolution of the location of the centre of the particle in depth, 
where a constant intensity would create a large ambiguity. 
The lateral spatial resolution of this particle’s reconstruction 
is limited to a single voxel. For other particles this may be 
four voxels or larger depending on their location spatially as 
well as in depth. In particular, the reconstruction of a particle 
far away from the focal plane is more elongated in depth and 
blurred spatially.

6.  Experiments with synthetic images

In order to test the accuracy of the algorithm detailed above, 
we consider several cases starting with the best case scenario:  
a single particle. This test gives the upper limit of accuracy with 
the current reconstruction method and is useful in defining the 
accuracy as a function of depth. An extension to this test is the 
multiple particle test, where 500 particles are simulated inside 
a volume. Using the same metric as the single particle tests, 
the accuracy is determined in a non-ideal scenario (a random 
distribution in the presence of other particles). The final group 
of tests are full simulations, where the accuracy measured is in 
terms of the velocity, not particle position. These tests include 
a uniform flow field as well as a Gaussian ring vortex.

6.1.  Single particle reconstructions

Using the synthetic image generation technique mentioned 
previously 40 particles are simulated (generating 40 different 
images) 1 mm (8 voxels) apart from each other in depth along 
the optical axis of the camera. The volume for each recon-
struction was kept constant, such that the weighting matrix 
was the same for each reconstruction. The volume of size 

× ×6.125 6.125 50.125 mm was discretized into a grid of 
× ×50 50 402 voxels, creating cubic voxel elements with 

sides of length 0.125 mm. For the reconstruction, a relaxation 

Figure 18.  Tomographic reconstruction of a synthetic particle field. (a) Isometric view. (b) Front. (c) Top.

Figure 19.  Actual particle positions. (a) Isometric view. (b) Front. (c) Top.
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parameter of 0.5 was used and the MART algorithm was run 
for 5 iterations. Since the particle locations are known, the 
error in the reconstructed particles can be calculated. To pre-
cisely determine the particle location with sub-voxel accuracy, 
a 3D Gaussian function was fit to the reconstructed intensity 
data and the peak location was taken to be the location of 
the reconstructed particle. The results are shown in figure 21 
with the absolute error (in voxels) on the y-axis and the rela-
tive position of the particle to the focal plane of the camera 
(100 mm away from the lens plane) on the x-axis. The results 
shown use a nominal magnification of  −1, it is noted that the 
results will vary for other magnifications, although those are 
not considered in this work.

Figure 21(a) reveals the lateral accuracy of the algorithm 
as a function of depth for this optical configuration. In this 
case the particle position was perfectly aligned with a voxel, 
representing the best-case scenario. For the region near the 

focal plane [−10, 10], the error is minimal and nearly zero, 
with a notable exception being at the focal plane. This is due 
to ambiguity in a 1 mm region around the focal plane caused 
by the nominal depth of field of our camera. More specifi-
cally, in this region light emanating from a particle strikes a 
single microlens, whereas in other locations the light is spread 
across multiple microlenses. Thus, the algorithm does not 
have the information to ‘interpolate’ between microlenses. 
The MART algorithm spreads the intensity throughout this 
region, often leaving two peaks: one before and one after the 
focal plane. This results in the 1 voxel error shown. Further 
away from the focal plane the algorithm is shown to be less 
accurate, although the absolute error is only 1 voxel. There is 
some noticeable peak locking occurring causing the solution 
to be forced into a single voxel. The depth accuracy is shown 
in figure 21(b) as a function of depth. In the region near the 
focal plane [−10, 10] the error in depth was shown on average 

Figure 20.  View of a single particle reconstruction. (a) 3D isometric view of a single particle. (b) Slice through center of particle.

Figure 21.  Error in reconstruction accuracy via the Gaussian fit of 40 particles spaced 1 mm apart along an optical axis. (a) X and Y 
(lateral). (b) Z (depth).

(a) (b)
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to be 1 voxel, with a standard deviation of 1.5 voxels. Outside 
of this region the average error is five voxels. It is noted that 
the depth accuracy is worse than the spatial accuracy, as is to 
be expected.

An extension to the single particle test is to calculate the 
reconstruction error of multiple particles simultaneously. For 
this test a volume of size × ×30 20 20 mm discretized into 

× ×300 200 200 voxels was used. Inside the volume 500 par-
ticles were randomly positioned and an image was generated. 
This is still a relatively small particle density, although the 
purpose of this test is to obtain the accuracy of individual par-
ticles in the presence of additional particles. To determine the 
error in the reconstruction a sub-volume around the area of 
a known particle location was extracted (sub-volume was of 
size × ×6 6 30 voxels), and fit with a Gaussian blob yielding 
the peak location, resulting in the absolute reconstruction 
error of the particles. A plot of the absolute X error versus 
the absolute Z error is shown in figure 22. The absolute error 
in X has a mean of 0.0658 voxels and a standard deviation of 
0.7990 voxels. The absolute error in Z has a mean of 1.0392 
voxels and a standard deviation of 2.9782 voxels. This is con-
sistent with the single particle data in the range of depths used.

6.2.  Full simulation reconstruction quality

For a dense simulation of particles calculating the particle 
position error for each individual particle is compromised due 
to the presence of other particles affecting the Gaussian fit. 
Therefore, to determine the accuracy of the reconstruction 
process, a statistical measure, known as the reconstruction 
quality factor, is used. This work utilizes the zero-mean recon-
struction quality factor Q* defined in La Foy and Vlachos [34], 
where the term zero-mean specifies that the volumes have a 
mean of zero, which is done by subtracting the mean from 
the original volume. They demonstrated that as the particle 
density increased the zero-mean reconstruction quality factor 
became a more accurate measure than the standard reconstruc-
tion quality factor defined in Elsinga et al [10]. The zero-mean 
quality factor is defined as:

* =
∑ ˜( ) ⋅ ˜ ( )

∑ ˜( ) ⋅ ∑ ˜ ( )
Q

E x y z E x y z

E x y z E x y z

, , , ,

, , , ,

0

2
0

2� (14)

where ˜( )E x y z, ,  and ˜ ( )E x y z, ,0  are the zero-mean recon-
structed intensity field and the zero mean exact intensity field, 
respectively. The exact intensity volume was created using a 
Gaussian blob consistent with the shape of an average single 
particle reconstruction.

The first study conducted was on the convergence of the 
MART algorithm using the plenoptic weighting function 
based on the residual after each iteration. The normalized 
residual, as shown in figure 23(a), is shown to decrease as the 
iterations increase and converge onto a solution. It is noted 
that the convergence of the residual does not guarantee that 
the algorithm converged onto the correct solution. In order to 
test the convergence onto the correct solution the reconstruc-
tion quality factor is used and is plotted against iterations, as 
shown in figure 23(b). The results of this study illustrate the 
notion that the algorithm converges towards the correct solu-
tion since the quality of the solution increases as the number 
of iterations increase. The solution is known to diverge with a 
high relaxation parameter, therefore a suitable (μ ∼ 0.5) relax-
ation parameter is used.

The next study conducted was on the effect of particle den-
sity on the reconstruction accuracy measured by the recon-
struction quality factor. Conventionally, particle density is 
defined as the number of particles per pixel, although for a 
plenoptic camera the spatial resolution is governed by the 
microlens array, therefore the results are presented as number 
of particles per microlens (ppm). For completeness the results 
are also presented as particles per pixel (ppp). The focus of 
this section is to show the change in reconstruction quality as 
the particle density increases, therefore the results are normal-
ized by the single particle reconstruction quality, * =Q 0.380 . 
The results are shown in figure 23(c), with the reconstruction 
quality on the y-axis and the particle density on the x-axis. The 
results show that there is little variance with respect to particle 
density until a ppm value of 1 or greater. As the particle den-
sity approaches 3 ppm the image becomes uniformly white 
and the algorithm has trouble producing accurate results.

6.3.  Cross-correlation algorithm

This paper has, until now, discussed a method for obtaining 
particle fields from an image. However, the purpose of this 
technique is to obtain the velocity of the fluid being measured. 
To do this a method to extract the displacement, and there-
fore velocity, from the reconstructed particle fields is needed. 
Consequently, a method for obtaining the displacement was 
developed using a cross-correlation-based technique, whose 
implementation is based on Adrian and Westerweel [35] and 
Scarano and Riethmuller [36]. Briefly, each reconstructed 
volume pair is divided into several interrogation volumes 
defined by a size in the number of voxels and a percentage 
overlap. For each interrogation volume pair, a fast Fourier 
transform (FFT)-based cross-correlation is computed and the 
location of the maximum correlation peak is estimated by a 

Figure 22.  X and Z absolute errors in a reconstruction of 500 
simulated particles.
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Gaussian peak fit to sub-pixel accuracy. From this location, 
as well as the time between exposures, the velocity can be 
calculated.

A more advanced version of this basic concept uses a 
multi-pass, multi-grid window deformation technique known 
as VODIM (Scarano and Poelma [15]). Each iteration begins 
by defining the interrogation volumes for cross-correlation, 
based on the sizes and overlap for that iteration. This allows 
for grid refinement in the later iterations. Next, the FFT-based 
cross-correlation is performed and the displacement for each 
interrogation volume is calculated. The displacements are 
then validated using a median test with the displacement data 
in a × ×5 5 5 neighbourhood. If the displacement exceeds a 
pre-determined threshold (usually 2 [35]), the displacement is 
replaced by either a secondary peak or an interpolated value 
of the valid neighboring displacements. For subsequent itera-
tions, the new interrogation volumes are displaced/deformed 
based on the displacements in the previous iteration. The 
deformation is calculated using a cardinal interpolation func-
tion on a × ×7 7 7 stencil [37]. The final velocity is calculated 
as the location of the correlation peak plus the predicted dis-
placement divided by the time between exposures.

6.4.  Simulated Gaussian ring vortex

The final test for the accuracy of the reconstruction of a 3D 
particle field is to test the effect of the errors on the final 
velocity data. In order to test the velocity error a synthetic dis-
placement is applied to a randomized particle field (0.5 ppm) 
and two synthetic images are acquired. The displacement field 
used is a Gaussian ring vortex. The vortex core’s centre-line 
is aligned with the y-axis and is located at the centre of the 
volume forming a ring with an 8 mm diameter. The tangential 
displacement (in voxel coordinates) is given by

⎜ ⎟
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where r is the distance from the particles location to the centre 
of the vortex. The other parameters Γ and θc  are defined as
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where rc, the radius of the vortex, is 40 voxels, the tangential 
displacement at rc, vrc, is 8 voxels, and γ is a constant equal to 
1.256 431.

To compare the reconstructed velocity field, a synthetic 
particle field was generated using the actual positions of the 
particles with a × ×3 3 3 Gaussian blob representing each par-
ticle. The synthetic volumes were then run through the same 
cross-correlation algorithms, thus providing an accurate base-
line to test the reconstruction algorithm. Both volume pairs 
were run through the cross-correlation algorithm with final 
window sizes of × ×16 16 16 voxels with 75% overlap. The 
results of the reconstructed velocity field are presented in 
figure 24 and the actual field in figure 25. Figure 24(a) shows 
a cross-section of the vortex in the XY plane at Z  =  100 voxels 
(centre of the volume) with velocity vectors and contours of 
the z component of vorticity. Figure 24(b) shows a cross-sec-
tion in the YZ plane at X  =  150 voxels with a contour showing 
the X component of vorticity. When compared to the exact 
solution (figure 25) the solution matches well, but has some 
spurious vectors in the vortex ring (figure 24(a)), and some 
issues in capturing the motion in depth (figure 24(b)). The 
errors in depth are attributed to both the elongation of the par-
ticles, causing issues with the cross-correlation algorithm, as 
well as the increased variance in the reconstruction accuracy. 
The overall RMS error of the velocity field is 1.02 voxels, 
with each component having an RMS error of 0.165, 0.23 and 
0.9833 for the u, v and w components, respectively.

7.  Experimental assessment

To complement the synthetic image results, experiments were 
conducted with the plenoptic camera in Auburn University’s 
water tunnel described in [38]. The test section  is made out 
of acrylic with dimensions of × ×0.61 0.61 2.44 m. The flow 
under consideration was that of the wake behind a cylinder 
at =Re 185D , with a cylinder of diameter 4.7625 mm and a 
freestream velocity of 0.039 m s−1. For PIV measurements 
the flow was seeded with silver-coated hollow glass spheres 
with a mean diameter of 10 μm. Illumination was provided by 
a New Wave solo III Nd-Yag laser system with a maximum 
output energy of 50 mJ per pulse at 532 nm and a pulse dura-
tion of 3–5 ns.

Figure 23.  Reconstruction quality metrics, (a) normalized residual, (b) trend in quality factor as a function of iterations. Values are 
normalized by the result at iteration 20 ( * =Q 0.360 ), (c) quality factor as a function of particle density. Values are normalized by the quality 
of a single particle ( * =Q 0.380 ).
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The experimental arrangement, as shown in figure  26, 
allows the vortex shedding in the wake of the cylinder to 

occur in the XY plane yielding a best case scenario for the 
plenoptic system, since the motion in the third dimension 
(Z) should be minimal. The volume of interest spanned 

× ×40 26.7 20 mm and was discretized into × ×300 200 150 
voxels. A time separation of 27 msec was used to generate 
an 8-voxel displacement based on the freestream velocity. 
Using a final cross-correlation window size of × ×32 32 32 
( × ×4.3 4.3 4.3 mm) with a vector spacing of × ×16 16 16 cre-
ated × ×34 22 15 vectors. 350 vector fields were acquired and 
processed for statistical measures. It is noted that to achieve 
the desired field of view for the plenoptic system, :1 1 magni-
fication using a 60 mm macro lens, the centre of the measure-
ment volume was located just 38 mm above the bottom of the 
tunnel floor such that the wall boundary layer influenced the 
measurements. Longer working distances while maintaining 

:1 1 imaging can be achieved using longer focal length f /2 
lenses, but this was not pursued in the current work.

For comparison, planar PIV measurements were taken in a 
similar configuration to that shown in figure 26. In this case, 
an Imperx Bobcat B4020 11 Mp ( ×4032 2688 pixels) CCD 

Figure 24.  Cross-sections of reconstructed Gaussian ring vortex. (a) Cross section of velocity in XY plane at Z  =  100 voxels. Contours 
show the vorticity in the z-direction. (b) Cross section of velocity in YZ plane at X  =  150 voxels. Contours show the vorticity in the  
x-direction.

Figure 25.  Cross-sections of simulated Gaussian ring vortex. (a) Cross section of velocity in XY plane at Z  =  100 voxels. Contours show 
the vorticity in the z-direction. (b) Cross section of velocity in YZ plane at X  =  150 voxels. Contours show the vorticity in the x-direction.

Figure 26.  Experimental arrangement: camera mounted beneath the 
tunnel such that vortex shedding occurs in the XY plane with laser 
volume illumination entering from the side of the wind tunnel.
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camera was used to image the wake of the cylinder. Utilizing a 
60 mm macro lens at a magnification of 0.37, the field of view 
(FOV) of the 2D measurement system was ×99 66 mm. The 
laser-pulse time separation was 5 msec creating an 8-pixel dis-
placement in the free stream and a total of 500 image-pairs 
were recorded. The velocity field was processed using a 2D 
version of the cross-correlation process described earlier with 
a final window size of ×32 32 ( ×0.8 0.8 mm) with a 16 pixel 
separation resulting in ×218 165 vectors.

An example of an instantaneous 3D/3C velocity meas-
urement for plenoptic PIV is shown in figure  27 (top and 
centre). The top and middle figure show the streamwise (x) 
and transverse ( y) components of velocity along 5 stream-
wise-transverse (x–y) planes extracted from the full volume 
of data. The z-axis is stretched to facilitate viewing of each 
of the 5 planes. The cylinder is located along the z-axis at 
Y/D  =  0 and the x-axis is aligned with the flow direction. The 
increased velocity of the flow around the top and bottom of 
the cylinder along with the reduced velocity in the wake is 
clearly present in all the slices. In addition, vortex shedding 
in the form of a Karman vortex street is also clearly evident. 
This is more easily visualized in figure  27, bottom, which 
shows 3D iso-surfaces of constant vorticity with red showing 
positive vorticity and blue showing negative vorticity. One 
observation from the 3D measurement is that although the 
shedding extends across the entire depth of the volume, it 
is not uniform in the spanwise direction (i.e. phase of shed-
ding varies in the spanwise direction). Rather, the vortices 
display a slight tilt relative to the cylinder. This observation is 
consistent with observations made in Williamson [39], where 
they noted that the transition from a 2D to a 3D unsteady 
wake occurred around =Re 150D . In addition, the influence 
of the boundary layer on the shedding could be a source of 
three-dimensionality.

For comparison to the planar PIV data, 2D slices were 
extracted from the volumetric data along the same 2D plane 
as the 2D PIV measurements and are displayed in figure 28. 
The top row of figure 28 is the ensemble averaged 2D planar 
PIV measurements trimmed down to the field of view of the 
plenoptic cameras. The bottom row shows the same measure-
ment region, but is extracted from the 3D plenoptic data. The 
first two columns show the average of 500 and 350 vector 
fields, respectively, with the third column showing an instan-
taneous velocity field (the same as in figure 27 for the ple-
noptic data). Qualitatively, the average velocity field is in very 
close agreement with the planar data in structure. For the u 
component, the acceleration of the flow around the cylinder as 
well as the wake deficit are clearly visible. In the v component 
an asymmetry of the velocity in the wake is shown for both 
cases, an effect which might be due to the proximity of the 
cylinder to the tunnel wall. The Karman vortex street is clearly 
visible in the instantaneous data with similar characteristics as 
the planar data, clearly showing the ability of plenoptic PIV 
to produce comparable measurements to traditional 2D PIV.

Quantitatively there are some discrepancies between the 
2D and 3D techniques. For the u component of velocity the 

Figure 27.  (top) 3D instantaneous u-velocity distribution 
showing five u velocity contours. (centre) 3D instantaneous  
u-velocity distribution showing five v velocity contours. 
(bottom) 3D instantaneous z-vorticity distribution  
blue =  −0.17 s−1, red = 0.17 s−1. Note: The z, or depth, 
direction is stretched to make the figure easily  
readable.
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planar data shows the characteristic velocity deficit asso-
ciated with the wake region extending further than in the 
plenoptic data. In the planar data, the location where the 
velocity has recovered to half of the freestream (0.015 m s−1) 
is located at X/D  =  3.75, whereas it is located at X/D  =  2.9 
in the plenoptic data. In the acceleration region around the 
cylinder, the plenoptic measurements have a peak velocity 
of 0.033 m s−1, whereas the planar datas peak velocity in the 
same region is 0.029 m s−1. The region of positive v com-
ponent in the wake of the cylinder extends from X/D  =  1 
to X/D  =  4.5 for both cases, with the 2D case being notice-
ably smoother. For the region of negative v velocity, located 
above the centre-line (positive Y/D), the magnitudes are 
larger (0.0047 m s−1 compared to 0.0034 m s−1) than those 
below the centre-line for the 2D case. This is also the case in 
the plenoptic data (0.0037 m s−1 compared to 0.0034 m s−1), 
although the magnitudes are different. Both data sets show 
the line of symmetry in the negative y-direction, and the 
region of negative v velocity being larger than the positive, 
although the planar data shows a larger region. Measuring 
from half the peak height before and after the peak the region 
of negative v velocity extends from X/D  =  1 to X/D  =  5, 
whereas the plenoptic data show the same region extending 
from X/D  =  1 to X/D  =  4.2. In the instantaneous data, the 
overall structures look similar, but the 2D data shows finer 
detail of the vortical structures.

Further insight can be gained by extracting a single line 
of data (at X/D  =  2) from both the planar and plenoptic PIV 
data. Statistical data is extracted in the form of the average 
velocity and the fluctuating component of the velocity field 
and the results are shown in figure  29. The top left-hand 
figure shows the average streamwise component of velocity. 
Here the plenoptic PIV data match the main trends of the 
planar data but with a higher velocity throughout the profile. 
In the acceleration region around the top and bottom of the 
cylinder the difference is approximately 0.0025 m s−1 cor-
responding to a 0.5 voxel average displacement error. In the 
wake, the error is approximately 0.005 m s−1 or a 1 voxel 

displacement error. Some sources of this error can be attrib-
uted to misalignment between the two independent meas-
urement systems, variations in the day-to-day operation of 
the tunnel, as well as a spatial averaging of the velocity field 
due to the lower spatial resolution of the plenoptic system. 
In the plenoptic data, each measurement corresponds to an 

× ×4.3 4.3 4.3 mm3 volume, whereas for the planar PIV 
data, it is × ×0.8 0.8 1.0 mm3. A more likely source of the 
error, however, is attributed to image distortions caused 
by the use of a real lens, which can cause pincushion and 
barrel-type distortions in conventional imaging systems, 
as well as optical imperfections in the acrylic water tunnel 
test section  walls. A robust 3D calibration procedure that 
accounts for these effects within the image processing 
framework of a plenoptic camera is currently under devel-
opment. For the streamwise velocity fluctuations (top right) 
the plenoptic data displays the same trends as the planar 
PIV data, but underestimates the magnitude of the fluctua-
tions. This underestimation of the velocity fluctuations is 
also consistent with a spatial averaging effect due to the 
larger physical size of the correlation windows used to pro-
cess the plenoptic PIV data.

Similar observations are made in the evaluating the trans-
verse component of velocity, although the data appear to 
provide a better overall match. In the average profile (centre 
left) the results show very close agreement, with slight errors, 
approximately × −8.6 10 4 m s−1 corresponding to a 0.17 voxel 
displacement, at Y/D  >  1. The transverse fluctuating quanti-
ties (centre right) also show close agreement with errors of 
approximately × −1 10 3 m s−1 (approximately 0.2 voxels) 
starting at Y/D  =  1.

Although there are no comparison data, the out-of-plane 
component of velocity measured by the plenoptic camera is 
shown in the bottom row of figure 29. In the average velocity 
field (bottom left) the flow field is shown to be moving 
towards the wall in the wake region and away from the wall 
in the freestream. The velocity fluctuations in the z-direction 
are fairly uniform throughout the volume with a magnitude on 

Figure 28.  The top row contains 2D planar PIV data, the bottom row 2D slices of 3D data, taken at centre plane, showing the average 
velocity field as well as instantaneous velocity vectors with z-vorticity contour. (a) ū contour. (b) v̄ contour. (c) ωz contour, vectors ( − ¯ )u u v, .
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the order of 0.01 m s−1, which corresponds to approximately 
2 voxels of displacement.

8.  Conclusion

A new 3D/3C PIV measurement technique based on light field 
imaging with a plenoptic camera (i.e. plenoptic PIV) has been 
presented. Plenoptic cameras are most well known for their 
ability to computationally refocus or change the perspective 
of an image after it has been acquired. These capabilities are 
enabled by the unique manner in which incident light rays 
are densely sampled by the camera as both the position and 

angle of the light rays are resolved through the placement of 
a microlens array near a conventional 2D image sensor. In 
the present work, the MART algorithm was adapted for use 
with plenoptic image data in order to reconstruct a volume 
of particles. The 3D/3C velocity field is then estimated from 
a pair of volume reconstructions using cross-correlation. The 
validity of this approach was shown using both synthetic data 
and experimental data acquired with a home-built plenoptic 
camera.

Overall, the main strength of plenoptic PIV is that it is a 
single camera technique that operates in a very similar fashion 
(e.g. same light source, timing etc) as conventional 2D/2C 
PIV while enabling 3D/3C velocity measurements. In fact, the 

Figure 29.  Line of data extracted at X/D  =  2 for both planar and plenoptic PIV. The left column is the average velocity field, and the right 
column contains the average velocity fluctuations. The top row is the u component, the centre row is the v component of velocity, and the 
bottom row is the w component of velocity.
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home-built plenoptic camera used in this work was a modi-
fied version of an interline CCD camera commonly supplied 
with commercial PIV systems with the result that the frame 
rate, minimum inter-pulse timing and triggering of the camera 
are unaffected by the modification. Similar modifications 
can be made to other cameras such that higher resolutions or 
framing rates can be expected in the future. In fact, we have 
already built several higher resolution (by a factor of 3) ple-
noptic cameras that are based on a 29 megapixel image sensor 
and hexagonally arranged microlens array. The single camera 
nature of the technique offers a significant advantage over 
multi-camera methods in that the experimental arrangement 
is simplified and potentially more cost effective. Perhaps, and 
more importantly, the technique requires less optical access 
allowing for applications in facilities where optical access is 
insufficient for the application of other methods.

The two main trade-offs associated with plenoptic cam-
eras are that (1) spatial resolution is sacrificed for angular 
resolution and (2) the resolution in the depth direction is 
worse than the two lateral directions. For the prototype ple-
noptic camera design considered here, the spatial resolution 
of the light field measurement is characterized by the micro-
lens pitch, while the angular resolution is determined by 
the number of pixels located behind each microlens. In this 
work, an array of ×290 194 microlenses was coupled with 
a 16-megapixel image sensor yielding an overall light field 
resolution of × × ×290 194 16 16. Under nominal :1 1 mag-
nification imaging, a volume size of × ×300 200 200 voxels 
( × ×37.5 25.0 25.0 mm) was reconstructed from synthetic 
data. The synthetic data showed the potential of MART to 
resolve particle locations to better than 1 voxel (0.125 mm) 
in the two lateral directions and 3 voxels (0.375 voxels) in 
the depth direction. Particle displacements calculated using 
a × ×16 16 16 voxel cross-correlation window were accurate 
to within 0.2 and 1.0 voxels, respectively. The experimental 
data obtained in the wake of a cylinder clearly demonstrated 
the ability of the technique to be used for 3D flow visualiza-
tion, although further work is needed to better quantify the 
experimental uncertainty. The 3D features of these flows were 
clearly identified and comparisons with 2D PIV data suggest 
that the synthetic image data offer a reasonable, although ide-
alized, approximation of the measurement uncertainty.

In the near future, several steps can be taken to further 
develop and improve plenoptic PIV, such as designing higher 
resolution plenoptic cameras. While higher resolution cam-
eras will improve overall resolution, the disparity between lat-
eral and depth resolution is likely to remain as it is primarily 
limited by the size of the aperture of the main imaging lens, 
which forms the baseline for the 3D estimation and should 
be as large as possible. In this respect, the development of a 
two camera plenoptic PIV system has significant potential to 
improve depth resolution albeit at the expense of added exper-
imental complexity. Beyond improvements in hardware, the 
continued development of volume reconstruction algorithms 
and the associated calibration procedure are likely to improve 
the overall accuracy of the technique. In particular, the devel-
opment of a robust 3D calibration procedure that more accu-
rately models the mapping of object space to image space and 

accounts for the possible misalignment of the microlens array 
position relative to the image sensor as well as the develop-
ment of more computationally efficient reconstruction algo-
rithms for the processing of large data sets are needed.

Looking more broadly, plenoptic imaging has the potential 
to be adapted for 3D variations of a wide variety of optical 
flow diagnostics including non-particle-based measurements 
such as laser-induced fluorescence and background-oriented 
Schlieren imaging. In general, most multi-camera techniques 
represent a sparse angular sampling of the light field such that 
specific assumptions (e.g. sparse particle field) are needed in 
order to produce a 3D reconstruction of the volume of interest. 
Due to these assumptions, these methods cannot easily be 
extended to provide equivalent 3D information using other 
types of measurement. Plenoptic cameras, on the other hand, 
provide a dense sampling of the angular space that allows for 
the development and implementation of novel algorithms that 
are not subject to the same constraints and can thus be more 
easily adapted to provide 3D information for other types of 
measurements. Computational refocusing is a clear example 
of one such algorithm that might be exploited for such a pur-
pose such that plenoptic cameras are likely to find a multitude 
of applications in the future.
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