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Abstract
This paper derives the phase response of a single-mode polymer optical fibre
for large-strain applications. The role of the finite deformation of the optical
fibre and nonlinear strain optic effects are derived using a second order
strain assumption and shown to be important at strain magnitudes as small
as 1%. In addition, the role of the core radius change on the propagation
constant is derived, but it is shown to be negligible as compared to the
previous effects. It is shown that four mechanical and six opto-mechanical
parameters must be calibrated to apply the sensor under arbitrary axial and
transverse loading. The mechanical nonlinearity of a typical single-mode
polymer optical fibre is experimentally measured in axial tension and is
shown to be more significant than that of their silica counterpart. The
mechanical parameters of the single-mode polymer optical fibre are also
measured for a variety of strain rates, from which it is demonstrated that the
strain rate has a strong influence on yield stress and strain. The calibrated
constants themselves are less affected by strain rate.

Keywords: large strain, polymer optical fibre, optical fibre sensor

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Intrinsic polymer optical fibre (POF) sensors have great
potential for large-strain applications such as health
monitoring of civil infrastructure systems subjected to
earthquake loading or structures with large shape changes
such as morphing aircraft [1, 2]. POFs provide a large elastic
strain range, are more flexible than silica optical fibres, and are
more durable in harsh chemical or environmental conditions.
Xiong et al demonstrated 6% strain before failure of a POF
and cites a potential 13% increase with the improvement of
manufacturing techniques [3]. Thus, for structural health
monitoring applications, POF sensor systems potentially offer
a larger strain range measurement capability along with more
long-term survivability. While POF sensors have been used
considerably for chemical and environmental monitoring due
to the high sensitivity of polymers to environmental factors,

only recently has their use in the monitoring of mechanical
properties been explored.

Kuang et al [4, 5] applied surface mounted, multi-mode
POFs to detect cracks and monitor deflection in concrete
beams. The principle of the intensity-based measurement
applied by [4, 5] was decreased internal reflection due
to fibre bending. The greater flexibility of the POF as
compared to silica optical fibres allows larger curvatures before
failure of the sensor. To further increase the sensitivity
of the measurements, the POF (of 1 mm diameter) was
etched to increase the loss in mode propagation due to
bending. A similar concept was applied by Takeda for POFs
embedded in a laminated composite [6]. Later, Kuang and
Cantwell successfully applied the intensity-based POF sensor
to measure the dynamic response of undamaged and damaged
laminated composite beams [7].
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Figure 1. Schematic diagram of contributions to phase shift of a
lightwave propagating through an optical fibre for an applied axial
strain range of 0% < ε < 15%. Required coefficients to be
calibrated are divided into two categories: photoelastic and
mechanical. Known coefficients are given whereas unknown
coefficients are indicated by ‘?’. Division point between small and
large strain regions is arbitrary for this diagram.

Intensity-based measurements, however, are limited in
application due to the presence of multiple modes propagating
through the optical fibre and therefore produce lower
measurement accuracy and resolution [8]. Recent advances
in the fabrication of single-mode POFs have made it possible
to extend POFs to interferometric sensing. Silva-Lopez et al
[2] measured the strain and temperature sensitivity of a single-
mode PMMA POF at 632.8 nm to be dϕ/dL = 131 ×
105 rad m−1, consistent with the value for bulk PMMA.
However, this strain sensitivity was measured for a strain range
of 0–0.04%, well below that at which the strain sensor would
typically be applied. The goal of this paper is to predict the
behaviour of the POF for large strain applications and derive
the associated phase shift of an intrinsic POF sensor.

The standard description of the sensitivity of an intrinsic
optical fibre sensor to applied strain is written in the form

�ϕ =
(

dϕ

dε

)
ε, (1)

where ε is the applied strain field and �ϕ is the change in phase
shift of a lightwave propagating through the optical fibre [9].
Equation (1) is applicable when the magnitude of the strain
component is small (ε � 1) such that the effect of applied
strain can be linearized about ε = 0. However, in general if
we allow ε to be of arbitrary magnitude (ε < 1), we can write

�ϕ =
(

dϕ

dε

)
ε +

1

2

(
d2ϕ

dε2

)
ε2 +

1

6

(
d3ϕ

dε3

)
ε3 + · · · , (2)

where the number of terms required depends upon the
magnitude of ε.

A schematic of the contributions to �ϕ is shown in
figure 1. The optical path length of a lightwave propagating
through the optical fibre, ϕ is altered by the load applied
to the optical fibre through two effects: the change in
index of refraction of the optical medium and the change
in length of the medium. These can be written in terms
of two separate sets of material properties: the photoelastic
coefficients and mechanical coefficients. In the strain region

for which the phase response to applied load is linear (i.e.
where (1) is applicable), the number of required properties to
describe the phase shift of the propagating lightwave is well
known. Assuming the material is isotropic, two independent
photoelastic and two independent mechanical coefficients are
required. At a certain magnitude of strain, this description is
not sufficient and therefore the second term of (2) is required.
At this point further photoelastic and mechanical coefficients
are required. These coefficients have not yet been identified
and are therefore indicated by question marks in figure 1.
One could expand figure 1 to larger magnitudes of strain and
therefore a higher number of terms from (2), however, the
second order term will be sufficient for this paper.

Potential effects contributing to the term (d2ϕ/dε2)ε2

of (2) include the (1) finite deformation of the POF and
(2) nonlinear strain optic effects in the polymer. Bertholds
and Dandliker [10] recognized the importance of including
second order strain terms (ε2) even for silica fibres near failure
strains. Additionally, Kuang et al [4] observed necking and
whitening of the POF at the location of the highest strain,
indicating large, local finite deformation of the POF. The
exact value of strain at which these are required will vary
from material to material. Approximate strain ranges for both
silica and polymer optical fibres have also been included in
figure 1 although this will be discussed in more detail later.
The important concept to understand from the schematic of
figure 1 is that unless the magnitudes of each of the required
photoelastic and mechanical coefficients are known, their
relative importance in the calculation of the phase response for
a given value of ϕ is not known. In other words, one cannot
a priori neglect either of these effects until they have both
been measured. Additionally, while axial loading is the most
common applied to such sensors, this may not be a sufficient
loading case for calibration purposes. Instead several of the
independent coefficients must be determined if the sensor is to
be subjected to an arbitrary loading in the future.

The role of the finite deformation and the nonlinear
strain-optic effect will be analysed in this paper, following
a derivation that is consistent in the order of applied strain
(second order). To accomplish this, we must also identify
the material properties (in this case both mechanical and
opto-mechanical) that must be calibrated for the POF sensor
for large strain applications and the minimum strain value
for which the nonlinearities must be considered for accurate
interpretation of the applied strain. It will be demonstrated
that a total of four mechanical and six opto-mechanical
coefficients must be known to characterize the response of the
intrinsic sensor. This formulation would also be applicable
to the calculation of the wavelength shifts in fibre Bragg
gratings in POF fibres [3]. Following the derivations, this
paper presents the results of mechanical testing of a typical
single-mode polymer optical fibre including the nonlinear
behaviour, the yield stress and strain, and effects of strain
rate on these properties. The measured mechanical properties
are then applied to the derived sensor response formulation
to demonstrate the increased importance of including the
mechanical nonlinearities as compared to silica optical fibres.
Measurements of the photoelastic properties of the POF and
their relative importance in the formulation are not included
due to space constraints, but will be investigated thoroughly
in a future paper.
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Figure 2. Coordinate system for optical fibre sensor.

2. Analysis

We consider the optical fibre to be mechanically and optically
isotropic [9]. In general, the fibre can be surface mounted
or embedded with any combination of applied strain fields
therefore we need to be able to predict its response for any such
strain fields. For this derivation, we consider that the strain
field is constant along the fibre; however, for a varying strain
field along the fibre the change in phase can be integrated along
the fibre [11]. The optical fibre considered and its coordinate
system are shown in figure 2. The 1–2–3 coordinate system
are the directions of applied strain as shown. The p–q axes
are in the optical principal directions of the fibre cross-section
which coincide with the principal strain directions in the 2–3
plane for an initially isotropic fibre. Thus, the p–q axes rotate
with the applied strain field. The phase shift of a lightwave
propagating through the optical fibre is given by

ϕ = βL, (3)

where β is the propagation constant and L is the length of the
optical fibre [12]. For a single-mode fibre, we consider only
the value of β for the fundamental core mode. β can be written
in terms of the effective index of refraction of the fundamental
core mode, ne,

β = ne

2π

λ
, (4)

where λ is the wavelength of the propagating light. Once a
strain field is applied to the optical fibre, the change in phase
shift due to the applied strain can be written as

�ϕ = �βL + �Lβ = �βL + βLε1 = 2π

λ
L(�ne + ε1ne),

(5)

where ε1 is the strain in the axial direction. The change �ne

has two components, one due to the change in diameter of
the fibre core, the second due to the photo-elastic effect. The
second term is derived here, whereas the first term is discussed
in section 4.

2.1. Opto-mechanical response

The index of refraction experienced by light propagating
through the fibre in the 1 direction can be written in terms

of the components of the material dielectric tensor B [9]

1

n2
e

=
(B2 + B3) ±

√
(B2 − B3)2 + 4B2

4

2
. (6)

For an isotropic material, these terms are simply given as
B1 = B2 = B3 = 1

/
n2

0, and B4 = B5 = B6 = 0, where n0

is the effective index of refraction of the unloaded fibre in the
1 direction. The optical fibre is essentially assumed to be a
homogeneous, isotropic material with an initial effective index
of refraction n0. In order to calculate the �n = ne − n0 due
to applied strain, we write Bi = B0

i + �Bi , yielding the index
of refraction after applied strain as

1

n2
e

= 1

n2
0

+
(�B2 + �B3) ±

√
(�B2 − �B3)2 + 4�B2

4

2
. (7)

We then write the change in index of refraction due to multiple
strain components through the strain-optic effect including
orders ε and ε2,

�Bm = pmnεn + gmlkεkεl, (8)

where the strain components are given in compact notation
(i.e., ε1 = ε11, ε2 = ε22, ε3 = ε33, ε4 = ε23, ε5 = ε13, ε6 =
ε12) and the summation notation is implied [13]. For an
initially isotropic material, the components of the linear strain-
optic tensor, p, are given in terms of two constants p11 and p12

[13]:

p =




p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 (p11−p12)

2 0 0

0 0 0 0 (p11−p12)

2 0

0 0 0 0 0 (p11−p12)

2




. (9)

In this paper we introduce the tensor g of dimension
three in (8) to represent the nonlinear term of the strain-optic
effect. As for the linear strain-optic effect, (8) can be written
either in terms of stress or strain. For small deformations,
a simple relationship between the photoelastic tensor p and
its equivalent for the stress-optic effect exist [13]. However,
for large deformations, the relationship between g and its
equivalent for the nonlinear stress-optic effect depends upon
the particular state of stress and therefore the two formulations
are not easily interchangeable. For this work, we consider the
strain formulation of (8) since displacement compatibility is
typically enforced between the sensor and the surrounding
medium in which it is embedded.

Since our goal is to predict the opto-mechanical response
of the sensor, we must first identify the number of independent
material constants appearing in (8) in addition to p11 and
p12. We first reduce the number of unknowns through the
symmetry condition, gmlk = gmkl . Second, applying isotropic
material properties and uncoupling the effects of normal and
shear strains reduces the number of independent constants in
g to four (g111, g112, g122, g123) [14]. This approximation is
only valid for deformations without significant shear strains;
however this is a reasonable assumption for most strain sensor
applications since shear strains do not transfer well to the
optical fibre. The non-zero components of g are listed in table 1
in terms of these four independent constants.
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Table 1. Non-zero components of the non-linear photoelastic tensor
g. Additional terms appear for components g1 . . .; however these are
not required for (7), therefore they are not included here.

Component Value

g211 g122

g212, g221 g112

g213, g231 g123

g222 g111

g233 g122

g244 (g111 − 2g112 + g122)/4
g255 (g122 − g123)/2
g266 (g111 − 2g112 + g122)/4
g311 g122

g312, g321 g123

g313, g331 g112

g322 g112

g333 g111

g344 (g111 − 2g112 + g122)/4
g355 (g111 − 2g112 + g122)/4
g366 g122 − g123)/2
g414, g441 (g112 − g123)/2
g424, g442 (g111 − g122)/4
g343, g443 (g111 − g122)/4
g456, g465 (g111 − 2g112 − g122 + 2g123)/8

Including shear strain would significantly increase the
complexity of the calibrations required. For the case of
pure applied torsion in the 2–3 plane, one could apply the
finite deformation solution of [15] for the torsion of a circular
cylinder including nonlinear photoelastic effects. For brevity,
this solution is not listed here. Instead, we point out that the
finite elasticity solution differs from the linear elastic solution
in that (1) a third mechanical nonlinearity constant appears
in addition to the two to be introduced in section 2.2; (2) the
deformation in the radial direction is inhomogeneous which
may limit the assumption of uniform strain throughout the
cross-section; and (3) there is a significant change in core
diameter due to the torsional load.

Expanding (8) in terms of the components of p and g
yields the required dielectric tensor changes for (7),

�B2 + �B3

= 2p12ε1 + 2g122ε
2
1 + 4g112ε2ε3 + (g111 + g122)

(
ε2

2 + ε2
3

)
+ [p11 + p12 + 2ε1(g123 + g112)](ε2 + ε3)

+ 1
4 (g111 − 2g112 + g122)

(
2ε2

4 + ε2
5 + ε2

6

)
+ 1

2 (g122 − g123)
(
ε2

5 + ε2
6

)
(10)

�B2 − �B3 = [p11 − p12 + 2ε1(g112 − g123)] (ε2 − ε3)

+ (g111 − g122)
(
ε2

2 − ε2
3

)
+ 1

4 (−g111 + 2g112 + g122 − 2g123)
(
ε2

5 − ε2
6

)
(11)

�B4 = 1
2 (p11 − p12)ε4 + (g111 − g122)ε1ε4

+ 1
2 (g111 − g122)(ε2ε4 + ε3ε4)

+ 1
4 (g111 − 2g112 − g122 + 2g123)ε5ε6. (12)

Further reducing (10)–(12) to the case without shear strain,

�B2 + �B3 = 2p12ε1 + 2g122ε
2
1 + 4g112ε2ε3

+ [p11 + p12 + 2ε1(g123 + g112)] (ε2 + ε3)

+ (g111 + g122)
(
ε2

2 + ε2
3

)
�B2 − �B3

A   = initial cross-sectional 
          area

0

FF
1
2

3

Figure 3. Axial loading condition for optical fibre.

= [p11 − p12 + 2ε1(g112 − g123)] (ε2 − ε3)

+(g111 − g122)
(
ε2

2 − ε2
3

)
�B4 = 0. (13)

2.2. Mechanical deformation of optical fibre

Having derived an expression for the phase shift in an optical
fibre as a function of applied strain, we now derive the strain
components for both axial and transverse loading to the optical
fibre.

2.2.1. Axial loading. The role of the finite deformation of
the optical fibre at large strain values for the case of axial
tension was demonstrated by Bertholds and Dandliker [10]
and Nellen et al [16]. Both measured a quadratic form of the
opto-mechanical response of the fibre with applied axial stress
and associated this behaviour with the finite deformation of the
fibre cross-section. Each of these experiments were performed
with silica optical fibres which are considerably more brittle
than the POF and fail at strain levels below 5%. Therefore,
one expects the role of the finite deformation of the optical
fibre to increase for the POF at high-strain magnitudes.

Since the most common loading case for calibration
experiments is pure axial loading of the optical fibre, as seen
in figure 3, we first derive the phase shift in the POF for this
case. From [10] the longitudinal and transverse elongations
can be written as

εl = ε + δε2 εt = −νε + αε2 ε = F/(E0A0) , (14)

where F is the applied axial force, A0 is the initial cross-
sectional area of the fibre and E0 is the initial Young’s
modulus of the fibre at small strains. δ and α are defined
as the nonlinearity constants in the longitudinal and transverse
elongations, respectively. From these elongations, one can
solve for the strain components

ε1 = εl +
1

2
ε2

ε2 = ε3 = εt +
ν2

2
ε2 (15)

ε4 = ε5 = ε6 = 0.

Substituting (15) into (10)–(12) into (7) yields the index
of refraction change in the POF as a function of strain. From
this expression for ne, the phase shift in the POF can be found
using (5). For the POF at large strain values, one cannot
linearize the phase shift sensitivity as in previous derivations
for silica fibres (see for example [9]). However, in order to
fit later experimental data, we expand �ϕ as a Taylor series
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about ε = 0,

�ϕ(ε) = �ϕ

∣∣∣∣∣
ε=0

+

(
dϕ

dε

) ∣∣∣∣∣
ε=0

ε +

(
d2ϕ

dε2

) ∣∣∣∣∣
ε=0

ε2

2
+ O(ε3)

≈
(

dϕ

dε

) ∣∣∣∣∣
ε=0

ε +

(
d2ϕ

dε2

) ∣∣∣∣∣
ε=0

ε2

2
. (16)

Knowing that �ϕ = 0 at ε = 0 and neglecting terms of at least
O(ε3), we find the linear and nonlinear strain sensitivities for
use in (2),

dϕ

dε
= 2π

λ
Ln0

[
1 − n2

0

2
(p12 − ν(p11 + p12))

]

d2ϕ

dε2
= π

λ
Ln0

[
δ − n2

0

2

( (
δ +

1

2

)
p12 +

(
α +

ν2

2

)
(p11 + p12)

+ 2ν(g112 + g123) − g122 − ν2(g111 + 2g112 + g122)

)]
.

(17)

The linear term of (17) is the same used for the fibre
at small strains [9, 12]. The second order term includes the
terms derived by [10] accounting for the finite deformation of
the optical fibre as well as additional terms accounting for the
nonlinear photoelastic effect. The relative magnitude of these
terms in d2ϕ/dε2 cannot be known a priori until the nonlinear
material parameters δ, α and g are known for the POF.

As mentioned in the previous section, ne also changes due
to the photoelastic effect derived above as well as the change
in core radius, a. The change in index of refraction due to the
change in core radius can be written as (dne/da)(da/dε)ε. In
order to estimate the term da/dε for the axial loading case of
figure 3, we approximate the radius of the optical fibre core
after applied strain as

a = a0(1 + εt ) = a0(1 − νε + αε2), (18)

where a0 is the radius of the undeformed core. Therefore

da

dε0
= a0(−ν + 2αε). (19)

To estimate the term dne/da, we apply the approximate
expression for the normalized phase constant b found in [22]

b = ne − n2

n1 − n2
≈ (1.1428V − 0.9960)2

V 2
(20)

with V = (2aπ/λ)

√
n2

1 − n2
2 where n1 and n2 are the index

of refraction of the core and cladding optical fibre materials,
respectively. Rewriting (20) in terms of ne and taking the
derivative with respect to a, we find

dne

da
≈ λ

2πa2
0

√
n1 − n2

n1 + n2

[
−1.306V + 3.415 − 1.984

V

]
. (21)

2.2.2. Transverse loading. Second, we consider the case of
transverse normal stress applied to the optical fibre, as shown in
figure 4(a), important for a sensor embedded in a host material.
The direction of applied transverse stress does not affect the
phase shift in the fibre, therefore we arbitrarily consider that is
applied along the 3-axis. While an exact solution is known for
the strain field during small strain deformation of the circular
cross-section of the optical fibre, the domain of large strain

F F

FF

optical fibre
coating/adhesive

host

(a) (b) (c)

3

2

3

2

Figure 4. Transverse loading on optical fibre. (a) Actual fibre
geometry; (b) assumed fibre geometry; (c) embedded fibre with
coating in host material.

requires a more complex numerical solution [17]. The purpose
of this paper is to determine the relative magnitude of different
effects when the POF is subjected to large strains, therefore we
consider the simplified problem of a square cross-section of
equivalent area shown in figure 4(b). The presence of a coating
surrounding the sensor (figure 4(c)) would further reduce the
stress concentration at the centre of the fibre. The resulting
strain field is simply a rotation of the axial loading case

ε1 = ε3 = −νε + αε2 +
ν2

2
ε2

ε2 = ε + δε2 +
1

2
ε2 (22)

ε4 = ε5 = ε6 = 0.

The application of transverse loading creates
birefringence in the optical fibre, resulting in the
propagating lightwave dividing into two separately
propagating waves, one with a positive phase shift and
one with a negative phase shift

�ϕ+ =
(

dϕ

dε

)+

ε +

(
d2ϕ

dε2

)
ε2

�ϕ− =
(

dϕ

dε

)−
ε +

(
d2ϕ

dε2

)
ε2

(
dϕ

dε

)+

= 2π

λ
Ln0

[
−ν − n2

0

2
(p11 − 2νp12)

]
(23)(

dϕ

dε

)−
= 2π

λ
Ln0

[
−ν − n2

0

2
(p12 − ν(p11 + p12))

]

d2ϕ

dε2
= π

λ
Ln0

[
α − n2

0

2

( (
δ +

1

2

)
p11 + (ν2 − 2α)p12

+ 4νg112 − g111 − 2ν2(g123 + g122)

)]
.

One observes from (23) that the second-order term for each
phase shift is identical. For a more general loading case,
the deformation of the optical fibre would have to be derived
using the theory of finite elasticity to second order in strain,
as the principle of linear superposition cannot be applied to
combined loading cases for large deformations [18]. As a final
note, the approximations of (18)–(21) for the effect of core
radius change on the propagation constant cannot be applied
for the transverse loading case, since the cross-section does not
remain circular. In section 4 it will be demonstrated that this
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Figure 5. Axial load testing of POF. Location of POF is highlighted
with white line (POF is too small to be visible).

does not play a significant role in the response of the sensor
for axial loading, therefore we will not further derive this here.
However, its effect is expected to be slightly larger for the case
of transverse loading.

3. Experimental measurement of mechanical
properties

So as to compare the relative importance of the finite
deformation for the POF as compared to the silica optical
fibre, axial tension tests were performed on PMMA single-
mode fibre samples (Paradigm optics: cladding diameter =
125 µm, a0 = 3.44 µm, NA = 0.12). A total of ten samples of
length 101 mm were loaded on a Sintech 1/S uniaxial tension
machine at a displacement rate of 60 mm min−1 (strain rate =
0.60 min−1). Figure 5 shows one fibre sample in the testing
machine, held into place with pneumatic grips to prevent large
deformation of the fibre at the grips. To determine the effect
of strain rate on the mechanical properties of the fibre, three
additional specimens per strain rate were tested at strain rates
of 0.01, 0.30, 0.90, 1.22 and 3.05 min−1. All samples used
in these experiments were from the same batch of POF, to
remove variations due to the manufacturing process.

3.1. Stress versus strain response

Throughout each test the axial elongation of the fibre (εl of
(14)) and the applied load were measured. From the load
values, both the engineering stress, σ (the ratio of the force and
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Figure 6. Typical measured stress–strain curve for POF at a strain
rate of 0.60 min−1. Both engineering stress and true stress are
plotted.
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Figure 7. Typical measured true stress–strain curves for POF at
various strain rates. Strain rates plotted are 0.01, 0.30, 0.60, 0.90,
1.22 and 3.05 min−1.

the original area) versus engineering strain and the true stress,
σt (the ratio of the force and the current area) versus true strain
were calculated. The results from a typical fibre at a strain
rate of 0.60 min−1 are plotted in figure 6. The results were
extremely repeatable between specimens and demonstrate the
characteristic response of a polymeric material [19]. One can
observe the initial linear region of the stress–strain curve until
yielding of the fibre, followed by a region of strain softening
and finally strain hardening prior to ultimate failure of the
fibre at approximately 30% strain. From a sensing perspective
the yield strain of the fibre may be a more critical parameter
than the ultimate strain as permanent, large deformations in
the fibre beyond the yield strain would significantly affect
transmission through the fibre. For the current samples, the
yield point is around the same value as the ultimate strain for
silica fibres, therefore a significant gain in strain range is not
apparent. However, it is assumed that with the recent rapid
increases in quality of manufacturing for single-mode POFs,
the yield point will significantly increase and therefore such a
strain range increase will be possible.

Figure 7 plots typical stress versus strain plots for typical
specimens measured at different strain rates. From figure 7
we see that the applied strain rate clearly affects the yield
point of the POF. As the strain rate increases, the yield strain
(and stress) increases as well. On the other hand, the initial
response of the POF in the linear region of the curve is less
sensitive to strain rate. Therefore, for sensing applications, it
is important to know the rate at which strain will be applied to
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accurately predict the failure point of the sensor, however less
so for the accuracy of the strain prediction itself. The effects
of strain rate also are significantly diminished at strain rates
above 1 min−1.

3.2. Nonlinear mechanical coefficients

In order to identify the material nonlinear response coefficients
E0 and δ, we follow the procedure of Mallinder and Proctor
[20], also used by Bertholds and Dandliker [10]. Assuming
that the modulus has the nonlinear form

E = dσ

dεl

= E0(1 + γ εl), (24)

where

E0 =
(

dσ

dεl

) ∣∣∣∣∣
εl=0

, (25)

we can solve for the true stress, σt ,

σt =
∫ εl

0
E dεl = E0

(
εl +

γ

2
ε2
l

)
. (26)

Through (26) and the true stress derived from the axial
elongation of (14), one can show that

δ = 2ν − γ /2 (27)

which relates the measured γ to the required δ [10].
Equation (27) can be interpreted as the fact that the nonlinearity
in the axial elongation of the optical fibre during loading is
due to two effects: the reduction in fibre diameter (2ν) and
nonlinearities in the material properties (γ /2).

For each specimen, the curve similar to figure 6 was used
to obtain the values of E0, γ , yield stress and yield strain for
the POF. The standard definition of the initial modulus E0 is
the slope of curve evaluated at ε = 0 [19] and therefore should
be independent of the strain range used for the calculations.
However, our goal in this paper is to measure the best fits to
the material coefficients for evaluation of (17). In order to
do so, we must truncate the polymial fit of the stress–strain
curve to only the two terms of (26). Therefore we fix E0

as the linear coefficient of the second-order polynomial fit to
the data and recognize that therefore the calibrated ‘material
properties’ depend upon the strain range at which the sensor is
to be applied because we have neglected higher order terms.

The average values obtained for all specimens for each
strain range are listed in tables 2 and 3. For some strain rate–
strain range combinations, there was not enough nonlinearity
in the stress–strain curve to accurately calculate γ , therefore
only E0 is listed. However for most data the correlation,
R2, is also listed and demonstrates that the properties are an
excellent fit to the data. The variation in the initial modulus,
E0, and δ with strain range is plotted in figures 8 and 9 for each
of the strain rates. The standard deviation between samples
is also plotted. As can be seen in figure 8, as the strain
range increased, the initial modulus also increased. On the
other hand, there is not a clear trend for the nonlinearity, δ,
with strain rate (see figure 9). After a maximum strain value
between 3 and 4% for each curve, the nonlinearity remains
approximately constant whereas E0 decreases with increasing
strain. This will be shown in the following section to be due
to yielding of the material.
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Figure 8. Calculated initial modulus, E0, plotted as a function of
maximum strain considered in the calculation (i.e., for a maximum
strain of 2.5%, the strain range considered is 0–2.5%). Values
obtained at strain rates of 0.01 to 3.05 min−1 plotted. Standard
deviation of each point amongst all samples is also indicated. The
yield stress for each strain rate curve is indicated as a rectangle (see
table 4).

Table 2. Measured and calculated material properties of POF (strain
rate from 0.01 to 0.60 min−1). R2 correlation of curve fit using
properties to measured curve is also indicated.

Strain rate Strain range (%) E0 (GPa) γ δ R2

0–1.0 3.96 −24.3 12.9 0.9999
0–1.5 4.05 −26.8 14.1 0.999
0–2.0 4.19 −29.8 15.6 0.9998
0–2.5 4.31 −31.7 16.6 0.9998

0.01 min−1 0–3.0 4.34 −32.2 16.7 0.9998
0–3.5 4.28 −31.6 16.5 0.9996
0–4.0 4.07 −30.1 15.7 0.9981
0–4.5 3.83 −28.6 15.0 0.9947
0–5.0 – – – –
0–5.5 – – – –

0–1.0 4.46 −17.0 9.18 0.9999
0–1.5 4.48 −17.8 9.59 0.9999
0–2.0 4.54 −19.1 10.2 0.9999
0–2.5 4.63 −20.6 11.0 0.9999

0.30 min−1 0–3.0 4.79 −22.5 11.9 0.9998
0–3.5 4.89 −23.4 12.4 0.9998
0–4.0 4.95 −23.9 12.6 0.9998
0–4.5 4.93 −23.8 12.6 0.9998
0–5.0 4.84 −23.3 12.3 0.9995
0–5.5 4.72 −22.4 11.9 0.9998

0–1.0 4.05 – – –
0–1.5 3.91 – – –
0–2.0 4.16 −11.5 6.4 0.9989
0–2.5 4.41 −15.6 8.5 0.9991

0.60 min−1 0–3.0 4.58 −18.4 9.9 0.9992
0–3.5 4.73 −20.1 10.8 0.9991
0–4.0 4.85 −21.5 11.4 0.9991
0–4.5 4.91 −22.0 11.7 0.9991
0–5.0 5.04 −22.3 11.8 0.9997
0–5.5 4.90 −21.8 11.6 0.9990

An initial impression of the data in tables 2 and 3 might
be that the properties of the fibre vary considerably depending
upon the strain range within which one chooses to measure
them. However, the curve fits applying these properties do
not. To demonstrate this point, curve fits using the properties
in table 2 for a strain rate of 60 min−1 are plotted in a single
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Figure 9. Calculated value of δ, plotted as a function of maximum
strain considered in the calculation. Values obtained at strain rates
of 0.01 to 3.05 min−1 plotted. Standard deviation of each point
amongst all samples is also indicated. The yield stress for each
strain rate curve is indicated as a rectangle (see table 4).

Table 3. Measured material properties of POF (strain rate from 0.90
to 3.05 min−1). R2 correlation of curve fit using properties to
measured curve is also indicated.

Strain rate Strain range (%) E0 (GPa) γ δ R2

0–1.0 4.73 −17.0 9.16 0.9998
0–1.5 4.65 −15.3 8.34 0.9999
0–2.0 4.78 −17.6 9.49 0.9999

0.90 min−1 0–2.5 4.92 −19.4 10.4 0.9999
0–3.0 5.08 −21.0 11.2 0.9999
0–3.5 5.19 −21.8 11.6 0.9998
0–4.0 5.27 −22.4 11.9 0.9998
0–4.5 5.29 −22.5 11.9 0.9998
0–5.0 5.25 −22.0 11.7 0.9997
0–5.5 5.08 −21.7 11.5 0.9991

0–1.0 5.00 −27.4 14.4 0.9999
0–1.5 4.62 −17.4 9.36 0.9996
0–2.0 4.85 −22.0 11.7 0.9986

1.22 min−1 0–2.5 4.83 −21.6 11.5 0.9997
0–3.0 4.98 −23.4 12.4 0.9997
0–3.5 5.00 −23.6 12.5 0.9997
0–4.0 5.14 −24.3 12.8 0.9997
0–4.5 5.02 −23.8 12.6 0.9997
0–5.0 4.92 −23.3 12.4 0.9992
0–5.5 4.75 −22.6 12.0 0.9899

0–1.0 – – – –
0–1.5 4.46 −15.3 8.34 0.9999
0–2.0 4.59 −17.7 9.50 0.9999

3.05 min−1 0–2.5 5.01 −22.1 11.7 0.9998
0–3.0 5.12 −23.2 12.3 0.9998
0–3.5 5.06 −22.9 12.1 0.9998
0–4.0 5.11 −23.1 12.2 0.9998
0–4.5 5.11 −23.2 12.3 0.9998
0–5.0 4.92 −22.4 11.9 0.9989
0–5.5 4.77 −21.9 11.6 0.9981

graph in figure 10. Each curve is plotted as a solid line for the
range over which the parameters apply and as a dashed line
beyond the applicable strain range. As can be seen, although
the specific values of the parameters vary significantly, the
difference in the curve fits is insignificant over the range for
which each fit is applicable. A general guideline would then
be to use the calibrated parameters of the largest strain range
for which the sensor can be applied.

Previously reported values of E0 for single-mode POFs
are typically lower: 2.8 GPa [2] and 2.75 GPa [21], although
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Figure 10. Curve fits to a stress–strain curve using the values of
E0 and γ for a single POF sample at an applied strain rate of
0.60 min−1. Curve fits are plotted for the strain ranges of 0–1.0% to
0–5.5%.

only the initial portion of the loading curve was used. Using
only the initial portion of the curves from the POF samples
in this study introduces significantly more variation and yields
values of E0 ranging from 2.8 GPa to 3.4 GPa. It is also difficult
to compare between previous studies since the complete
stress–strain behaviour of the POF is typically not given,
although Jiang et al [23] do provide detailed response curves
for a PMMA POF. Differences are also expected between
different PMMA POFs due to differences in manufacturing
processes.

An important difference between the silica optical fibre
and the PMMA optical fibre is the magnitude of the
nonlinearity due to the material properties, γ . For the PMMA,
γ = −22.0, whereas Bertholds and Dandliker [10] measured a
value of γ = 2.2 for silica. Therefore, the material nonlinearity
is an order of magnitude larger for the PMMA, and is of the
opposite sign. The importance of this scale will be seen in
section 4 in which the sizes of the various effects are compared.

3.3. Yield point

In addition to measuring the material parameters above, it is
important to identify the yield point in curves of figure 7.
As mentioned above this corresponds to the realistic upper
strain limit for application of the sensor. For each of
the measured curves, the yield point was calculated using
Considere’s construction, as commonly applied for polymeric
materials [24]. Defining the extension ration, λe = ε + 1, and
defining the yield stress as the condition dσ/dε = 0, it can be
shown that the equivalent condition for the true stress, σt , is

dσt

dλe

= σt

λe

. (28)

From each stress–strain curve, this point is identified by
plotting true stress versus extension ratio and drawing a line
from the origin to the first tangent of the curve (see inset of
figure 11). The intersection point is thus the yield point of the
POF.

The stress and strain values at yield were thus determined
for each of the measured stress–strain curves. The average
calculated value of yield strain and stress for each strain rate
is listed in table 4. To show the clear relationship of yield
strain on strain rate, the yield strain values are also plotted in
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Figure 11. Calculated yield strain versus strain rate for POF
samples. Standard deviation amongst samples at each strain rate is
also indicated. Inset shows Considere’s construction for
determination of the yield point.

Table 4. Measured yield strain and stress as a function of strain rate.

Strain rate (min−1) Yield strain (%) Yield stress (GPa)

0.01 3.55 72.2
0.30 4.35 94.3
0.60 4.65 103.5
0.90 4.61 105.5
1.22 4.63 111.2
3.05 4.65 116.8

figure 11. The asymptotic behaviour of the yield strain as
a function of strain rate seen in figure 11 is identical to that
measured by Jiang et al [23].

Returning to figures 8 and 9, the yield strain of the POF at
each strain rate from table 4 has been added to the graphs. One
can clearly see that the change in behaviour of the curves for
E0 and δ are due to yielding of the material. For each curve,
the decrease in E0 begins at approximately the yield point.
This is also an indication that the form of (24) is less and less
applicable as the strain increases beyond the yield point. The
fact that the correlation values of the parameter fits in tables 2
and 3 decrease after the yield point confirms this observation.

4. Discussion

The previous sections derived the phase shift of the POF
including nonlinear photoelastic effects, finite deformation of
the optical fibre, and the resulting core radius change. The
third effect is typically neglected for silica fibres at small
strains, however it is not apparent whether this assumption
still holds for large strains or polymer material properties
[12]. The relative magnitude of these effects is investigated
in this section for both polymer and silica fibres, using the
mechanical properties measured experimentally and presented
in the previous section. Since the later nonlinear photoelastic
constants have not yet been determined experimentally for the
POF, we cannot compare these at this time.

Figure 12 plots the calculated �ϕ for the case of pure axial
strain in the range of 0–6% strain. For the silica fibre, typical
optical and mechanical properties of a step-index fibre are
used, including a failure strain of 5%. As seen in figure 12, the
nonlinearity due to the finite deformation becomes significant
in the calculation of the sensitivity above approximately 3%
strain, at which point the linear and nonlinear curves diverge.
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Figure 12. Normalized phase shift of silica optical fibre and POF
applying various approximations: linearized �ne (see [12]),
(b) including (dne/da)(da/dε0) ((19)–(21)), (c) including finite
deformation of optical fibre ((14)–(15)). Common parameters for
optical fibres: a0 = 4 µm, n1 = 1.46, n2 = 1.45, n0 = 1.456, λ =
1550 nm. Properties of silica [10]: ν = 0.16, p11 = 0.17, p12 =
0.36, δ = − 4.0, α = − 2.3, ε at failure = 5%. Properties of
PMMA [2]: ν = 0.34, p11 = 0.30, p12 = 0.297, δ = 11.7 (from
table 2), α = −2.3.

Additionally, the curve including the effect of the core radius
is not distinguishable from the linearized �ϕ. Therefore
the role of the core radius through (21) can be neglected.
The phase shift in a PMMA POF including the linear terms,
finite deformation of the optical fibre and the core radius
change are also plotted in figure 12 using the same step-
index indices of refraction. For these plots, the Pockel’s
constants and bulk material properties of PMMA were used
[2]. The nonlinearity constant δ of 11.6 was used from table 2
corresponding to a strain rate of 0.60 min−1 and a strain range
of 0–5.5%. Since α was unknown, the same value was applied
as for silica. It is expected that the actual value for PMMA
is significantly higher (since the value for δ is significantly
higher), however changing the value of α did not visibly vary
the plots of figure 12.

The salient features of the curves of figure 12 are the
following:

(i) The sensitivity of the phase shift in the POF to the applied
strain at low strain values is significantly larger than that of
the silica fibre. This difference is due to the difference in
values of ν, p11 and p12. This initial increase in sensitivity
was demonstrated experimentally by Silva-Lopez et al [2].
From a strain sensing perspective this added sensitivity
can be a significant advantage of the POF.

(ii) An important difference between the silica optical fibre
and the PMMA optical fibre is the magnitude of the
nonlinearity due to the material prosperities, γ . For the
PMMA, γ = −22.0, whereas Bertholds and Dandliker
[10] measured a value of γ = 2.2 for silica. Therefore,
the material nonlinearity is an order of magnitude larger
for the PMMA, and is of the opposite sign. This
difference emphasizes the importance of including the
finite deformation effects in POFs, starting at strain
magnitudes as low as 1%.

(iii) The strain value at which the nonlinearity must be taken
into account is significantly lower for the POF (≈1%)

than for the silica fibre (≈3%).
(iv) As for the silica fibre, the curve including the effect of the

core radius is not distinguishable from the linearized �ϕ
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for the PMMA POF. Therefore the core radius change can
be neglected even at large strains.

5. Conclusions

In summary, the use of the POF as a sensor to measure
large strain magnitudes in structures under general loading
conditions requires the calibration of four mechanical
parameters (E0, ν, δ, α) and six opto-mechanical properties
(p11, p12, g111, g122, g112, g123). As compared to silica optical
fibres, the mechanical nonlinearities in the POF are more
significant and are important at strain magnitudes as low as
1%. Measurement of the nonlinear photoelastic properties of
the POF will be required before their relative contribution to
the phase response is known. The effect of core radius change
is not significant in the calculation of the phase response for
either the silica or polymer optical fibre. Although the phase
shift to strain response is no longer expected to be linear above
1% strain, the large strain to failure capabilities of the POF
demonstrate great potential for the measurement of large strain
ranges typically observed in structural applications.

Additional effects, such as attenuation with strain of the
POF, would limit the range of the data acquisition system
used for the sensor and decrease the visibility of an associated
interferometer, however will not affect the phase shift. Other
potential effects beyond the reach of the current work include
the temperature, creep and hysteresis properties of the POF
which will likely play a significant role in their long-term
response and chromatic dispersion, significant at large strain
magnitudes [25]. Finally, the assumption that the POF is
mechanically isotropic is not necessarily a good one for POFs.
Previous studies have noted that the polymer molecules are
aligned in the drawing (axial) direction due to the fabrication
process [23]. This alignment of the molecules creates different
material properties in the axial and transverse directions.
Additionally Dugas and Maurel [26] hypothesized that after
the fibre drawing process the PMMA molecular chains tend
to move to a more stable equilibrium position through stress
relaxation. This stress relaxation causes small cracks to appear
in the radial direction. This effect would be further enhanced
at elevated temperatures. Dugas and Maurel [26] postulated
the existence of such cracks due to the fact the measured
attenuation in PMMA fibres was significantly above that of
the intrinsic material attenuation of bulk PMMA. In addition
to the assumed isotropic mechanical properties, the reduction
of the tensor g to a function of four independent constants
may therefore be an over-simplification of the actual photo-
elastic effect. A similar comment could be made for the
linear photoelastic tensor p. With only a few independent
calibrations it would be difficult to separate out the individual
tensor terms; however future studies may be required to
quantify the anisotropy, as well optimize fabrication processes
to reduce the effects of the material anisotropy on the sensor
response.
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