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Abstract
In this paper we present an optical technique based on the shadow moiré
method which allows the measurement and digitization of three-dimensional
surfaces. The technique was tested through experimental work and the
results were compared with those obtained by a coordinate measuring
machine. Moving from the conventional shadow moiré method, new
features were implemented enabling us to overcome the main shortcomings
of the conventional moiré method. These include the need to assign the
fringe order, the incapability of discerning concavity or convexity, the poor
resolution and the complexity in the signal processing. All these problems
have been solved by adding an element to generate a carrier fringe pattern to
the equipment of the conventional shadow moiré technique and processing
the obtained signal using the Fourier transform method. The proposed
technique was applied to obtain external surfaces of sheet metal stamped
parts. The experimental results show the effectiveness of this technique.

Keywords: three-dimensional surface measurement, shadow moiré
topography, reverse engineering

1. Introduction

A number of techniques are currently suitable for measuring
three-dimensional (3D) object surfaces. These are based on
both contact and non-contact procedures and present different
sensitivities. However, they require very complex set-ups,
which are troublesome to implement within an industrial
environment. In such techniques, the coordinate measuring
machine (CMM) is widely utilized; this equipment is very
effective but it is time consuming, since it performs single-
point measurements, thus requiring a great number of points
to describe completely a surface with a low level of uncertainty.

The aim of the present work is to set up an automated
user-friendly technique, using common equipment which gives
adequate accuracy to resolve out-of-plane elevations of some
micrometres over a depth range of a few millimetres. This is
the case of shape defect insurgence in fully 3D stamped sheets
of limited dimensions characterized by steep surfaces.

After an accurate review of the techniques illustrated in
the literature [1, 2], a choice was made to use out-of-plane
displacement moiré techniques [3–6].

The out-of-plane displacement can be independently
measured by shadow moiré or by projection moiré [6]. Shadow
moiré uses the reference gratings superimposed on its shadow
to form a moiré pattern. Projection moiré can be divided
into three categories according to its optical arrangement: one
projector, deformation moiré [7]; one projector, topography
moiré [8–10]; and two projector moiré [11]. The first method
uses double exposure to superimpose the original grating
onto a deformated grating to generate a moiré pattern. The
second method projects one grating onto the specimen and
this is viewed through another grating. The third method
produces the moiré fringes by two projected gratings. Shadow
moiré presents the disadvantage that the master grating has a
similar size to the measured object. Projection moiré has the
advantage over shadow moiré that no element of the apparatus
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Figure 1. Classical shadow moiré set-up.

is required to be close to the measured object. It has the
disadvantage that the optical systems are more complicated and
the individual lines of the projected gratings must be resolved
in the observation leg. To cope with the above requirements,
shadow moiré has been chosen as the measuring method
because the configuration is simple, robust and it requires only
a single image to obtain a 3D measurement.

The proposed technique combines shadow moiré and
Fourier transform (FT) profilometry [12–14], introducing a
carrier fringe pattern to obtain a phase modulated signal with
high spatial frequency, fit for the use of the FT method. It shows
some advantages in terms of procedure automation and signal
processing, compared to fringe shifting and phase stepping
shadow moiré techniques [15–22].

In the literature, several researchers have proposed
techniques to increase the accuracy and the resolution of
contouring methods [20–23], mainly based on the phase
shifting shadow moiré method. In the proposed technique a
spatial carrier pattern, generated by sloping the moiré grid,
is directly observed on an auxiliary reference block, which
is introduced in the experimental set-up. The simultaneous
measurement of the instantaneous carrier fringe pattern and
of the modulated pattern on the object surface enables us to
avoid the use of a precise mechanical rotation stage for the
grid positioning and of a precise mechanical translation stage
for the object itself. Therefore the technique requires only a
single moiré pattern, i.e. one phase distribution is acquired, to
obtain the object height distribution. The required geometrical
resolution is obtained by designing a particular set-up which
is able to provide an optical full field signal, suitable for
processing with the FT method. This technique has been
applied to obtain external surfaces of sheet metal stamped parts,
namely rectangular boxes.

In the following sections the proposed technique is
presented, highlighting the main features both of the utilized
set-up and of the ad hoc computing procedure developed by
the authors.

Figure 2. Carrier fringe pattern.

2. The experimental set-up

According to figure 1, the shadow moiré pattern represents on
the surface under investigation the loci of points of constant
out-of-plane elevation.

Fringe patterns generated by moiré techniques generally
show a low fringe frequency, not adequate for the application
of the FT method [17, 24–27]. This is due to the fact that the
surfaces under investigation are usually nearly plane and to the
poor depth of field that in practice puts limits on the surfaces
that can be investigated by these techniques. A perfectly flat
surface positioned parallel to the grid plane would show no
fringes at all. Under such circumstances a small grid slope
determines a carrier signal characterized by a fringe pattern
with parallel evenly spaced fringes. Furthermore the use of
incoherent light does not allow fringe generation when the
grid sloping angle exceeds a few degrees; in turn the use of
a coherent laser source permits us to obtain a carrier pattern
with an adequate spatial frequency, as shown in figure 2. Exact
information on the carrier pattern is obtained by placing a
reference steel block, with sharp shape and dimensions, next
to the specimen whose surfaces have to be acquired; the exact
geometrical definition of the reference block is also useful to
calibrate the geometrical scale in the acquired image. In this
way the carrier pattern will be generated on the front surface
of the reference block. This pattern, properly named carrier
pattern, is described by the expression

ic(x, y) = ic0(x, y) + ic1 cos(ωcx + ϕc) + icn(x, y) (1)

where ic0(x, y) is the intensity bias, ic1(x, y) is the intensity
modulation of the carrier signal, and icn(x, y) is the intensity
of the high frequency additive noise. x is the axis normal to
the fringe direction, and ϕc is the value of the initial phase, that
can be set equal to zero without any loss in information. ωc is
defined as

ωc = 2πnf
l

[
rad

mm

]
(2)

where nf is the number of fringes measured along the
x-direction over a segment of length l.

The original signal, associated with the shape of the
surface to measure, is then utilized to phase modulate the
carrier signal in figure 2, obtaining the modulated signal
im(x, y), which is shown in figure 3, expressed by

im(x, y) = im0(x, y) + im1(x, y)

× cos[ωcx + ϕc + ϕ(x, y)] + imn(x, y) (3)
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Figure 3. Modulated fringe pattern.

with notations 0, 1 and n having the same meanings as in
equation (1). The term ϕ(x, y) contains the information about
the topography of the object surface.

The utilized experimental set-up, shown in figures 4(a)
and (b), consists of the following items:

• a 35 mW He–Ne laser light source;
• a moiré grid on a glass plate (Graticules mod. SAG4) with

rectilinear parallel fringes with pitch p = 0.127 mm;
• a prismatic block to hold the specimen (painted white matt

to visualize the carrier optical signal on the front surface);
• a CCD B/W digital camera (SVS-Vistek CA085A10)

(1280 × 1024 pixel);
• a camera lens Nikkor AF Micro 70–210 mm, 1:4 D;
• a Pentium III class PC.

3. Signal processing

As reported in the previous section, the full field data on the
out-of-plane elevations h′(x, y) to be measured are related to
the ϕ(x, y) term in equation (3). Computing a FT of Im(x, y),
after a proper choice of the frequency of the carrier signal,
i.e. proper inclination of the moiré grid, a frequency spectrum
Im(ω) is obtained of the modulated signal im where the side
bands of the low-frequency background signal and of the high-
frequency additive noise are separated from the frequency band
of the signal of interest, as is illustrated in figure 5.

Under these conditions the average component of the
signal and the high-frequency noise content can be effectively
removed, obtaining

ψ(x, y) = ωcx + ϕ(x, y) (4)

which carries the measurement information.
At each point ψ(x, y) is proportional to the distance

h′(x, y) of the object surface from the moiré grid in its sloped
position; such a function is, at a different scale, the full
field information about the fringe order N(x, y). The spatial
frequencyωc is independently obtained from the carrier pattern
visualized on the front surface of the reference steel block (see
figure 4(a)).

3.1. Fourier transform method

Since a column-ordered data processing has been developed,
for reason of simplicity, in the following section only the
direction normal to the fringes (i.e. parallel to the x-axis) is

taken into account, so that only processing of one column is
described.

Light intensity along the x-direction, according to the
notation utilized in equation (3), is rewritten as

im(x) = i0(x) + i1(x) cos[ψ(x)] + in(x). (5)

Removing the i0 and in terms, under the above assumptions,
the in-phase signal ip will be

ip(x) = i1(x) cos[ψ(x)]. (6)

In fact, no exact information on the local amplitude of the light
intensity i1 is available to obtain directly the phase information
ψ(x). It is worth noting that ψ(x) could be easily calculated,
removing the influence of the local value of the light intensity
i1(x), from the expression

ψ(x) = arctan

[
iq(x)

ip(x)

]
= arctan

{
i1(x)sin[ψ(x)]

i1(x) cos[ψ(x)]

}
(7)

if the in-quadrature signal iq were known, where

iq(x) = i1(x) sin[ψ(x)]. (8)

The information related to ψ(x) would be obtained as a
periodic function, defined in the range [−π/2, π/2]. The
variation range of ψ(x) usually exceeds the mentioned range.
Therefore the discontinuous phase ψ ′(x) is obtained from
equation (7). Applying an unwrapping procedure to ψ ′(x),
the continuous phase ψ(x) can be extracted as

ψ(x) = ψ ′(x)± kπ (9)

by incrementing or decrementing the k index according to the
modulo π jump in the ψ ′(x) value.

3.2. Procedure steps

Fringe pattern analysis with the FT method enables the
discontinuous phase along profiles and surfaces to be obtained
in a semi-automated way, requiring just few indications by the
operator.

Moving from equations (5) and (6), the expression of the
light intensity can be rewritten in the form

im = i0 + ip + in = i0 + 1
2 i1[(cosψ + j sinψ)

+ (cosψ − j sinψ)] + in = i0 + i + i + in (10)

where
i = 1

2 i1(cosψ + j sinψ) = 1
2 i1ejψ (11)

according to Euler’s formula. In equation (10) the overbar
denotes the conjugated complex number. In equation (11)
the complex number is expressed utilizing both the Cartesian
and the polar notation; the real and the imaginary parts are
respectively coincident with the in-phase signal (6) and with
the in-quadrature signal (8). The aim of the method is to
obtain these parameters through proper transformations in the
frequency domain, in order to evaluate the phase signalψ(x, y)
from equation (7).
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Figure 4. Proposed experimental set-up.
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Figure 5. Obtained signal spectrum.

(This figure is in colour only in the electronic version)

The main steps of the method can be summarized as
follows.

3.2.1. FT evaluation of the acquired signal. On the basis of
the well-known linearity properties of FT, it can be written

F [im] = Im(ω) = I0(ω)+I (ω−ωc)+ Ī (ω+ωc)+In(ω). (12)

3.2.2. FT evaluation of the in-phase signal. Since i0, i1 and
ϕ(x, y) often vary rather slowly with respect to the carrier
signal, their spectral contents will lie apart from the carrier
frequencyωc, as shown in figure 5. In this way, I0(ω) and In(ω)
can be easily removed multiplying Im(ω) (12) by a proper
band-pass filter function�(ω) [28], whose characteristics have
to be selected by the operator. The choice of the bandwidth
limits, aiming to preserve the spectrum content among ω1m

and ω1M , results immediately by the observation of the signal
spectrum in figure 5. This operation determines no losses of
information in the core signal and in turn it removes from
Im(ω) those terms corresponding to ineffective phenomena
such as the non-uniform reflectivity of the object surfaces and
the high-frequency noise (electronic noise etc). The level of

intervention of the operator is then limited and elementary; this
makes the method semi-automatic.

In this way, the filtering operation gives an approximated
FT of the in-phase signal (6) in the form

F [ip] = Ip(ω) = I (ω − ωc) + Ī (ω + ωc) ∼= I ′
p(ω)

= Im(ω)�(ω). (13)

Here �(ω) is a rect function of width (b − a), centred at
(b− a)/2, where a and b respectively are the lower and upper
bandwidth limits of the filter �(ω).

The term I ′
p(ω) (13) is an approximation of the FT of the

in-phase signal since F [i(x)] = I (ω−ωc) can have non-zero
terms outside the range [a, b], which can be neglected in the
proposed application.

3.2.3. FT evaluation of the in-quadrature signal. To obtain
ψ(x), as shown in equation (7), the in-quadrature signal iq is
necessary. In the literature, two different methods have been
reported [12, 25–27] which have been demonstrated to lead
to the same results [29]. They provide an analytical signal
ia(x), whose real part is the in-phase signal of interest and the
imaginary part is the wanted in-quadrature signal. In [29], by
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the use of the Hilbert transform, the analytical signal has been
obtained as expressed by the transformation

Ia(ω) = 2U(ω)I ′
p(ω)

∼= 2I (ω − ωc) (14)

where U(ω) is the classical unit step function. In this way,
having I ′

p(ω) (13), which is the best available approximation
of the FT in-phase signal, the Hilbert transform [27, 29] was
therefore applied, giving an analytical signal Ia(ω) as a result.

Once the inverse FT of Ia(ω) is calculated, the complex
signal ia(x) can be obtained as

ia(x) = F−1[Ia(ω)] ∼= 2i(x) = i1(cosψ + j sinψ). (15)

3.2.4. Evaluation of the discontinuous phase. The
discontinuous phase of the signal, denoted by ψ ′(x), is simply
obtained as

ψ ′(x) = arctan

{
Im [ia(x)]

Re [ia(x)]

}
∼= arctan

[
iq(x)

ip(x)

]
. (16)

It should be observed that the phase information associated
with I ′

p(ω) is a monotonic increasing function, since it is
related to the point-by-point distance between the moiré grid
and the object surface, due to the frequency modulation
operated when the carrier frequency is introduced (i.e. sloping
the moiré grid). Hence, applying the unwrapping algorithm
to the ψ ′(x) signal gives the continuous phase function ψ(x).
Such a procedure is repeated column-wise to get the overall
phase signal in the x, y domain. Then, with

ψ(x, y) = ϕ(x, y) + ωcx (17)

it is possible to obtain the desired signal ϕ = ϕ(x, y) from
the above equation by subtracting the experimentally known
quantityωcx from the functionψ ′(x, y). The carrier frequency
valueωc is separately measured from the acquired image of the
fringe pattern displayed on the front surface of the prismatic
block, used as reference (figure 2).

The proposed technique therefore enables continuous
phase information to be obtained over the whole fringe pattern
of interest, in a semi-automated way, by simultaneously
performing the operation of centre fringe localization, fringe
order numbering and overcoming the well-known limit of
discerning concavity and convexity.

3.2.5. Phase-to-height conversion. With reference to
figure 1, the known relation between the phase value ϕ and
the distance of the observed point from the moiré grid, once
the carrier signal has been removed (i.e. the grid is supposed
to be vertical), is expressed as

h = pN

tan α + tan β
. (18)

With N = ϕ(x, y)/2π , where α and β are as represented in
figure 1, equation (18) becomes

h = pϕ(x, y)

2π(tan α + tan β)
. (19)

The capability of the method for full field resolution of
fractional fringe orders comes out clearly, with a substantial

improvement in measurement resolution compared to the
classical shadow moiré method, by processing just one image
for each object surface.

Equation (19) can be utilized if the vision angle β and
the lighting angle α (see figure 4(b)) do not vary over the
entire object surface. To satisfy this condition, the geometrical
characteristics L and D of the experimental set-up (L denotes
the working distance and D the distance between the CCD
camera and the light source as shown again in figure 4(b))
were chosen according to the expression

tan α + tan β = D

L
. (20)

Otherwise, setting L/D 	 1 to be the condition of an infinite
point of view can be assumed.

4. Maximum range of measurement

The choice of the carrier frequencywc value should allow us to
bring the frequency content Ip(ω) to a frequency range apart
from those of I0(ω) and In(ω), in order to effectively apply the
FT method. This condition can be observed in figure 5.

This constraint can be expressed by a relation containing
the value of the carrier frequency, a few geometrical parameters
of the experimental set-up indicated in figure 4(b) (namely D
and L) and a parameter depending on the geometry of the
surface to measure.

With reference to the spectrum of the acquired signal,
where wb denotes the highest frequency of the average
component I0(ω), w1m denotes the lowest frequency of the in
phase signal Ip(ω), w1M denotes the highest frequency of the
in phase signal If (ω) and wnm denotes the lowest frequency
of the noise signal In(ω), for an effective filtering action [28]
the following conditions have to be verified:

ω1M < ωnm

ωb < ω1m.
(21)

After some algebra (see the appendix) the requested filtering
conditions result in the inequality∣∣∣∣∂h∂x

∣∣∣∣
M

<
1

3
fc
Lp

D
. (22)

5. Evaluation of uncertainty

The relation between the distanceh(x, y)of the generic point in
the object surface from the reference grid (when in the vertical
position) and the value of the argument ϕ(x, y) of the circular
function is

h(ψ, p, α, β) = N(x, y)p

tan α + tan β
= ψ(x, y)p

2π(tan α + tan β)
(23)

where ψ(x, y) is the argument value of the circular function,
evaluated with the procedure described above, and p is the
moiré grid pitch. α is the angle between the direction of
the light source and the normal to the vertical surface of the
reference block, and β is the angle between the CCD axis and
again the normal to the vertical surface of the reference block.

With reference to input-independent variables, in order to
evaluate the combined uncertainty uc(h) [30] on the parameter
h(x, y), contributions from the following elements must be
taken into account:
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(a) pitch p of the moiré grid;
(b) measurement of the unwrapped phase ψ(x, y) (the value

of the discontinuous phase, which is effectively acquired,
has to be considered);

(c) measurement of the angle α;
(d) measurement of the angle β;
(e) uncertainty introduced by the geometric interpolation due

to the different x × y dimensions of the CCD sensor and
of the array of the A/D conversion board;

(f) uncertainty introduced by the A/D conversion;
(g) uncertainty due to the electronic noise.

In the developed application the uncertainty sources (a)–(d)
have been taken into account, since they were found to be
significant, while (e)–(g) were negligible. In particular:

(e) such a source is not relevant since the matrix dimensions
of both the CCD sensor and the A/D conversion board
were very similar, so that mismatch was negligible;

(f) the contribution to uncertainty related to the A/D
signal conversion, given the linear variability of the
phase information within a period of the sine function,
depends on the minimum number of pixels utilized to
digitize the highest frequency sinusoidal component of
the measurement signal—the spatial sampling frequency
utilized to acquire the images was about 60 pixels mm−1;

(g) given both the stationary properties of the measurements,
the long acquisition time interval and the high S/N
ratio of the CCD camera utilized, the contribution to
uncertainty due to the electronic noise was neglected—
this assumption was thoroughly confirmed by the analysis
performed over several different images.

On the basis of equation (23), relating the dependent
variable h to the parameters ψ , p, α and β, the sensitivity
coefficients to be utilized in the uncertainty evaluation have
been obtained as

∂h

∂ψ
= p

2π(tan α + tan β)
(24a)

∂h

∂p
= ψ(x, y)

2π(tan α + tan β)
(24b)

∂h

∂α
= − ψ(x, y)p

2π(tan α + tan β)2 cos2 α
(24c)

∂h

∂β
= − ψ(x, y)p

2π(tan α + tan β)2 cos2 β
. (24d)

The standard uncertainty values to calculate the combined
uncertainty are reported below.

The evaluation of the standard uncertainty u(ψ) has to be
developed through experiments. In figure 2 the fringe field
of the carrier signal is shown; as already mentioned, it can be
approximated by a sinusoidal function as

ic(x, y) = ic cos[ψ(x)]. (25)

The surface on which the fringe pattern occurs is sharply
flat and therefore it was used as a measurement reference.
In order to evaluate the discrepancies between the m × n

performed measurement (where m and n are the dimensions
of the acquired image matrix) and the surface of the reference
plate, local values of phase ψ were obtained by the analysis
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Figure 6. Phase error distribution.

of both the experimental fringe pattern and the theoretical
field generated on a perfectly flat surface. The frequency
distribution of the obtained error is reported in figure 6; it is
important to observe that the error distribution is unimodal with
an average value close to zero. Assuming a normal distribution,
the standard uncertainty was then calculated as the standard
deviation of the distribution itself, obtaining

σ = 0.1310 rad = u(ψ) = 0.1310 rad. (26)

The resolution of the Zeiss Jena microscope, used to measure
the moiré grid pitch, was found to be equal to 0.0005 mm.
Having no uncertainty data provided by the manufacturer, a
rectangular distribution was assumed. The calculated standard
uncertainty is then

u(p) = 0.68 × 0.0005 = 0.000 34 mm. (27)

The estimated error limit on the setting of both the vision angle
(β) and the lighting angle (α) (figure 1) is 0.5◦. Again, for these
two parameters a rectangular distribution is assumed. In this
way, the calculated standard uncertainty is

u(α) = u(β) = 2

3
0.5

π

180
rad = 0.0059 rad. (28)

The above reported standard uncertainty values for the
influence quantities taken into account, which are assumed
to be independent, allow the combined standard uncertainty
uc(h) to be evaluated utilizing the known expression

uc(h) =
√√√√ 4∑

i=1

(
∂h

∂xi

)2

u(xi)2 = 0.0107 mm. (29)

The proposed measurement technique allows maximum levels
of combined standard uncertainty uc(h) of about 10 µm to be
obtained. Assuming a coverage factor k = 2, the extended
uncertainty is then equal to

U = kuc(h) = 21.4 µm. (30)
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Figure 7. Specimen design (all the dimensions are in millimetres).

6. Application

The proposed measurement technique was applied to the
evaluation of the whole lateral surface of a deep drawn steel
component, whose geometry and nominal dimensions are
reported in figure 7. The peculiar lateral contour of the
considered specimen was acquired in eight different images.

A procedure aimed at assembling the different object
surfaces was set up in order to obtain the complete lateral
surface of the fully 3D stamped part. With this purpose an
octagonal section reference block was manufactured (figure 8)
with the aim both to allow a sharp determination of the carrier
signal and to evaluate the rotation angle needed to assemble
the eight single object surfaces to obtain the original whole
specimen lateral surface. A typical fringe pattern field is
reported in figure 9, including also the carrier fringe pattern,
visualized on the reference block.

Figure 9. Single acquired modulated fringe patterns.

a

bcd

e

f g h

Figure 8. Reference block design (all the dimensions are in
millimetres).

In the subsequent image acquisition of each portion of the
lateral contour of the investigated stamped part, the relative
rotation angle of each portion was exactly determined, getting
rid of the overlapping areas. It should be observed that each
single acquired portion presents limited overlapping areas with
the two contiguous images.

Basically, in the rebuilding procedure, a preliminary rigid
translation of the images was operated by utilizing proper
markers placed on the surfaces themselves. Then, one surface
was fixed in the space and the subsequent surface was step-
wise rotated. The procedure was iterated, by the use of a least-
squares fit technique [31], until a perfect fit of each couple of
contiguous overlapped areas was obtained. In other words,
assuming the reference system of the first image as the global
one, all other local reference systems were roto-translated to
coincide with the global one.

The eight images acquired for the evaluation of the
total lateral surface of the drawn part are reported in
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Figure 10. Rebuilt total lateral surface of the specimen.
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Figure 11. CMM and proposed technique results at z = 17.5 mm.

figures 9(a)–(h). In figure 10 the final rebuilding of the lateral
surface of the specimen is shown.

Finally the obtained results were compared with
measurements done at the Department of Mechanics and
Management Engineering (Padua University, Italy) by CMM
Zeiss Prismo Vast 7 HTG. In particular in figure 11
the comparison between the obtained profile and the
measurements provided by the contact technique is reported
for a horizontal measurement section at z = 17.5 mm from the
bottom internal surface of the specimen. A global very good
overlapping is observed. However, a closer examination shows
slight discrepancies near the corners of the specimen. Such
mismatching is mainly due to the utilized rebuilding procedure.
The same comparison was repeated for each single basic
surface and a satisfying agreement was obtained. In particular,
figure 12 reports a quantitative numerical comparison between
the results obtained with the proposed system and the CMM
ones taken along one horizontal profile (z = 17.5 mm)
belonging to the front long edge (figure 9(g)). This result
is consistent with the evaluated uncertainty; it confirms the
effectiveness of the method to measure and digitize with the
required accuracy flat surfaces characterized by small shape
errors.
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Figure 12. Quantitative numerical comparison between the
obtained and the CMM results (image 9g).

7. Conclusions

In this paper, an optical technique to measure and digitize
3D surfaces has been developed. The technique, moving
from a typical shadow moiré set-up, implements a few
variations in order to introduce a carrier fringe pattern to
significantly improve spatial resolution, overcoming some
inherent shortcomings in the conventional method. The
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proposed technique appears simpler than others found in the
literature.

Such characteristics enable the developed technique to be
very suitable for the measurement of stamped parts, usually
characterized by large flat areas, assuring proper resolution
and low level of uncertainty. In this way it could be utilized
in different fields such as reverse engineering applications
and shape defect detection. Furthermore, its non-contact
nature guarantees the absence of any interaction (instrument–
measurand) which could alter the measurand itself.

Moreover, a specific image processing software was
developed in order to obtain measurement data from each of the
acquired fringe pattern fields. A proper rebuilding procedure
was then set up with the aim to merge the single digitized
surfaces into the whole lateral surface of the investigated
specimen.

The obtained results were compared with measurement
results given by a CMM, showing an appreciable agreement.

The proposed technique appears to be promising for
measurement and digitization of soft material components.
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Appendix

To ensure an effective filtering operation, the following
inequalities must be satisfied

ω1M < ωnm

ωb < ω1m.
(A.1)

This in turn can be expressed as

ωc +
∂ϕ

∂x

∣∣∣∣
M

< n

(
ωc +

∂ϕ

∂x

∣∣∣∣
m

)
n = 2, 3, . . . ,

ωb < ωc +
∂ϕ

∂x

∣∣∣∣
m

.

A more severe condition is represented by the inequalities

ωc +
∂ϕ

∂x

∣∣∣∣
M

< n

(
ωc − ∂ϕ

∂x

∣∣∣∣
m

)
n = 2, 3, . . . ,

ωb < ωc − ∂ϕ

∂x

∣∣∣∣
m

(A.2)

and after a few simple mathematical steps the conditions can
be formalized as

∂ϕ

∂x

∣∣∣∣
M

< ωc

(
n− 1

n + 1

)

∂ϕ

∂x

∣∣∣∣
M

<
ωc

2

(A.3)

with the assumptionωb � ωc. In expression (A.3) (∂ϕ/∂x)|M
has been substituted to (∂ϕ/∂x)|m.

Since the ratio (n − 1)/(n + 1) monotonically increases
with n, as

lim
n→+∞

n− 1

n + 1
= 1 (A.4)

with a minimum (non-zero) value (1/3) at n = 2, the previous
set of inequalities in expression (A.3), are rewritten as

∂ϕ

∂x

∣∣∣∣
M

<
ωc

3
∂ϕ

∂x

∣∣∣∣
M

<
ωc

2

⇒ ∂ϕ

∂x

∣∣∣∣
M

<
ωc

3
. (A.5)

Moving from the expression in equation (23)

h = pϕ

2π(tan α + tan β)
= pϕL

2πD
(A.6)

the expression of ϕ(x) becomes

ϕ = ϕ(x) = 2π
D

pL
h(x). (A.7)

Introducing the conditions formulated in equation (A.5), it
follows that

∂ϕ

∂x

∣∣∣∣
M

= 2π
D

pL

∂h

∂x

∣∣∣∣
M

<
ωc

3

∂h

∂x

∣∣∣∣
M

<
2πfc

3

Lp

D

1

2π
= 1

3
fc
Lp

D
⇒ ∂h

∂x

∣∣∣∣
M

<
1

3
fc
Lp

D
(A.8)

where fc = ωc/2π .
The condition to be satisfied for a correct application of

the FT method to the measured signal of interest has been
obtained. It ensures the effective separation between the
signal bandwidth carrying the information about the phase
distribution along the measured surface and both the low-
frequency bandwidth components (intensity bias) and the high-
frequency bandwidth ones (unwanted high-frequency noise)
which carry no information concerning the surface under
investigation. Therefore, once the value of the parameter ∂h

∂x

∣∣
M

is known, the experimental set-up parameters (L, D, p and
fc) must be chosen accordingly, in order to guarantee that the
condition expressed in equation (A.8) is satisfied.

Within certain limits, this condition can be satisfied
by simply increasing the grid slope, with no experimental
complication of the set-up. This confirms the adaptability of
the proposed technique.
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moiré contouring Appl. Opt. 23 1454–9

[9] Halioua M, Krisnamurty R S, Liu H and Chiang F P 1983
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