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Abstract
A multistep inverse solution for two-dimensional electric field distribution is
developed to deal with the nonlinear inverse problem of electric field
distribution in relation to its boundary condition and the problem of
divergence due to errors introduced by the ill-conditioned sensitivity matrix
and the noise produced by electrode modelling and instruments. This
solution is based on a normalized linear approximation method where the
change in mutual impedance is derived from the sensitivity theorem and a
method of error vector decomposition. This paper presents an algebraic
solution of the linear equations at each inverse step, using a generalized
conjugate gradients method. Limiting the number of iterations in the
generalized conjugate gradients method controls the artificial errors
introduced by the assumption of linearity and the ill-conditioned sensitivity
matrix. The solution of the nonlinear problem is approached using a
multistep inversion. This paper also reviews the mathematical and physical
definitions of the sensitivity back-projection algorithm based on the
sensitivity theorem. Simulations and discussion based on the multistep
algorithm, the sensitivity coefficient back-projection method and the
Newton–Raphson method are given. Examples of imaging gas–liquid
mixing and a human hand in brine are presented.

Keywords: electrical impedance tomography, sensitivity theorem, inverse
solution, conjugate gradients method

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Geselowitz (1971) and Lehr (1972) derived the change of
mutual impedance in relation to a change of conductivity in
a four-terminal system used for impedance plethysmography;
this is referred to as the lead theorem or the sensitivity
theorem (Murai and Kagawa 1985, Yorkey et al 1987).
Murai and Kagawa suggested a linear approximation, based
on ignoring the high-order terms with respect to �σ (see
appendix A.1). This linear approximation enables the use
of iterative techniques to solve the nonlinear problem in

electrical impedance computed tomography. Murai and
Kagawa also reported an iterative method designed to solve the
nonlinear inverse problem. The sensitivity theorem has been
widely used for image reconstruction in electrical impedance
tomography (EIT) (Williams and Beck 1995), particularly the
single-step method based on the sensitivity coefficient back-
projection (SBP) method (Kotre 1994) and the Newton one-
step reconstruction (NOSER) method (Cheney et al 1990).
In industrial applications of EIT, reconstructed images are
affected by errors in electrode modelling and by measurement
noise. In practice, it is difficult to make the electrode system
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fully consistent (variations in geometry, electrode–electrolyte
interface, installation environment, etc). The quality of
data acquired in industrial environments often deteriorates
because of industrial and instrument noise. Normalization
or regularization procedures are therefore employed in almost
all back-projection algorithms. Based on the expressions for
mutual impedance and the change in mutual impedance in
the sensitivity theorem, a normalized expression, as given
in equation (1) (Wang et al 1999), can be derived from
dividing (A.5) by (A.6) (see appendix A.1). Equation (1) is
used as a core equation for the following discussion

�Vj

Vj

≈ −
∑w

k=1 �σksj,k(σk)∑w
k=1 σksj,k(σk)

(�σk � σk, j = 1, 2, . . . , P ) (1)

where j is the location of the measurement-projection, k is the
pixel number, sj,k denotes the sensitivity coefficient at pixel k
under the measurement-projection j , P denotes the maximum
number of measurements, w denotes the maximum number
of pixels, σk and �σk are the conductivity and conductivity
change respectively at pixel k, and Vj and �Vj refer to the
reference voltage and the voltage change at measurement-
projection j .

A number of multistep iterative methods for solving the
inverse problem of a nonlinear electric field using the solution
of a linear approximation at each step have been reported
(Boone et al 1997), in particular the compensation methods
based on the sensitivity theorem (Murai and Kagawa 1985)
and the Newton–Raphson (NR) method (Yorkey et al 1987).
The artificial errors or imaging divergence introduced into
the reconstructed conductivity distribution are noted as the
product of the ill-conditioned matrix in the inverse problem.
The artificial errors may be minimized by applying some
regularization techniques to the solution procedure, such as
the singular value decomposition (SVD) method and Akaike’s
information criterion (Akaike 1974), the Marquardt method
(Marquardt 1963) and the Tikhonov regularization method
(Vauhkonen et al 1998, Lionheart 2001).

The conjugate gradients (CG) method, based on its
convergence characteristics, is one of the best known iterative
methods (Reid 1971) for solving a large system of linear
equations with an N × N symmetrical and positively defined
sparse coefficient matrix. Application of CG methods
in tomography techniques have been reported but these
applications were purely for solving linear equations (Woo
et al 1993, Arridge and Schweiger 1998, Player et al 1999).
However, in EIT, not only an ill-conditioned matrix but also the
linear assumption can result in the problem of divergence, since
the linear approximation is only valid for a small conductivity
change. Instead of looking for a precise solution in the use of
direct methods, such as the Cholesky decomposition method,
the CG method searches for a minimized residual by applying a
number of iterations. The use of CG with controlled iterations
in each linear inverse step, as reported in this paper, can produce
an optimized approximation for solving the nonlinear problem
with multisteps. The solution procedure in CG, based on
vector operation and updating, may also provide an attractive
opportunity for the use of parallel and vector computing (Carey
1989) for three-dimensional (3D) EIT imaging.

This paper presents a multistep inverse solution based on
an approximate solution of the linear equation (1) using a

generalized conjugate gradients (GCG) method and a method
of error vector decomposition. The mathematical and physical
definitions of the sensitivity back-projection (SBP) algorithm
are also reviewed in order to understand the advantages,
suitability and impacts of applying the SBP further.

2. Inverse solutions

2.1. Sensitivity theorem-based inverse solution using
conjugate gradients methods

The ‘absolute value’ reconstruction algorithms, such as the
NR method and the compensation method, work very well
with contamination-free data. However, their reconstruction
convergence can often not be achieved if the data come with
a certain level of electrode error and instrument noise. To
deal with noisy data in industrial applications, the normalized
expression of the sensitivity theorem, as set out in equation (1),
is adopted for regularization of the sensitivity matrix and
reduction of the electrode error in a multistep inverse solution.
The problem of conductivity distribution is of a nonlinear type.
As the sensitivity theorem is based on a linear approximation
with the condition �σ � σ , an iterative approach is therefore
employed in many cases to approach the true value. The
procedures for both the forward and inverse solution have
to be employed in the multistep solution for updating the
conductivity and sensitivity matrices and error estimation,
resulting in a step solution.

Forward solution. The forward solution in the multistep
inverse solution is employed for producing an error vector for
the inverse solution in each step. It also updates the sensitivity
matrix for the inverse solution in the next step. The sensitivity
matrix can be derived from the nodal voltages obtained in
the forward solution (Murai and Kagawa 1985, Yorkey et al
1987). The actual current value used in the solution is not
significant, as long as the value does not vary throughout the
whole process, since only relative changes in the boundary
voltage measurements are employed.

A finite element method (FEM) model presenting a
two-dimensional (2D) cross-section of a process vessel with
Neumann boundary conditions in addition to a single Dirichlet
condition to avoid singularity can be solved by equation (2)
(Murai and Kagawa 1985, Yorkey et al 1987)

Y v = c (2)

where Y , v, c denotes the global admittance matrix, the nodal
voltage vector, and the nodal current vector respectively.

The ordinary CG method ((A.12) in appendix A.2) can be
applied to solve the linear equations in the forward problem
efficiently, since the global admittance matrix is a symmetrical
and positively defined sparse matrix (Abdullah 1993). The
construction method of the global admittance matrix was
detailed by Murai and Kagawa (1985).

Inverse solution. Based on the expression given by
equation (1) and the assumption of a homogeneous
conductivity distribution, σ0, at the time of taking reference
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V, the inverse solution in the multistep approach is given by
equation (3) in the form of matrix notation

γ = −s̄−1 · e (3)

where the elements of the normalized sensitivity matrix, s̄−1

at the iteration n, the vector of relative conductivity change,
γ, at pixel k, and the vector of relative boundary change, e,
at projection j are denoted as equations (4)–(6) respectively.
The conductivity is updated by equation (7):

s̄
(n)
j,k = sj,k(σ̂

(n)
k )∑w

k=1 sj,k(σ̂
(0)
k )

(4)

γ
(n+1)
k = �σ̂

(n+1)
k

σ̂
(0)
k

(5)

e
(n)
j = �V

V
= V ′

j (σ
′) − Vj (σ )

Vj (σ )
= V ′

j (σ
′)

Vj (σ )
− Vj (σ )

Vj (σ )
(6)

σ̂
(n+1)
k = σ̂

(n)
k (1 + γ

(n+1)
k ) (7)

where σ and σ ′ are the actual conductivity distributions at the
moment of acquiring the reference voltageV and measurement
V ′. σ̂

(0)
k and σ̂

(n)
k are the estimated conductivity values for

simulating σ and σ ′.
Since conductivity is inversely related to voltage,

conductivity updating can also be based on an approximation
of the inverse relation (equation (8) based on 1+x ≈ 1/(1−x)

at x < 1), which can improve the convergence speed for both
positive and negative changes in conductivity

σ̂
(n+1)
k ≈ σ̂

(n)
k

1 − γ
(n+1)
k

. (8)

Noting the validating condition �σ � σ , the sj,k(σ̂
(0)
k ) in

response to uj (σ̂
(0)
k ) as well as the regularization procedure in

the linear approximation equations (1), (6) thus decomposes
to

e
(n)
j = V ′

j (σ
′)

Vj (σ )
− u′

j (σ̂
(n)
k )

uj (σ̂
(0)
k )

(9)

where uj (σ̂
(0)
k ) and u′

j(σ̂
(n)
k ) are the computed reference

voltage and measurement voltage with respect to the
conductivity distribution σ̂

(0)
k and σ̂

(n)
k . At the initial stage, the

u′
j(σ̂

(n)
k ) is the same as the uj (σ̂

(0)
k ), therefore equation (9) is

equivalent to equation (6). After a number of steps of updating
the conductivity distribution and the sensitivity matrix, the
decomposed relative boundary change or error vector given by
equation (9) will be minimized, which means that the computed
relative change is close to the measured relative change. It is
thought that the nonlinear inverse solution has been reached
when the norm of the error vector is sufficiently small.

The error function decomposition method, which
examines the differences between relative changes in the
measured and simulated voltages, has the following benefits:

• It transforms the relative changes from a measurement
domain to a simulation domain, so can greatly reduce the
effect of electrode modelling errors (e.g. the errors due
to the inconsistency of electrode size, geometry, position,
etc (Wang et al 1999)).

• It may eliminate, or minimize, the effect of instrumenta-
tion/environmental errors (e.g. bias, gain error, etc).

• It can subtract the high contrast of the background (e.g. a
metal impeller in mixing process) from the reconstructed
image and therefore highlight the low-contrast change in
the region interest.

• It can ‘transform’ 3D measurement patterns to 2D mea-
surement patterns in order to adapt a 2D reconstruction
algorithm (due to the use of relative changes).

As the sensitivity matrix is, in its general form, neither
symmetrical nor square, the ordinary CG method and the GCG
method (of biconjugate gradients or minimum residuals) could
not be directly applied for the solution of equation (3). For
an unsymmetric M × N sensitivity matrix, s̄(M 
= N), the
minimization function shown as equation (11) below can be
derived by minimizing equation (10):

f (γ ) = 1
2‖s̄ · γ + e‖2 (10)

∇f = r0 = s̄T · (s̄ · γ + e). (11)

The CG method may be applied to the transformed
equation (11) without forming s̄Ts̄ explicitly (Jennings and
McKeown 1992) or using (A.12) (in appendix A.2) except
where uk is replaced by equation (12).

uk = AT(Apk). (12)

Although this transformation makes the GCG methods
applicable for the solution of equation (3), it should be noted
that s̄Ts̄ is much more ill-conditioned than s̄. A large
condition number increases the number of iterations required
in the use of the GCG, and limits the accuracy by which
a solution can be obtained (Press et al 1992). Moreover,
due to the linear assumption in equation (1), if the relative
change in conductivity is large there could be significant
artificial errors. The pixels/areas most likely to be affected
are those with small eigenvalues or low sensitivity. In fact, the
regularization factor used in direct solution methods, such as
Cholesky decomposition, produces an approximate solution
with less effect on these pixels at each inverse step, thus
minimizing such artificial error. The regularization factor
generally decreases when the solution is close to the true value
or the linear approximation is more validated (Yorkey et al
1987). Unlike direct methods for a precise solution, the GCG
method searches for the minimized residual by applying a
number of iterations. An approximate solution for equation (1)
can always be made at each step, if a certain residual is kept to
within a limited number of iterations. The nonlinear solution
can be reached by multistep inversion, with either a fixed
iteration number or a generally increased number of iterations
at each inverse step according the size of the errors. Correct
selection of the number of iterations can speed up the rate of
convergence and reduce the artificial noise caused by the linear
assumption and the ill-conditioned sensitivity matrix; this will
be further discussed in the next section. For convenience in
this discussion, the acronym SCG (sensitivity theorem based
inverse solution using CG methods) is employed.
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The inverse solution is obtained following the procedure
given below.

(1) Pre-compute the assumed boundary voltage vector and the
sensitivity matrix

u(σ̂(0)
) s(σ̂(0)

).

(2) Measure the boundary voltage profiles and produce the
relative change vector

ηj = V ′
j (σ

′)

Vj (σ )
(j = 1, 2, . . . , P ).

(3) Preset the iteration control factors for the minimum
convergence error, εs , the maximum number of inverse
steps, δs , and the maximum number of iterations, δc, for
the GCG.

(4) Initiate the first estimations for the error function vector
and the conductivity vector

e(1) = [
e
(1)
1 , . . . , e

(1)
P

]T
e
(1)
j = ηj −

P∑
j=1

ηj/P

σ̂ (1) = [
σ̂
(1)
1 , . . . , σ̂ (1)

w

]T
σ̂
(1)
k = σ0

/ P∑
j=1

ηj/P .

(5) Normalize the sensitivity matrix (the iteration steps n go
from 1 to δs)

s̄
(n)
j,k = sj,k(σ̂

(n)
k )∑w

k=1 sj,k(σ̂
(0)
k )

.

(6) Solve the inverse problem using the GCG method and
then update the relative change in the conductivity vector
(maximum iteration = δc)

γ = −s̄−1 · e.

(7) Update the conductivity vector

σ̂(n+1) = σ̂(n) · (1 + γ (n+1)).

(8) Solve the forward problem using the ordinary CG method
to update the boundary voltage vector and sensitivity
matrix

u(σ̂(n+1)
) s(σ̂(n+1)

).

(9) Update the error vector

e
(n+1)
j = ηj − u′

j (σ̂
(n+1)
k )

uj (σ̂
(0)
k )

.

(10) Check whether one of the control factors has been reached

‖ē‖ � εs or Steps � δs?

(11) If convergence or the maximum number of iterations is not
reached, the process jumps to step (5) until one of these
conditions is reached.

2.2. Definition of the sensitivity coefficient back-projection
algorithm

The sensitivity coefficient back-projection approximation
method (SBP), using a normalized transpose matrix of the
sensitivity matrix obtained from (A.7) (in appendix A.1) as
a weighting matrix, was first defined by Breckon and Pidcock
(1987) and refined for EIT by Kotre (1994). The approximation
has been successfully applied to many industrial applications
(Williams and Beck 1995), because of its simplicity, good
antinoise capability and fast solution speed. Lionheart (2001)
has explained how the mathematical approximation can be
made by applying a value of zero as the initial estimate in
the first iteration of Landweber’s iterative method (Landweber
1951) and why the crude reconstruction algorithm (SBP) can
be derived ‘using the transpose as an approximate inverse’.
To solve Ax = b, the nth Landweber iteration gives the next
estimate as

xn = xn−1 − τAT(A · xn−1 − b) (13)

where τ is a diagonal relaxation matrix in which its diagonal
parameter satisfies 0 < τjj < 2/λ2

j and λ is the eigenvector of
A. If x0 = 0 is the initial estimate, then the first approximation
to equation (13) is τATb. A version of Landweber’s iterative
method has been used for capacitance tomography (Yang et al
1999).

The transformed matrix, s̄Ts̄, presents the pixels’
correlation in EIT, which is the same as that presented by
the Hessian matrix in the NR method. If none of the pixels
is correlated, the Hessian matrix would be a diagonal matrix
(Woo et al 1993). However, there are cross-correlations
are among all pixels in EIT, which produce a skew form of
an optimized matrix, in which the diagonal elements have
the most significant values (see figure 1). Therefore, a
similar approximation can also be made from the minimization
function in equation (11) if s̄Ts̄ approximates to a diagonal
matrix (appendix A.3).

A physical definition follows the basic principle of the
linear back-projection (LBP): the relative change in a boundary
voltage measurement �Vj/Vj is linearly back-projected to
each pixel between two equipotential lines in the case of
the equipotential back-projection (Barber and Brown 1984),
or over the whole domain in the case of the SBP (Kotre
1994) as a back-projection ratio. The sum of the products
of the back-projection ratio and the weight factor/sensitivity
coefficient at each pixel, normalized by the sum of their weight
factors/sensitivity coefficients that are derived from all possible
boundary measurements, approximately represents the relative
change of the conductivity at this pixel.

Based on the LBP principle, Kotre (1994) produced the
SBP algorithm as

�σ̄k

σ0
≈ −

∑P
j=1

�Vj

Vj
· sj,k(σ0)∑P

j=1 sj,k(σ0)
(14)

where σ0 is the measured or estimated conductivity for
homogeneous distribution at the time of taking reference V .

Since conductivity is inversely related to voltage, a
modified SBP algorithm (MSBP) based on the nonlinear
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Figure 1. Normalized data distribution in the transformed 104 × 104 sensitivity matrix for use in the SCG method. (a) The value
distribution in a grey level and contour plot, (b) a typical value distribution along the indicated row 36 in (a).

(a) (b)

(c) (d )

Figure 2. Reconstructed images from simulated data with small and general conductivity changes. (a) Conductivity set-up with four
conductivity values, 0.09, 0.10, 0.11 and 0.12 mS cm−1. (b) Image obtained from the MSBP. (c) Images obtained from the SCG with five
solution steps and 20 iterations taken in the GCG for solving each inverse solution. (d) Convergence from reconstructing (c).

approximation, as given by equation (8), may extend the
applicable range further (Wang et al 1996)

σ̄k = σ0 + �σ̄k = σ0 ·

1 −

∑P
j=1

�Vj

Vj
· sj,k(σ0)∑P

j=1 sj,k(σ0)




≈ σ0 · ∑P
j=1 sj,k(σ0)∑P

j=1
V ′
j

Vj
· sj,k(σ0)

(�σ̄k � σ0) (15)

where V ′
j = Vj + �V represents the measurement due to a

conductivity change.

2.3. Electrode modelling

Image reconstruction algorithms are sensitive to small changes
in the potential distribution. In order to avoid erroneous
results, it is important to accurately model the size of the
electrodes used in the physical phantoms or process vessels.
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Results from simulations using analytical methods, such as the
series expansion methods (SEM) and the conformal mapping
technique, exhibit a similar profile to those acquired from a
typical laboratory phantom (Pidcock 1994, Ider et al 1990).
The FEM can be applied to model the shunting effects and
contact impedance of the large electrodes (Cheng et al 1989,
Hua et al 1993, Vauhkonen et al 1999).

In electrical impedance tomography, all electrodes are
directly installed within the process vessels. There is no other
material between the electrode and electrolyte inside the vessel.
The effects of the double-layer capacitance (of the order of
10 µF cm−1 (Pollak 1974)), the charge transfer resistance
(e.g. 500 � cm2 at 13 mS cm−1 saline (Pollak 1974)) or the
diffusion-layer impedance (Zd ∝ f −0.5, e.g. |Zd | = 0.7 � cm
at 100 Hz and 1 × 10−5 mol cm−3 NaCl (Cobbold 1974))
can be ignored for the frequency region (1 kHz to 200 kHz)
most often used in many process tomography applications,
especially when the sinusoidal current injection is adopted
(Wang 1994).

The grouped node technique was employed (Wang et al
1995a, 1995b), via the FEM, to model the shunting effect of
electrodes when a fine mesh is adopted in the FEM forward
solution. However, for on-line measurement, the use of a
coarse mesh can speed up the imaging speed. It is normally
difficult to accurately simulate a physical electrode angle β

(Wang et al 1995a, 1995b) when the FEM mesh has a limited
number of boundary nodes. A reverse method for this case was
suggested as equation (16) by estimating an effective electrode
angle β of the 2D mesh, that is used for image reconstruction,
and then using the electrode angle β for the design of the
electrode system (Wang 1999):

β = 2πNd

Nb + Ne

(16)

where Nd is the number of nodes per electrode, Nb is the
number of equispaced boundary nodes and Ne is the number
of electrodes per sensing ring.

In the measurements presented in section 4, a fixed mesh
with 224 elements and 32 boundary nodes is employed for
image reconstruction, which gives an effective electrode angle
of 0.13 rad. Based on the given electrode angle the electrode
systems were designed with electrode angles of 0.133 and
0.135 rad for these applications with respect to the mixing
vessel and test phantom. No contact impedance is added to
the SCG image reconstruction in either the simulations or the
applications reported here.

3. Simulation

To investigate the accuracy and the limitation of the multistep
solution, a sequence of images were reconstructed and
compared from simulated data. The set-ups were based on
(a) a small conductivity change with point spread distribution,
(b) a complex conductivity distribution, (c) a large conductivity
difference, (d) two objects at positions that were difficult to
distinguish. In addition, The antinoise capability of the SCG
and the effect of the iteration number at each inverse step in
the SCG were investigated. Only the adjacent sensing strategy
(Brown and Segar 1985) was employed in these simulations.
All references were taken from a homogeneous set-up with a

conductivity of 0.11 mS cm−1. A mesh with 104 triangular
pixels was used for simulating all boundary voltages from
these conductivity set-ups. All simulated data are in 32-bit
precision format. To investigate the discretization error and
the mesh adaptability used in the algorithm, some images
were reconstructed using the mesh with 224 triangular pixels.
Electrode positions in the 224-element mesh also had an
anticlockwise rotation of 11.25◦ compared with those in the
simulated set-ups using the mesh with 104 pixels in order to
avoid the ‘inverse crime’.

Considering the importance of the SBP in current
applications, Some of the simulated data were also
reconstructed using the MSBP (equation (15)), which may
suggest the advantages and limitations of applying such an
algorithm in industrial situations. A mesh with 316 square
pixels was employed in the use of the MSBP algorithm.
The electrode position at the square mesh has an 11.25◦

anticlockwise rotation compared with those in the simulated
set-ups with the 104 triangular element mesh.

To assess the convergence rate of the SCG algorithm, an
algorithm based on the NR method, named EIDORS (EIT
and Diffuse Optical Tomography Reconstruction Software)
(Vauhkonen et al 2000, UMIST 2000), was used to reconstruct
some of these data. The linear approximation equations in the
NR method are solved using Cholesky decomposition with
Tikhonov regularization in each inverse step (Vauhkonen et al
1998). These images are reconstructed using a mesh with 492
elements. The parameters required for setting up EIDORS
are the simulated contact impedance (0.005 � cm−1), the
Tikhonov regularization parameter (1 × 10−3 and 1 × 10−6

with respect to the relevant images) and the iteration number
(6). The electrodes in the mesh for image reconstruction were
positioned at a clockwise rotation of 11.25◦ compared with
the simulation set-up mesh. The original simulated data were
used for reconstructing images with the EIDORS. Considering
that the results from EIDORS might be not comparable with
those from SCG with 104 pixels due to the use of a different
electrode model and a different number of mesh elements
for computing the forward solution (boundary voltages), the
SCG images were also reconstructed using the mesh with 224
triangular pixels and an 11.25◦ anticlockwise rotation. Further
comparisons with real measurements are reported in the next
section.

3.1. Small conductivity changes

For a set-up with small conductivity changes, both MSBP
and SCG algorithms deliver relatively accurate results as
demonstrated in figure 2. The SCG has shown a fast
convergence speed for this set-up. The errors after the first step
of the solution procedure are already 5.9 and 33% of the starting
values, for boundary and conductivity errors respectively. The
reconstructed conductivity error (RMS) is 2.2% after five steps
with the SCG algorithm.

3.2. A complex conductivity distribution

A set-up with a complex conductivity distribution, as shown
in figure 3(a), has been reconstructed as figures 3(b)–(d)
using the MSBP, EIDORS (Tikhonov regularization parameter
= 1 × 10−3) and SCG algorithms respectively. It is obvious
that the MSBP approximation could not deliver an accurate
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(a) (b) (c)

(d ) (e) ( f )

Figure 3. Reconstructed images from simulated data with a large difference in conductivity distribution. (a) Conductivity set-up with two
conductivity values, 0.11 and 0.14 mS cm−1. (b) Image obtained from the MSBP. (c) Image obtained from the EIDORS with six steps of
solution (Tikhonov regularization parameter 1 × 10−3). (d), (f ) Image obtained from the SCG with five steps of solution and 20 iterations
taken in the GCG for solving each inverse function. (e) Reconstruction convergence from (d).

image for this set-up (figure 3(b)). Both the EIDORS
(figure 3(c)) and SCG (figures 3(d) and (f )) can reconstruct
the complexity of the set-up. The image obtained from five
steps of the SCG solution (figure 3(d)) has a conductivity
error of 3.32% and a boundary voltage error of 0.055%.
To observe the discretization error, a different mesh (224
elements) was employed and the reconstructed image can be
seen in figure 3(f ). The SCG presents a stable convergent
image although its quality has been affected by the mesh
discretization error.

3.3. A large conductivity difference

Figure 4 shows reconstructed results from a set-up with a large
conductivity difference of 1:10. The image obtained from five
steps of the inverse solution (SCG) gives a conductivity error
of 14.3% and a boundary voltage error of 5.8% with a much
sharper edge and smaller noise ripples across the background
area (figure 4(b)). The boundary error was reduced linearly
after three or more steps but there was little reduction in the
conductivity error (figure 4(c)).

3.4. Imaging distinguishability

The imaging distinguishability of these algorithms was
investigated and the results are given in figure 5. Two ‘objects’
are located along a radius of a mesh (figure 5(a)). For the
set-up, the MSBP can be used to overview the presence of
the two objects but could not distinguish them (figure 5(b)).
The edge of the objects’ image is also merged with the

boundary. The image obtained from EIDORS with the
Tikhonov regularization parameter of 1 × 10−6 gives a better
presentation of the location of the object (figure 5(c)). The
images reconstructed with 20 steps of the SCG reveal a clear
distinction between the two objects as well as their shape and
size, although a certain artificial background noise is present
(figures 5(d) and (f )).

In summary, all three algorithms can be used to
reconstruct a small conductivity change with a point spread
function distribution. The SCG has shown an advantage
for reconstructing the set-ups with a complex conductivity
distribution or a large conductivity difference. The EIDORS
also has the capability of reconstructing these set-ups.
However, the artificial effects can be identified from the blurred
edges of the reconstructed images using EIDORS, which
is probably introduced from the regularization for solving
the linear equations based on an ill-conditioned Hessian
matrix. The SBP is unable to reconstruct such set-ups.
However, it can be used to extract the significance of these
set-ups.

3.5. Antinoise capability

The antinoise capability of the SCG method was modelled and
the results are given in figure 6. In these simulations, different
noise levels are introduced into the simulated boundary
voltages as shown in the top graphs of figure 6(b). The noise
is generated at random with maximum relative changes of
±2.5 and ±5% respectively. The SCG with a fixed five-step
inversion and 20 iterations for each GCG appears to have a
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(a) (b) (c)

Figure 4. Reconstructed images from simulated data with large conductivity changes. (a) A conductivity set-up with two values, 0.011 and
0.11 mS cm−1. (b) Image obtained from the SCG with five steps of solution and 20 iterations taken in the GCG for solving each inverse
solution. (c) Reconstruction convergence from (b).

(a) (b) (c)

(d ) (e) ( f )

Figure 5. Reconstructed images for investigating imaging distiguishability. (a) Conductivity set-up with two conductivity values, 0.055 and
0.11 mS cm−1. (b) Image obtained from the MSBP. (c) Image obtained from the EIDORS with six steps of solution (Tikhonov
regularization parameter 1 × 10−6). (d), (f ) Image obtained from the SCG with 20 steps of solution and 20 iterations taken in the GCG for
solving each inverse solution. (e) Reconstruction convergence from (d).

good antinoise capability when the noise level is less than
±2.5% (figures 6(d) and (g)). The MSBP demonstrates a high
antinoise capability that allows it to extract the most significant
(but not detailed) information from these noisy measurements
(figures 6(e) and (h)). A similar approximation can also be
made by applying a few iterations/steps to the SCG. The images
in the right-hand column are reconstructed using SCG with five
steps and two iterations for each GCG solution, which produce
much clearer and more accurate images than those obtained
from MSBP.

3.6. Effects of the iteration number

The effects of the iteration number taken in the GCG inverse
step were also investigated by reconstructing the set-up
shown in figure 5(a) with different iterations. Two sets of
boundary voltage changes are employed. One was simulated
using an FEM forward solution (called the ‘true’ boundary)
and another was obtained by applying the conductivity set-
up to equation (1) (called the ‘linear’ boundary). The
reconstructed images with different numbers of iterations are
given in figures 7(top) and 7(bottom) with respect to the
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(a) (b) (c)

(d ) (e) ( f )

( g) (h) ( i )

Figure 6. Reconstructed images from simulated data with random noise ±2.5% (d), (e), (f ) and ±5% (g), (h), (i). The top graphs of (b) are
examples of voltage relative changes with random noises 0, ±2.5 and ±5%. (a), (c) Convergence performances from reconstructing the
images in its column. The images in the left and right columns are reconstructed using the SCG with five steps but 20 iterations (d), (g) and
two iterations (f ), (i) in each GCG step. The images in the middle column are reconstructed using MSBP.

‘true’ and ‘linear’ boundaries. The artificial noise increases
in the image reconstructed with the ‘true’ boundary when
the iteration number is higher than 50 (figure 7(top)). The
images reconstructed using the ‘linear’ boundary, as given
in figure 7(bottom), show an excellent convergence and
demonstrate that a precise solution for equation (1) is possible
if a linear relation exists even though an ill-conditioned
sensitivity matrix is present. Two sets of convergence profiles
are given in figure 8. The residuals of GCG from both
boundary voltages are dropped quickly before iteration 10.
The residuals are 8.7 × 10−5 and 4.8 × 10−5 at iteration 50,
2.7 × 10−5 and 1 × 10−5 at iteration 104, which demonstrates
the solutions to equation (1) being reached from both boundary
voltages. However, the boundary errors from both sets of
data drop quickly before iteration 10. Afterwards, at high-
order iterations, they increase from the ‘true’ boundary, but
there is no change from the ‘linear’ boundary. The differences
between the two boundary voltages are plotted in figure 9,
which demonstrates that significant errors may arise due to the

assumption of linearity for equation (1). It is obvious that the
disconvergence at the high iteration in figure 7(top) is caused
by the assumption of linearity and the areas most affected at the
high iteration are located at the pixels with low sensitivity or
small eigenvalues. The iteration number in the GCG method
plays a similar role to the regularization factor used in general
regularization methods, such as the Marquardt method or the
Tikhonov method, which results in an approximate solution at
each step. Comparing the images (figure 10(a)) reconstructed
using the NR algorithm with the Cholesky decomposition
and Tikhonov regularization, those images (figure 10(b))
reconstructed using SCG algorithm with the GCG method
appear to more precisely approach the true value.

This phenomenon suggests that accurately solving
equation (1) could produce a conductivity distribution with
a significant artificial error, particularly for a large relative
change in conductivity. The approximate solution for
equation (1) plays an important role in the nonlinear inverse
solution although the ill-conditioned sensitivity matrix is
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1 iteration 20 iterations  100 iterations 200 iterations

      

 

      

Figure 7. Artificial error caused by the linear approximation (images are reconstructed using the GCG with the indicated iterations). Top
images are reconstructed from the ‘true’ boundary voltages simulated with the FEM method. Bottom images are reconstructed from the
‘linear’ boundary voltages produced with the linear approximation equation (1).

(a) (b)

Figure 8. Convergence from reconstructing images in figure 7. (a) RMS value of the GCG residual. (b) Conductivity and boundary errors.
The full curves are in respect to the ‘true boundary’ voltage and the dotted curve in respect to the ‘linear boundary’ voltages (c denotes
conductivity error, b denotes boundary error and r denotes residual).

Figure 9. Relative errors between the linear boundary voltages and
the true boundary voltage.

another matter. Therefore, choosing the right iteration number
in the SCG will result in a faster convergence speed and

better image quality. In general, the choice can be estimated
according to the size of the relative change in conductivity,
voltage or measurement noise.

3.7. Effects of the inverse steps

Incrementing the number of steps required for solving the
nonlinear problem may improve imaging accuracy (figure 11).
However, the most significant contribution is from the first step,
which has already been shown in previous convergence graphs.
In practice, due to the high level of noise in the measurement
signal, the use of a high-order step could lead to a noisy image
(figure 6(g)). A single solution using a precalculated sensitivity
matrix without the involvement of a forward solution would
be widely acceptable for the balance of imaging accuracy and
speed. As an example, some images (figure 12) have been
reconstructed with the single-step solution using data from the
previously discussed set-ups.
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TR = 1×10 − 3

(a)

its = 1 its = 2 its = 5 its = 10 its = 20

(b)

TR = 1×10 − 6

Figure 10. Effects of regularization in the multistep inverse solution. (a) Reconstruction with the six-step NR method/Choleskey
decomposition with different Tikhonov regularization factors (EIDORS). (b) Reconstruction with the five-step SCG method/GCG with
different iterations.

single step 10 steps 40 steps

Figure 11. Effects of different steps in the use of the SCG (20 iterations taken in the GCG for solving the inverse solution in each step).

Figure 12. Images reconstructed using the single-step solution with 20 iterations taken in the GCG method.

3.8. Running time

Reconstruction timings were tested using a PC with a 350 MHz
Pentium II processor. The program and associated algorithm
libraries (Sparse matrix generator, CG and GCG methods for
forward and inverse solutions, Sensitivity matrix generation,
etc) were written using C++. Results are shown in table 1.
Using a precalculated sensitivity matrix, the MSBP method

gives a fixed reconstruction time based on the number of
reconstructed mesh elements, which is almost linear in the
increment of mesh elements. The speed of SCG is much slower
than that of MSBP, which is the product of the solution steps
and the sum of the time taken for the forward solution, the
inverse solution and some overheads. The solution timings
given in table 1 are only in regard to one iteration taken in the
GCG inverse step.
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Table 1. Reconstruction timings.

Reconstruction Number of elements Forward solution Inverse solution/
method on mesh (ms) iteration step (ms)

MSBP 104 6.04
224 12.6
316 18.1

SCG 104 190 17.8
224 575 38.5

(a) (b)

(c) (d )

Figure 13. Reconstructed images from a test phantom: (a) and (b) a 2.5 cm glass bar, (c) two 2.5 cm glass bars, (d) three glass bars of
diameters 2, 2.5 and 4 cm.

4. Measurement

4.1. Imaging capability verification from a testing phantom

A sequence of tests were performed using a 14.8 cm diameter
Perspex vessel mounted with a ring of 16 1×3 cm2 electrodes
and filled with 0.473 mS cm−1 brine. The adjacent electrode
sensing strategy was employed with a pair of 5 mA sinusoidal
currents at 9.6 kHz. Images were reconstructed using the SCG
algorithms with five iterative steps. The first experiment was
designed to investigate the imaging sensitivity across the radius
of the vessel. Data were collected when a 2.5 cm diameter glass
bar was moved from the centre to the periphery of the vessel.
Two of these images, of the bar positioned at the centre and
the side of the phantom, are given in figures 13(a) and (b).
The reconstructed objects have shown a similar conductivity
value (both less than 0.1 mS cm−1) and geometrical size at
both imaging positions. Background ripple noise produced

from the SCG can also be observed. The second experiment
used two glass bars with the same diameter (2.5 cm) and the
third used three glass bars with different diameters (2.0, 2.5
and 4 cm). Their images were reconstructed and are given in
figures 13(c) and (d), The two objects in figure 13(c) and the
size of the three glass bars in figure 13(d) can each be clearly
distinguished and measured.

4.2. Imaging gas–liquid mixing in a pilot plant

EIT has been shown to be useful in detecting mixing conditions
inside a stirred vessel caused by the mixing reaction, different
impeller types and malfunction (Holden et al 1998). A mixing
vessel of diameter 1.5 m was used, which was equipped with
eight planes of 16-electrode rings and fitted with a Rushton
turbine impeller (one-third of the vessel diameter) in a standard
configuration with four equispaced wall-mounted baffles. Air
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(a) (b)

Figure 14. Gas hold-up images from a gas–liquid mixing (water conductivity 0.11 mS cm−1). The slice images in (a) and (b) are raw
images reconstructed with the MSBP and SCG algorithms with which the 3D images in the right of (a) and (b) are interpolated. Three
concentration regions are isosurfaced with 0.109 82, 0.109 20 and 0.108 80 mS cm−1 for the MSBP image and 0.109 88, 0.108 72 and
0.108 03 mS cm−1 for the SCG image (interpolated using Spyglass v1.00).

was fed into the vessel along a pipe and injected upwards
directly below the centre of the disc turbine. Eight two-
dimensional (2D) slice tomograms of an instant gas hold-
up in the mixing vessel were reconstructed using the MSBP
and the single-step SCG. A three-dimensional (3D) image of
the gas hold-up can be interpolated from eight 2D images
reconstructed with MSBP and SCG in figures 14(a) and (b)
respectively. A similar overall distribution of gas concentration
is reflected in both images, although particular features exist in
each image. Validation of such dynamic tomographic imaging
is still a topic of dispute. Relevant information can be found
in Williams and Beck (1995) and Mavros (2001).

4.3. Imaging a human hand

In another interesting test, a human hand was scanned using
an EIT system. A 14.8 cm diameter vessel fitted with one 16-
electrode ring sensor and filled with 5.16 mS cm−1 brine was
used. The adjacent electrode sensing strategy was applied with
a pair of 10 mA sinusoidal currents at 9.6 kHz for the test. The
image data comprised 15 measurement data sets acquired as
the hand moved along the axial direction of the phantom while
the volume of water was kept the same. The signal-to-noise-
ratio (SNR, here the repeatability of the reference voltage) was
checked, which was within a maximum error of 0.5% at the
start and 2.5% at the end of the scanning. Fifteen 2D images
were reconstructed with the SCG algorithm with three steps of
the inverse solution, given in figure 15.

According to general knowledge about the conductivity
of a human arm, most parts that make up the arm have a
conductivity of less than 5.0 mS cm−1 (arm, longitudinal
4.2 mS cm−1; arm, transverse 1.58 mS cm−1; muscle, average
1.89 mS cm−1; bone 0.0625 mS cm−1, fat 0.4 mS cm−1)
(Barber and Brown 1984). It is obvious that the highest
and lowest conductivity in the reconstructed conductivity
distribution is not reliable; this could be caused by signal noise

from the measurements, by artificial errors, by the assumption
of linearity in the sensitivity theorem and the 2D approach
of the SCG algorithm. Nevertheless, some details of the
properties of the hand can be identified from these images,
such as a high-conductive muscle region (in slices 1, 2), a low-
conductive bone region (in slices 1, 2, 3, 4), a skin region (in
slice 1) and finger regions (in slices 7–13). The quantitative
values presented in each image slice can be used to extract
the surface of a similar region eliminating the effects of these
noises. A cutting value of 3.3 mS cm−1 is applied to extract the
surface of the skin of the hand as an isosurface using Spyglass
v1.00. An outline of the human hand has been successfully
extracted as shown in figure 16. Some distortions can also be
found, which may be caused by electrode noise, the unstable
position of the hand during scanning and the 3D effect of the
electrical field.

4.4. Imaging comparison

In order to avoid the problem of divergence caused by the
measurement noise and the electrode modelling error, the
measurement data for the use of EIDORS were transformed
by applying the products of their relative changes and the
reference voltages from the forward solution of EIDORS,
which are the same processes as those in MSBP and SCG.
This transform provides an equal platform for comparisons
between the three algorithms. Two sets of measurements
from the experiment described in section 4.3 were used to
demonstrate the imaging capabilities. Figures 17(a)–(f ) show
the first and ninth slice images of the human hand, which were
reconstructed with the MSBP, EIDORS and SCG algorithms,
respectively. The high-conductive muscle range, the low-
conductive skin on the edges of the wrist part and the five
fingers can be visualized from the images reconstructed with
the SCG. The EIDORS appears to have a better capability
than the MSBP, but the images are less detailed than those of
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Figure 15. Slice images of a human hand in 0.516 mS cm−1 brine scanned with an EIT system (in the order from left to right and top to
bottom going from the wrist to the fingers). Images are reconstructed using the SCG with three steps of inversion and then linearly
smoothed with Spyglass v1.01.

Figure 16. 3D hand images interpolated from the 2D EIT images given in figure 15 and then isosurfaced with a cutting value of
3.3 mS cm−1 (Spyglass v1.01).

the SCG. The effect of regularization used in EIDORS can be
observed; it blurs the image details and produces a much more
homogeneous background. The MSBP can only outline the
overall information.

5. Conclusions

A sensitivity theorem based inverse solution using generalized
conjugate gradients methods (SCG) with a method of error

vector decomposition has been developed. This method
employs a multistep approach with the sensitivity theorem
based linear approximation and uses the differences between
the relative changes in the measured and simulated voltage at
each step to solve inverse problem of the nonlinear electric
field.

The precise solution of the inverse problem, whether in
the direct method or the indirect method, using the linear
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(a) (b) (c)

(d ) (e) ( f )

Figure 17. The 1st and 9th slice images of a human hand ((a)–(c), (d)–(f ) respectively). The images in the left-hand column were
reconstructed with MSBP. The images in the middle column were reconstructed using EIDORS with regularized data. The images in the
right-hand column were reconstructed with SCG.

approximation can produce a conductivity distribution with
significant artificial errors; these are caused by both the use
of the linear assumption and the ill-conditioned sensitivity
matrix. In general, regularization methods such as the
Marquardt and the Tikhonov regularization methods have
to be applied to obtain an approximate solution at each
inverse step. This method of regularization may introduce
additional artificial errors. In the use of the GCG method,
approximation at each inverse step is controlled by the number
of iterations without applying additional regularization factors.
The choice of the number of iterations for the GCG inverse
solution at each step can affect the ratio of convergence, as
well as the imaging precision. The number of iterations
taken in the GCG inversion can be estimated according to
the size of the relative changes in conductivity or voltage
as well as the measurement noise. The use of the error
function decomposition method in SCG solution can greatly
reduce the effects of electrode modelling errors, minimize
the instrumental errors, subtract the background and therefore
highlight the low contrast change in the region of interest.
The algorithm has demonstrated its apparent advantages
in its precision, reconstruction convergence and antinoise
capability. A single-step SCG solution could be widely
acceptable for the balance of imaging accuracy and executable
speed of the algorithm considering the achievable signal-to-
noise ratio in industrial applications. Compared with direct
inverse solutions utilizing some regularization techniques, the
conjugate gradients method is more attractive, since the GCG
solution gives an easily controlled residual vector instead of a
precise solution.

Since the SCG solution is based on a linear approximation
for each Step, an ill-conditioned sensitivity matrix and
a limited number of boundary measurements, it produces
an approximate solution, particularly for large conductivity
differences. Artificial errors may be introduced into the
solution due to an incomplete modelling of the electric field
when computed reference voltages have to be used in the SCG

solution. It should also be noted that the resultant images
present a conductivity distribution in relation to that at the
time of taking the references. The effect of the subtraction
should be taken into account for the implementation of the
SCG image if an inhomogeneous conductivity distribution is
present at the time of taking the references. Although 3D
measurement patterns can be transformed to 2D patterns to
adapt a 2D algorithm, the error caused by the 3D effect of the
electric field still exists (Wang 1999). The modified sensitivity
back-projection algorithm (MSBP) has apparent advantages in
its simplicity, fast speed of operation and antinoise capability,
but it has a very limited achievable accuracy.
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Appendix

A.1. Sensitivity theorem

The lead theorem was derived from the divergence
theorem (A.1) by Geselowitz (1971) and Lehr (1972) for
impedance plethysmography. The mutual impedance change
�Z for a four-electrode system, derived by Geselowitz and
Lehr and later linearized by Murai and Kagawa, is given
as (A.2) and (A.3) respectively, where ψ and φ are potential
distributions in response to the presence of currents Iψ and Iφ
at two ports (A–B and C–D) respectively

∫
�

∇ · Ad� =
∮
S

A · dS (A.1)

where � is a region bounded by a closed surface S, A is a
vector function of the position

�Z = �φAB

Iφ
= �ψCD

Iψ
= −

∫
�

�σ
∇φ,

Iφ
· ∇ψ

Iψ
d� (A.2)
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where φ, is the potential change caused by a change of
conductivity σ, = σ + �σ

�Z = −
∫
�

�σ
∇φ

Iφ
· ∇ψ

Iψ
d� + 0((�σ)2)

≈ −
∫
�

�σ
∇φ

Iφ
· ∇ψ

Iψ
d� (�σk � σk). (A.3)

The mutual impedance Z of the four-electrode system for a
known conductivity distribution can be derived by substituting
ψJφ or φJψ into the divergence theorem (A.1) and then
substituting Jφ = −σφ∇φ or Jψ = −σψ∇ψ into the left-
hand side of the resulting expression under the condition of no
internal current source (Wang 1995a):

Z = φAB

Iφ
= ψCD

Iψ
=

∫
�

σ
∇φ

Iφ
· ∇ψ

Iψ
d�. (A.4)

Supposing that the conductivity distribution is composed of w
small uniform ‘patches’ or pixels, then (A.3) and (A.4) can be
expressed as (A.5) and (A.6) and the sensitivity coefficient s
for each discrete pixel is given by (A.7) (Murai and Kagawa
1985, Breckon and Pidcock 1987, Barber 1990), where �k

stands for a discrete 2D area at location k

�Z =
w∑

k=1

�σkSφ,ψ,k (A.5)

Z = −
w∑

k=1

σkSφ,ψ,k (A.6)

sφ,ψ,k(σk) = −
∫
�k

∇φ

Iφ
· ∇ψ

Iψ
d�k. (A.7)

A.2. Conjugate gradients methods

Conjugate gradients (CG) methods provide a quite general
means of solving the N × N linear system as given by (A.8)
(Press et al 1992). The ordinary CG algorithm is only
applicable in the case that A is symmetric and positively
defined (Golub and Van Loan 1989). It is based on the idea
of minimizing the function (A.9) to give a gradient or residual
function as (A.10) that is equivalent to (A.8) when the gradient
or residual is zero

A · x = b (A.8)

f (x) = 1
2x · A · x − b · x (A.9)

∇f = A · x − b or r = A · x − b. (A.10)

The minimization is carried out by generating a succession of
search directions of vectors pk , which represent, as nearly as
possible, the directions of the improved minimizers xk . The
term conjugate means that the vectors are orthogonal with
respect to A and hence satisfy the condition (Jennings and
McKeown 1992)

pT
i Apj = 0 for i 
= j. (A.11)

The solution may be accomplished by the following
procedures:

(1) Approximate an initial solution vector and calculate the
initial residual and direction vectors r0, p0

x0 = (x
(0)
1 , x

(0)
2 , . . . , x

(0)
N )T p0 = r0 = b − Ax0.

(2) Carry out the iterations below from k = 0 to N − 1, until
the residual rk is sufficiently small

uk = Apk

αk = rT
k rk/p

T
kuk

xk+1 = xk + αkpk

rk+1 = rk − αkuk

βk = rT
k+1rk+1/r

T
k rk

pk+1 = rk+1 − βkpk.

(A.12)

In the case when the coefficient matrix A is indefinitely
symmetric, the generalized conjugate gradients (GCG)
formulations can be applied using the method of the minimum
residuals or the method of biconjugate gradients without
increasing the singularity of A (Jennings and McKeown 1992,
Press et al 1992). For solving a large system of sparse
equations, its convergence characteristics were found to make
it one of the best iterative methods (Reid 1971), particularly for
a matrix with optimized data distribution (the most significant
values at and attenuated from the diagonal elements), but
more vector operations and stores are required (Jennings and
McKeown 1992).

A.3. Diagonal matrix approximation

For a linear equation (A.8), the minimization function (A.14)
can be obtained from minimizing (A.13)

f (x) = 1
2‖Ax − b|2 (A.13)

∇f (x) = AT (Ax − b) (A.14)

where r is a residual vector. Let ∇f = 0, then the solution
can be made to (A.15) if an inverse matrix of ATA exists

x = (AT A)−1AT b. (A.15)

For a particular example, the solution is approximate to (A.16),
if the ATA can be approximated as a diagonal matrix

x ≈ τAT Ax = τAT b (A.16)

where τ is the inversed matrix for the approximated diagonal
matrix of ATA(A = [aij ]), in which its diagonal parameters
satisfy

τjj = 1∑N
i (aij )

2
. (A.17)

The error function is

r = τAT Ax − τAT b (A.18)

where r is a residual vector. An iterative solution can be
obtained in a kind of the Landweber iteration method as
(Landweber 1951)

xn ≈ xn−1 − rn = xn−1 − τAT (Axn−1 − b). (A.18)

The selection of τ for the SBP has been discussed in section 2.3
of this paper. An example for capacitance tomography can
be found in Liu et al (1999). For a general application, the
selection of τ can be obtained from the Landweber method
(Landweber 1951).
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