MAJOR REPORT • OPEN ACCESS

LHC forward physics

To cite this article: K Akiba et al 2016 J. Phys. G: Nucl. Part. Phys. 43 110201

View the article online for updates and enhancements.

You may also like

- Fast b-tagging at the high-level trigger of the ATLAS experiment in LHC Run 3 G. Aad, B. Abbott, K. Abeling et al.
- <u>The ATLAS Fast TracKer system</u> The ATLAS collaboration, G. Aad, B. Abbott et al.
- <u>Operation and performance of the ATLAS</u> <u>semiconductor tracker in LHC Run 2</u> The ATLAS collaboration, Georges Aad, Brad Abbott et al.

Track Charged Particles and Particles in Fluid Flow

Multiphysics simulation enhances the process of solving for trajectories of particles moving under the influence of various fields, such as ions or electrons in magnetic and electric fields or biological cells in drag force and gravity.

» Learn more about the COMSOL® software

IOP Publishing

J. Phys. G: Nucl. Part. Phys. 43 (2016) 110201 (5pp)

doi:10.1088/0954-3899/43/11/110201

Major Report

LHC forward physics

K Akiba²¹, M Akbiyik¹, M Albrow², M Arneodo^{3,4}, V Avati^{5,6}, J Baechler⁶, O Villalobos Baillie⁸⁷, P Bartalini⁷, J Bartels⁸, S Baur¹, C Baus¹, W Beaumont⁹, U Behrens¹⁰, D Berge¹¹ M Berretti^{6,12}, E Bossini¹², R Boussarie¹³, S Brodsky¹⁴, M Broz¹⁵, M Bruschi¹⁶, P Bussey¹⁷, W Byczynski⁸¹ J C Cabanillas Noris¹⁸, E Calvo Villar¹⁹, A Campbell¹⁰, F Caporale²², W Carvalho²¹, G Chachamis²², E Chapon²³, C Cheshkov²⁴, J Chwastowski²⁵, R Ciesielski²⁶, D Chinellato⁸³, A Cisek²⁵, V Coco⁶, P Collins⁶, J G Contreras¹⁵, B Cox²⁷, D de Jesus Damiao²¹, P Davis²⁸, M Deile⁶, D D'Enterria⁶, D Druzhkin^{29,6}, B Ducloué^{30,31} R Dumps⁶, R Dzhelyadin⁸², P Dziurdzia⁶, M Eliachevitch¹ P Fassnacht⁶, F Ferro³², S Fichet³³, D Figueiredo²¹, B Field³⁴, D Finogeev³⁵, R Fiore^{29,36}, J Forshaw²⁷, A Gago Medina¹⁹, M Gallinaro³⁷, A Granik⁸², G von Gersdorff³³, S Giani⁶, K Golec-Biernat^{25,38}, V P Goncalves³⁹, P Göttlicher¹⁰ K Goulianos²⁶, J-Y Grosslord²⁴, L A Harland-Lang⁴⁰, H Van Haevermaet⁹, M Hentschinski⁴¹, R Engel¹, G Herrera Corral⁴², J Hollar³⁷, L Huertas²¹, D Johnson⁶, I Katkov¹, O Kepka⁴³, M Khakzad⁴⁴, L Kheyn⁴⁵, V Khachatryan⁴⁶, V A Khoze⁴⁷, S Klein⁴⁸, M van Klundert⁹, F Krauss⁴⁷, A Kurepin³⁵, N Kurepin³⁵, K Kutak⁴⁹ E Kuznetsova¹, G Latino¹², P Lebiedowicz²⁵, B Lenzi⁶, E Lewandowska²⁵, S Liu²⁸, A Luszczak^{25,38}, M Luszczak²⁵, J D Madrigal⁵⁰, M Mangano⁶, Z Marcone³⁴, C Marquet⁵¹, A D Martin⁴⁷, T Martin⁵², M I Martinez Hernandez⁵³, C Martins²¹, C Mayer²⁵, R Mc Nulty⁵⁴, P Van Mechelen⁷, R Macula²⁵, E Melo da Costa²¹, T Mertzimekis⁵⁵, C Mesropian²⁶, M Mieskolainen³¹, N Minafra^{6,56}, I L Monzon¹⁸, L Mundim²¹, B Murdaca^{20,36}, M Murray⁵⁷, H Niewiadowski⁵⁸, J Nystrand⁵⁹, E G de Oliveira⁶⁰, R Orava³¹ S Ostapchenko⁶¹, K Osterberg³¹, A Panagiotou⁵⁵, A Papa²⁰, R Pasechnik⁶², T Peitzmann⁶³, L A Perez Moreno⁵³, T Pierog¹, J Pinfold²⁸, M Poghosyan⁶⁴, M E Pol⁶⁵, W Prado²¹, V Popov⁶⁶, M Rangel⁶⁷, A Reshetin³⁵, J-P Revol⁶⁸, M Rijssenbeek³⁴, M Rodriguez⁵³, B Roland¹⁰, C Royon^{25,43,57}, M Ruspa^{3,4}, M Ryskin^{47,69}, A Sabio Vera²², G Safronov⁶⁶, T Sako⁷⁰, H Schindler⁶, D Salek¹¹, K Safarik⁶, M Saimpert⁷¹,

A Santoro²¹, R Schicker⁷³, J Seger⁶⁴, S Sen⁷³, A Shabanov³⁵, W Schafer²⁵, G Gil Da Silveira³⁹, P Skands⁷⁴, R Soluk²⁸, A ven Snilkasek⁹, P Stars A van Spilbeeck⁹, R Staszewski²⁵, S Stevenson⁷⁵, W J Stirling⁸⁶, M Strikman⁷⁶, A Szczurek^{25,38} L Szymanowski⁷⁷, J D Tapia Takaki⁵⁷, M Tasevsky⁴³, K Taesoo⁷⁸, C Thomas⁷⁵, S R Torres¹⁸, A Tricomi⁷⁹ M Trzebinski²⁵, D Tsybychev³⁴, N Turini¹², R Ulrich¹, E Usenko³⁵, J Varela³⁷, M Lo Vetere⁸⁰, A Villatoro Tello⁵³, A Vilela Pereira²¹, D Volyanskyy⁸⁴, S Wallon^{13,85}, G Wilkinson⁷⁵, H Wöhrmann¹, K C Zapp⁶ and Y Zoccarato²⁴ ¹ Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ² Fermilab, Batavia, USA ³ INFN Torino, Italy ⁴ Universitá del Piemonte Orientale, Novara, Italy ⁵ AGH University of Science and Technology, Krakow, Poland ⁶CERN, Geneva, Switzerland ⁷Central China Normal University (CCNU), Wuhan, Hubei, People's Republic of China ⁸ University of Hamburg, Germany ⁹University of Antwerpen, Belgium ¹⁰ DESY, Hamburg, Germany ¹¹NIKHEF and GRAPPA, Amsterdam, The Netherlands ¹² INFN Pisa, Pisa, Italy and Universita degli Studi di Siena, Siena, Italy ¹³LPT, Université Paris-Sud, CNRS, F-91405, Orsay, France ¹⁴ SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA ¹⁵ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic ¹⁶ Universita and INFN, Bologna, Italy ¹⁷ University of Glasgow, UK ¹⁸ Universidad Autonoma de Sialoa, Culiacan, Mexico ¹⁹ Pontifica Universidad Catolica del Peru (PUCP), Lima, Peru ²⁰Universita della Calabria, Cosenza, Italy ²¹ Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil ²² Instituto de Fisica Teorica UAM/CSIC and Universidad Autonoma de Madrid, Cantoblanco, Madrid, Spain ²³LLR, Ecole Polytechnique, Paliseau, France ²⁴ IPN, Institut de Physique Nuclaire, Université Claude Bernard Lyon-I, CNRS/ IN2P3, Lyon, France ²⁵ Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland ²⁶ The Rockefeller University, New York, USA ²⁷ School of Physics and Astronomy, University of Manchester, UK ²⁸ University of Alberta, Canada ²⁹ Research and Development Institute of Power Engineering (NIKIET), Moscow, Russia ³⁰ Department of Physics, University of Jyvaskyla, Jyvaskyla, Finland ³¹ Department of Physics, University of Helsinki, Helsinki, Finland

³² INFN Genova, Italy

³³ ICTP South American Institute for Fundamental Research, Instituto de Fisica

Teorica, Sao Paulo State University, Brazil

³⁴ Stony Brook University, Stony Brook, New York, USA

³⁵Russian Academy of Sciences, Institute for Nuclear Research (INR), Moscow

³⁶ Gruppo Collegato INFN of Cosenza, Italy

³⁷LIP, Lisbon, Portugal

³⁸ University of Rzeszow, Rzeszow, Poland

³⁹ High and Medium Energy Group, Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Pelotas, Brazil

⁴⁰ Department of Physics and Astronomy, University College London, UK

⁴¹ Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico

⁴²Centro de Investigacion y de Estudios Avanzados del IPN CINVESTAV , Dep. de Fisica and Dep. de Fisica Applicada, Mexico

⁴³ Institute of Physics, Academy of Sciences, Prague, Czech Republic

⁴⁴ IPM, Institute for Research in Fundamental Sciences, Tehran, Iran

⁴⁵ Moscow State University, Moscow, Russia

⁴⁶ Alikhanyan National Scientific Laboratory (ANSL), Armenia

⁴⁷ Institute for Particle Physics Phenomenology, Physics Department, University of Durham, UK

⁴⁸ Lawrence Berkeley National Laboratory, Berkeley, CA, USA

⁴⁹ Instytut Fizyki Jadrowej Polskiej Akademii, Krakow, Poland

⁵⁰ Institut de Physique Théorique, CEA Saclay, Gif-sur-Yvette, France

⁵¹Centre de Physique Théorique, Ecole Polytechnique, CNRS, Palaiseau, France

⁵² University of Warwick, UK

⁵³ Benemerita Autonomous University of Puebla, Mexico

⁵⁴ University College Dublin, Dublin, Ireland

⁵⁵ University of Athens, Greece

⁵⁶ Dipartimento Inter-ateneo di Fisica di Bari, Italy; INFN Sezione di Bari, Bari, Italy

⁵⁷ University of Kansas, Lawrence, USA

⁵⁸Case Western Reserve University, Department of Physics, Cleveland, USA

⁵⁹ Department of Physics and Technology, University of Bergen, Bergen, Norway
⁶⁰ Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis,

Brazil

⁶¹ Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany

⁶² Theoretical High Energy Physics, Department of Astronomy and Theoretical Physics, Lund University, Sweden

⁶³ Utrecht University and Nikhef, Utrecht, The Netherlands

⁶⁴ Creighton University, Omaha, USA

⁶⁵ Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, Brazil

⁶⁶ ITEP, Moscow, Russia

⁶⁷ Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

⁶⁸ Centro Studi e Ricerche 'Enrico Fermi', Roma, Italy

⁶⁹ Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg, Russia

⁷⁰ STEL/KMI, Nagoya University, Nagoya, Japan

⁷¹ IRFU-SPP, CEA Saclay, Gif-sur-Yvette, France

⁷² Ruprecht-Karls-Universitaet Heidelberg, Germany

⁷³ Hacettepe University, Ankara, Turkey

⁷⁴ School of Physics and Astronomy, Monash University, Clayton, Australia

⁷⁵ Department of Physics, University of Oxford, Oxford, UK

⁷⁶ Penn State University, University Park, USA

⁷⁷ National Center for Nuclear Research, Warsaw, Poland

⁷⁸ Yonsei University, Seoul, Korea

⁷⁹ University of Catania and INFN Sezione di Catania, Italy

⁸⁰ Università degli Studi di Genova, Dipartimento di Fisica and INFN, Genova, Italy

⁸¹Cracow University of Technology, Poland

⁸² B.P. Konstantinov Petersburg Nuclear Physics Institute PNPI, Russia

⁸³ Universidade Estadual de Campinas (UNICAMP), Campinas Brazil

- 84 Heidelberg, Max Planck Inst., Heidelberg, Germany
- ⁸⁵ UPMC Univ. Paris 06, faculté de physique, 4 place Jussieu, F-75252 Paris Cedex 05,

France

- ⁸⁶Imperial College, London UK
- ⁸⁷ University of Birmingham, Birmingham, UK

We give here an introduction to the complete report that may be found at: stacks.iop.org/jpg/ 43/110201/mmedia

In early 2013 the LHC forward physics and diffraction working group (WG) was formed, as part of the activities of common interest to the LHC experiments organized by the LHC Physics Centre at CERN (LPCC, http://cern.ch/lpcc). The primary goal of the WG was to coordinate, across the experiments and with the theoretical community, the discussion of the physics opportunities, experimental challenges and accelerator requirements arising from the study of forward phenomena and diffraction at the LHC. The mandate of the group included the preparation of a report, to outline a coherent picture of the forward physics programme at the LHC, taking into account the potential of the existing experiments-including possible detector upgrades-the possible beam configurations and performance of the accelerator, and the optimization of the LHC availability for these measurements, in view of the priority need to maximize the LHC total integrated luminosity.

The WG was set up by the LPCC in coordination with the management of the ALICE, ATLAS, CMS, LHCb, LHCf and TOTEM experiments, which nominated their representatives in the WG steering group and the WG co-chairs. The steering group identified theory conveners, to oversee the relevant sections of the report, and created three subgroups to focus the WG activity, reflecting the physics goals appropriate to different LHC running conditions:

- low pileup and luminosity (few 10 pb^{-1}),
- medium luminosity (few 100 pb^{-1}),
- high luminosity (100 fb^{-1}).

All interested physicists were then invited to attend the 16 WG meetings held so far, and to contribute to the writing of this report, which hopefully represents the unanimous views of the broad forward-physics community. The detailed information about the WG, including the composition of the steering committee and of the subgroups' conveners, the list of meetings, the link to the WG material and to its mailing list subscription, can be found in the WG web page at: http://cern.ch/LPCC/index.php?page=fwd_wg.

As requested by the LHC experiments committee (LHCC), and following the several presentations delivered to the committee in the course of the WG activity, this final report has been submitted to the LHCC, and forms the basis for its internal discussions and recommendations on the requests by the experiments for beam time and detector upgrades, related to forward physics, during Run 2 of the LHC and beyond. More in general, we trust that this report will promote the deeper understanding and appreciation of the value of this component of the LHC physics programme, and will encourage further progress and the development of new ideas, both on the theoretical and experimental fronts.

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

We give a comprehensive overview of the rich field of forward physics, with special attention to the topics that can be studied at the LHC. The report starts by presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, cosmic ray and heavy ion physics are presented in chapters 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. The report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.

5

The chairs of the LHC Forward Physics working group.