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Abstract. The critical behaviour of a mixed ferrimagnetic Ising system on a square lattice in
which the two interpenetrating square sublattices have s:p(ds%) andS (£2, +1, 0) has been
studied. We carried out exact ground state calculations and performed Monte Carlo simulations
to obtain the finite-temperature phase diagram of the model. We found that the system that
includes only a nearest-neighbour interaction and the crystal field does not have a compensation
point. Also, our study seems to indicate that, contrary to effective-field predictions, there is no
tricritical point at nonzero temperature for this model; however a more elaborate analysis will
be needed to draw a definite conclusion on this point.

1. Introduction

Intensive experimental work is currently being carried out to synthesize stable, crystalline
materials with spontaneous magnetic moments at room temperature [1]. Ferrimagnetic
ordering seems to play a crucial role in these materials and the study of ferrimagnetism has
rapidly become a very active field of research. In a ferrimagnetic material, the existence
of a compensation temperature, i.e. a temperature below the critical temperBtue,

which the resultant magnetization vanishes [2], is an interesting possibility with important

technological applications. This behaviour is possible due to the different temperature
dependences of the sublattice magnetizations.

An important number of ferrimagnetic materials with very promising characteristics
are currently being synthesized. New bimetallic linear chains have been produced and
characterized by the use of the so called ‘brick and mortar’ technique [3]. Also, two
mixed-metal ferrimagnetic assemblies of the tyihBus[MFe(ox)s]},, with M = Ni, Fe
and NBuy, = tetran-butyl)Jammonium ion, have been obtained using a trisoxalatoferrate,
[Fe(ox)3], as the building block. Magnetization measurements revealed magnetic phase
transitions at7, = 28 (43) K for M = Ni (Fe) which are appreciably higher than those
associated with the corresponding ferromagn@éMBu,[NiCr(ox)s]},, 7. = 14 K, and
{NBus[FeCrox)s]}., T. = 12 K [4].

Although most currently used magnetic materials are inorganic and based on metallic or
ionic lattices, new classes of magnets have recently been obtained with molecular organic
chemistry techniques. Ferrimagnetic materials referred to as Prussian blue analogues, with a
critical temperature of 240 K, have been reported [5]. The recently synthesized amorphous
V(TCNE),.y (solvent), where TCNE is tetracyanoethylene, orders ferrimagnetically above
400 K [6]. Another experimental group has just announced the synthesis of compounds such
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as N@-C,Ha,1)4Fe//F& 1 (C,04)3 with n = 3-5 that have critical temperatures between

35 and 48 K. Some of these compounds have compensation temperatures near 30 K [7].
Major breakthroughs are expected in the field of molecular magnetism. Organic materials
with properties such as solubility in organic solvents, biocompatibility, transparency and
easy processing and fine-tuning of their magnetic properties are not far from reality.

The remarkable experimental progress achieved to date in the synthesis of ferrimagnetic
materials requires a deeper understanding of the theoretical characterization of these
materials. Mixed Ising systems provide simple but interesting models to study ferrimagnetic
ordering. Several techniques, such as high-temperature series expansion [8], renormalization
group [9], mean-field [10], effective-field [11, 12] and nonperturbative approaches [13, 14],
have been used to investigate the magnetic properties of these systems. There is also a
solution of a mixed Ising system on a Union Jack lattice on a two-dimensional manifold
in the parameter space [15]. Mean- and effective-field theories predict the existence of
tricritical [10,12] and compensation points [10,11] in mixed Ising systems described by
Hamiltonians which only include nearest-neighbour and crystal field interactions. However,
recent studies based on nonperturbative methods such as Monte Carlo and numerical transfer
matrix methods [14] indicate that the predictions given by mean- and effective-field theories
are not reliable for these models.

In this article, we present a Monte Carlo study of a mixed spin Ising system, where the
spinso, that take two possible vaIueﬁ%, and the sping, that take five possible values,
+2, 41, 0, are nearest neighbours and interact antiferromagnetically, while spins of the
same type are next-nearest neighbours. Ground state diagrams are calculated exactly and
Monte Carlo simulations are carried out to obtain the finite-temperature phase diagram and
to explore the existence of a compensation point. Effective-field theory predicts that this
system has a tricritical point at a nonzero temperature, but gives no prediction about the
existence of a compensation point [12].

2. The model and its ground states

We study a 2D Ising model with spin§,= +2, +£1, 0 andoe = +1/2, located in alternating

sites of a square lattice, such that thand thes spins are nearest neighbours and the next-
nearest neighbours are always spins of the same type. A Hamiltonian for this model that
includes only nearest-neighbour and external field interactions is

H=~J) Soj~J) Stoj—Hyp) oj—H) S+D) ¢ (1)
(nn) (nn) J i i

where J; and J, are the exchange interaction parametéfg, and H, are external fields
and D is the crystal field, all in energy units. The paramefgris chosen to be negative
such that the coupling between nearest neighbours is antiferromagnetic.

In order to generate the ground state diagrams, we have calculated the energy of each
configuration of a 2« 2 unit cell [16]. Taking into account rotational symmetry, there are
45 such configurations with different degrees of degeneracy. Table 1 shows the energies
and degeneracies of the 45 configurations. The ground state of the model depends on the
values of the parameters in the Hamiltonian. For example, in figure 1 we show the ground
state diagram for the1—J,—D model (for which all the parameters in the Hamiltonian are
zero, except/;, J, and D). The boundaries between the regions are obtained by pairwise
equating the ground state energies.

To compare our results with those predicted by effective-field theory [12], we restrict our
Monte Carlo simulations to thé&—D (J», H1/» and H; are all zero) model. The ground state
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Table 1. Ground state configurations, degeneracies and energies for<tReubitary spin cells.
The symbol convention is as follows: = 2, +; 0 = -3, = §=0,0;S = +1, 1; S = -1,
hiS=2,18=-2,4.

No Configuration Degeneracy Energy per site

1 0 + 1 E]_:%Hl/z
+ 0

2 0 + 2 E2=7]172]27%H1/27%H1+D
+

3 0 + 2 E3=—%]1—%J2—%H1/2—%H1+%D
+ 1

4 0 + 2 Es=3h— 30— 3iHp+im+ 3D
+

5 0 + 2 Es=J1—2] —2— jHip+ 3Hi+ D
+

6 1 + 2 Ee=-3J—-1-30h—tH)p—3H+3D
+

TN+ 2 Er=—3h—3J— jHiy2— Hi+ 3D
+

8 1 + 2 Eg=—4J, — %Hl/z + 2D
+

9 1 + 1 Eg=—J1—Jo— jHip— 3Hi+ 5D
+ 1

10 1+ 2 Ewo=—Jp— Hi2+ 3D
+

1 1+ + 2 Ellz%ll—glz—zllHl/z—&-zl‘Hl-i-gD
+ J

12 |+ 1 Erp=J—Jo— jHip+ 5Hi+ 3D
+

3 ) + 2 Eiz=3h—3J— 3Hy2+ 3H1+ 3D
+ 4

14 § + 1 Eva=2J1—4Jp — LHypp + Hi +2D
+ J

15 f + 1 E1s=—2J1 —4J, — 1Hyjp — H1 + 2D
+ 1

6 0 - 1 E16= 3Hip
- 0

17 0o - 2 E17=Jl+212+%H1/2—%H1+D
- 1

8 0 - 2 Eig=3h+3ih+ -0 +3iD
- 1

19 0 - 2 Eig=—3h+3ih+ i+ 10+ 31D
-

20 0 - 2 Exo=—J1+2/+ JHi2+ 3H1+ D
- 4

21 ¢ - 1 Ep = 2J1 +4J + S Hijp — Hy + 2D
- 1

2 f - 2 Epp=3h+ 30+ 3H,-30+3D
- 1

23 - 2 Exs= 31+ 302+ JHip— 1H1+ 5D
- 4

24 v — 2 E24=4]2+%H1/2+2D
- 4

25 1 - 1 Ep=Ji+Jo+ sHyp— 3Hi+ 3D
- 1
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Table 1. (Continued)

No Configuration Degeneracy Energy per site

26 1t - 2 Exs=Jo+ sHip+ 3D
-
27+ - 2 Epp=—301+ 3+ sHio+ SH1+ 3D
- 4
28 | - 1 Exg=—J1+Jo+ sHiyp+ 3Hi+ 3D
-
29 | - 2 Epe= -3+ 30+ Hp+ 30+ 3D
- 4
30 U — 1 E3zo=—-2J1+4J2 + %Hl/z + H1+ 2D
- 4
31 0 — 2 E31=0
+ 0
32 0 - 4 Ep=—3Hi+D
+
33 0 — 4 E33:—%H1+%D
+ 1
34 0 - 4 E34=;H1+%D
+
35 0 - 4 Ess= 3H1+D
+ J
36 1 — 2 Ess = —H1+ 2D
+
37 4 - 4 Ezr=-3H+3D
+ 1
38 ¢ - 4 Esg=—1Hi+ 3D
+
39 T — 4 E3z9=2D
+
40 41 - 2 Eq=—3Hi+ 3D
+ 1
4 1 - 4 Eq=3D
+
42 4 — 4 E42:%H1+%D
+ 4
43 | - 2 Eqz=3Hi+ 3D
+
4 | - 4 Esa=3H+ 3D
+
45 4 - 2 E4ss = H1 + 2D
+

diagram for this system is given by the linfg = 0 in figure 1. The ordered phases of the
J1—D model atT = 0 are separated at the two critical values corresponding/id;| = %
(between the ground state of tie= +2, 0 = :l:% model and that of th = +1,0 = ﬂ:%
model) andD/|J1| = 2 (between the ground state of te= +1, 0 = i% model and that
of the S =0, o = +} model).
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Figure 1. The ground state diagram for thig—/,—D model. The configurations of the unit cell
in each of the five regions are labelled as in table 1.

3. The Monte Carlo simulation

We use standard Monte Carlo techniques [17] to simulate the Hamiltonian described by (1)
on square lattices of. x L sites with periodic boundary conditions. Configurations are
generated by sweeping through the lattice and flipping the spins one at a time. The flips
are accepted or rejected by the heat bath algorithm, such that, once the equilibrium has
been reached, the probability of a particular configuration is proportional to the Boltzmann
factor. We choosd. = 60. Data were generated with l®onte Carlo steps per site
after discarding the firsts $Gsteps per site. The error bars were calculated by taking all
the measurements and grouping them in ten blocks. The values obtained in this way are
statistically independent and we can take their standard deviation as the error estimate.
We calculated the internal energy per site,

E = (1/L%(H) (2
the specific heat,
C = (B?/LA)[(H?) — (H)] 3)

the sublattice magnetization&f; and M, defined as

My = L22< Z S,~> 4
and |

M= 5o o) )

J
the total magnetization per spidf = (M1 + M>)/2, and the order parameters

1
0y = L2< Z(S,- +0;) > (6)
L]

The averages are taken over all the configurations, the sums: auer over all the sites
with S spins and the sums ovegrare over all the sites with spins. Each sum hak?/2
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terms. In order to verify our results, we compared them with exact enumeration studies
for L = 2. We also checked that the ground state diagrams are reproduced for different
combinations of parameters in the Hamiltonian.

The compensation poinf,,,, can be located by finding the crossing point between
the absolute values of the sublattice magnetizations,

|M1(Tc0mp)| = |M2(Tc0mp)| (7)
with the conditions
SIgNIM1(Teomp)] = —SIgNIM2(Teomp)] @and Teomp < 7. (8)

These conditions ensure that®t,,, the two sublattice magnetizations cancel each other,
whereas at the critical temperatuf@e, both go to zero.
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Figure 2. Energy against for several values oD/|J1|, J1 = —1, in the different regions

shown in figure 1 corresponding t& = 0. In most cases the error bars cannot be observed
because they are smaller than the symbols chosen.

4. Results

We start by testing the predictions for the critical temperatures of/th@® model given

by the effective-field theory [12]. The ground state for this system corresponds to the line
Jo = 01infigure 1. By means of a Monte Carlo simulation we explore the finite-temperature
behaviour of the magnetization, the energy, the specific heat and the order parameter in the
different regions of the parameter space. All the calculations were performedwith-1.

In figure 2, we show the energy as a function of the temperature for several values of
D/|J1|. As expected, the ground state energies coincide with those calculated in table 1.
Several specific heat curves are shown in figure 3; the critical temperafiyyesd obtained
by locating the maxima of the curves. In figure 4, we show the finite-temperature phase
diagram calculated with the Monte Carlo method. Also, in the same figure, we present the
results given by effective-field theory [12]. Notice that the two curves have a similar shape
but effective-field theory overestimates the critical temperatures. In the imit; —oo, the
Monte Carlo results are in excellent agreement with those of a nearest—neighbo%ulsﬂpgl
model, T, (exacy = 2.269. Effective-field theory predicts the existence of a tricritical point
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Figure 3. Specific heat againgt for different values ofD/|J1|, J1 = —1. The location of the
maximum gives an estimate @f.
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Figure 4. The finite-temperature phase diagram for the-D model. Monte Carlo results

are indicated by solid circles with error estimates. The solid line corresponds to the effective-
field approximation [12]. In the limitD — —oo the system reduces to a nearest-neighbour
spin % Ising system. The Monte Carlo simulations give the correct valu&.ah this limit,
T.(exach = 2.269.

at D/|J;| = 1.965,T, = 0.5138 [12]. Our small-scale simulations show no evidence of a
tricritical point at finite temperature, instead our results suggest that the critical temperature
goes to zero whei /| J;1| goes to the critical value of two.

In figure 5, we show the total magnetizatio; + M,)/2, as a function of the
temperature, for several values of the paramé¥¢(/i|. To avoid confusion due to the
well known phenomenon of the flipping of the entire spin system near the critical point,
we choose the conventioW; > 0 and M, < 0, such that when flipping is observed at
high temperatures we change the signs of the magnetizations to adhere to the convention.
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The magnetization curves do not seem to indicate the presence of a nonzero tricritical
temperature near the valug/|Ji| = 2.

It is interesting to notice, in figure 5, the peculiar behaviour of the magnetization near
the critical values ofD/|J1| shown in figure 1 D/|J1| = % 2). WhenD/|Jq| is very small
the magnetization behaves as that of a ferromagnet, decaying from its maximum value at
T = 0 following a Q type curve in the &&l classification [2], but a®/|J;| increases and
approaches its critical value c%i the magnetization at low temperature presents a rather
rapid decrease from its value & = 0, as shown in figure 5(a) fob = 0.65. This
low-temperature behaviour is not predicted bgeNtheory of ferrimagnetism. A similar
behaviour has been observed in amorphous ferrites [18].

When D/|J1| = % the zero-temperature value of the magnetization is 0.5, which
indicates that the ground state is a mixed state whereStispins are distributed in the
S =2 or § = 1 state with equal probability, and thle spins take the value o#%. When
D/|J1| is very close to and greater th%‘l(the next region in the ground state diagram)
the total magnetization at low temperature increases very rapidly from its zero-temperature
value before decaying &t (M type behaviour), but a®/|J;| keeps increasing the rise of
the low-temperature magnetization value is less pronounced, until, fot| & | value near
unity, the magnetization behaves again in the standard way for a ferromagnet, decreasing
from its zero-temperature value & Q type curve. As the next critical poird,/|J1| = 2, is
approached, the rapid drop in the total magnetization at low temperatures is observed again,
but in this case is due to the fact that the critical temperature is very low.

The magnetization curves indicate that this model has no compensation point, i.e.
the total magnetization is never zero beld@w (behaviour type N). It is evident that the
conditions given by (7) and (8) are not satisfied. The absolute values of the sublattice
magnetizations are equal only &t, where both go to zero. Also, we observe that the
S sublattice is the one with the strongest dependence o®hé;| parameter.

5. Conclusions

We have applied a Monte Carlo algorithm to the study of a mixed Ising model on a
square lattice, where spins = £2, £1, 0 are alternated with spins = :i:%. Choosing
antiferromagnetic nearest-neighbour interactions provides us with a simple but interesting
model of ferrimagnetic behaviour.

We have calculated exactly the ground state energies for a Hamiltonian with nearest-
neighbour interactions, external fields and the crystal field, and have shown the phase
diagram for a particular combination of parameters in the Hamiltonian.

In order to perform the Monte Carlo simulation and compare our results with those
obtained by effective-field theory, we chose to keep only the parameters associated with
the first-order interaction and the crystal fielék: and D respectively. We presented results
for the magnetization, the energies and the specific heat for this model, as functions of the
temperature.

We found no evidence to support the effective-field prediction that’th® model has
a tricritical point at a nonzero temperature [12]. This discordance is not surprising since
recent results for a similar mode$ & +1, 0,0 = i%), obtained with Monte Carlo and
transfer matrix techniques, indicate that mean- and effective-field predictions for tricritical
and compensation points are not reliable for these mixed systems [14]. However, a more
detailed analysis with larger lattices, either by studying the behaviour of the eigenvalues
of the transfer matrix [19] or by calculating the critical exponents, will be necessary to
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establish a definite conclusion on the existence of a tricritical point.

Also, we found that there is no compensation point for fheD model. A previous
work carried outonthd = +1, 0,0 = :I:% model indicates that the next-nearest interactions
between ther type spins are responsible for the existence of compensation points [14], and
a recent work shows that this is also the case for the present model [20].

This system has a more complex phase diagram than the spin 1§—sgi9tem. Its

ground state diagram presents two critical valuBg|(i| = % 2) whereas the spin 1—

spin % model has only onel§/|Ji] = 2). This complexity is evident in the low-

temperature behaviour of the total magnetization, that shows a strong dependence on the
D/|J1| parameter. It is interesting to notice that whéxy|J;| approaches from below

the critical value of%, the total magnetization curve has a peculiar shape characterized,
at low temperatures, by a very rapid drop from its zero-temperature value, followed by
a somewhat more standard ferromagnetic type decay (Q type material) as the temperature
increases. This behaviour is not described by t@eINheory of ferrimagnetism; however

a similar behaviour has been reported in amorphous ferrites [18].
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