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Abstract. The critical behaviour of a mixed ferrimagnetic Ising system on a square lattice in
which the two interpenetrating square sublattices have spinsσ (± 1

2) andS (±2,±1, 0) has been
studied. We carried out exact ground state calculations and performed Monte Carlo simulations
to obtain the finite-temperature phase diagram of the model. We found that the system that
includes only a nearest-neighbour interaction and the crystal field does not have a compensation
point. Also, our study seems to indicate that, contrary to effective-field predictions, there is no
tricritical point at nonzero temperature for this model; however a more elaborate analysis will
be needed to draw a definite conclusion on this point.

1. Introduction

Intensive experimental work is currently being carried out to synthesize stable, crystalline
materials with spontaneous magnetic moments at room temperature [1]. Ferrimagnetic
ordering seems to play a crucial role in these materials and the study of ferrimagnetism has
rapidly become a very active field of research. In a ferrimagnetic material, the existence
of a compensation temperature, i.e. a temperature below the critical temperature,Tc, at
which the resultant magnetization vanishes [2], is an interesting possibility with important
technological applications. This behaviour is possible due to the different temperature
dependences of the sublattice magnetizations.

An important number of ferrimagnetic materials with very promising characteristics
are currently being synthesized. New bimetallic linear chains have been produced and
characterized by the use of the so called ‘brick and mortar’ technique [3]. Also, two
mixed-metal ferrimagnetic assemblies of the type{NBu4[MFe(ox)3]}x , with M = Ni, Fe
and NBu4 = tetra(n-butyl)ammonium ion, have been obtained using a trisoxalatoferrate,
[Fe(ox)3], as the building block. Magnetization measurements revealed magnetic phase
transitions atTc = 28 (43) K for M = Ni (Fe) which are appreciably higher than those
associated with the corresponding ferromagnets,{NBu4[NiCr(ox)3]}x , Tc = 14 K, and
{NBu4[FeCr(ox)3]}x , Tc = 12 K [4].

Although most currently used magnetic materials are inorganic and based on metallic or
ionic lattices, new classes of magnets have recently been obtained with molecular organic
chemistry techniques. Ferrimagnetic materials referred to as Prussian blue analogues, with a
critical temperature of 240 K, have been reported [5]. The recently synthesized amorphous
V(TCNE)x.y (solvent), where TCNE is tetracyanoethylene, orders ferrimagnetically above
400 K [6]. Another experimental group has just announced the synthesis of compounds such
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as N(n-CnH2n+1)4FeIIFeIII (C2O4)3 with n = 3–5 that have critical temperatures between
35 and 48 K. Some of these compounds have compensation temperatures near 30 K [7].
Major breakthroughs are expected in the field of molecular magnetism. Organic materials
with properties such as solubility in organic solvents, biocompatibility, transparency and
easy processing and fine-tuning of their magnetic properties are not far from reality.

The remarkable experimental progress achieved to date in the synthesis of ferrimagnetic
materials requires a deeper understanding of the theoretical characterization of these
materials. Mixed Ising systems provide simple but interesting models to study ferrimagnetic
ordering. Several techniques, such as high-temperature series expansion [8], renormalization
group [9], mean-field [10], effective-field [11, 12] and nonperturbative approaches [13, 14],
have been used to investigate the magnetic properties of these systems. There is also a
solution of a mixed Ising system on a Union Jack lattice on a two-dimensional manifold
in the parameter space [15]. Mean- and effective-field theories predict the existence of
tricritical [10, 12] and compensation points [10, 11] in mixed Ising systems described by
Hamiltonians which only include nearest-neighbour and crystal field interactions. However,
recent studies based on nonperturbative methods such as Monte Carlo and numerical transfer
matrix methods [14] indicate that the predictions given by mean- and effective-field theories
are not reliable for these models.

In this article, we present a Monte Carlo study of a mixed spin Ising system, where the
spinsσ , that take two possible values,± 1

2, and the spinsS, that take five possible values,
±2, ±1, 0, are nearest neighbours and interact antiferromagnetically, while spins of the
same type are next-nearest neighbours. Ground state diagrams are calculated exactly and
Monte Carlo simulations are carried out to obtain the finite-temperature phase diagram and
to explore the existence of a compensation point. Effective-field theory predicts that this
system has a tricritical point at a nonzero temperature, but gives no prediction about the
existence of a compensation point [12].

2. The model and its ground states

We study a 2D Ising model with spins,S = ±2,±1, 0 andσ = ±1/2, located in alternating
sites of a square lattice, such that theS and theσ spins are nearest neighbours and the next-
nearest neighbours are always spins of the same type. A Hamiltonian for this model that
includes only nearest-neighbour and external field interactions is

H = −J1

∑
〈nn〉

Siσj − J2

∑
〈nn〉

S2
i σj −H1/2

∑
j

σj −H1

∑
i

Si +D
∑
i

S2
i (1)

whereJ1 andJ2 are the exchange interaction parameters,H1/2 andH1 are external fields
andD is the crystal field, all in energy units. The parameterJ1 is chosen to be negative
such that the coupling between nearest neighbours is antiferromagnetic.

In order to generate the ground state diagrams, we have calculated the energy of each
configuration of a 2× 2 unit cell [16]. Taking into account rotational symmetry, there are
45 such configurations with different degrees of degeneracy. Table 1 shows the energies
and degeneracies of the 45 configurations. The ground state of the model depends on the
values of the parameters in the Hamiltonian. For example, in figure 1 we show the ground
state diagram for theJ1–J2–D model (for which all the parameters in the Hamiltonian are
zero, exceptJ1, J2 andD). The boundaries between the regions are obtained by pairwise
equating the ground state energies.

To compare our results with those predicted by effective-field theory [12], we restrict our
Monte Carlo simulations to theJ1–D (J2, H1/2 andH1 are all zero) model. The ground state
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Table 1. Ground state configurations, degeneracies and energies for the 2×2 unitary spin cells.
The symbol convention is as follows:σ = 1

2 , +; σ = − 1
2 , −; S = 0, 0; S = +1, ↑; S = −1,

↓; S = 2, ⇑; S = −2, ⇓.

No Configuration Degeneracy Energy per site

1 0 + 1 E1 = 1
4H1/2

+ 0
2 0 + 2 E2 = −J1 − 2J2 − 1

4H1/2 − 1
2H1 +D

+ ⇑
3 0 + 2 E3 = − 1

2J1 − 1
2J2 − 1

4H1/2 − 1
4H1 + 1

4D

+ ↑
4 0 + 2 E4 = 1

2J1 − 1
2J2 − 1

4H1/2 + 1
4H1 + 1

4D

+ ↓
5 0 + 2 E5 = J1 − 2J − 2− 1

4H1/2 + 1
2H1 +D

+ ⇓
6 ↑ + 2 E6 = − 3

2J − 1− 5
2J2 − 1

4H1/2 − 3
4H1 + 5

4D

+ ⇑
7 ⇑ + 2 E7 = − 1

2J1 − 5
2J2 − 1

4H1/2 − 1
4H1 + 5

4D

+ ↓
8 ⇑ + 2 E8 = −4J2 − 1

4H1/2 + 2D
+ ⇓

9 ↑ + 1 E9 = −J1 − J2 − 1
4H1/2 − 1

2H1 + 1
2D

+ ↑
10 ↑ + 2 E10 = −J2 − 1

4H1/2 + 1
2D

+ ↓
11 ↑ + 2 E11 = 1

2J1 − 5
2J2 − 1

4H1/2 + 1
4H1 + 5

4D

+ ⇓
12 ↓ + 1 E12 = J1 − J2 − 1

4H1/2 + 1
2H1 + 1

2D

+ ↓
13 ↓ + 2 E13 = 3

2J1 − 5
2J2 − 1

4H1/2 + 3
4H1 + 5

4D

+ ⇓
14 ⇓ + 1 E14 = 2J1 − 4J2 − 1

4H1/2 +H1 + 2D
+ ⇓

15 ⇑ + 1 E15 = −2J1 − 4J2 − 1
4H1/2 −H1 + 2D

+ ⇑
16 0 − 1 E16 = 1

4H1/2

− 0
17 0 − 2 E17 = J1 + 2J2 + 1

4H1/2 − 1
2H1 +D

− ⇑
18 0 − 2 E18 = 1

2J1 + 1
2J2 + 1

4H1/2 − 1
4H1 + 1

4D

− ↑
19 0 − 2 E19 = − 1

2J1 + 1
2J2 + 1

4H1/2 + 1
4H1 + 1

4D

− ↓
20 0 − 2 E20 = −J1 + 2J2 + 1

4H1/2 + 1
2H1 +D

− ⇓
21 ⇑ − 1 E21 = 2J1 + 4J2 + 1

4H1/2 −H1 + 2D
− ⇑

22 ⇑ − 2 E22 = 3
2J1 + 5

2J2 + 1
4H1/2 − 3

4H1 + 5
4D

− ↑
23 ⇑ − 2 E23 = 1

2J1 + 5
2J2 + 1

4H1/2 − 1
4H1 + 5

4D

− ↓
24 ⇑ − 2 E24 = 4J2 + 1

4H1/2 + 2D
− ⇓

25 ↑ − 1 E25 = J1 + J2 + 1
4H1/2 − 1

2H1 + 1
2D

− ↑
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Table 1. (Continued)

No Configuration Degeneracy Energy per site

26 ↑ − 2 E26 = J2 + 1
4H1/2 + 1

2D

− ↓
27 ↑ − 2 E27 = − 1

2J1 + 5
2J2 + 1

4H1/2 + 1
4H1 + 5

4D

− ⇓
28 ↓ − 1 E28 = −J1 + J2 + 1

4H1/2 + 1
2H1 + 1

2D

− ↓
29 ↓ − 2 E29 = − 3

2J1 + 5
2J2 + 1

4H1/2 + 3
4H1 + 5

4D

− ⇓
30 ⇓ − 1 E30 = −2J1 + 4J2 + 1

4H1/2 +H1 + 2D
− ⇓

31 0 − 2 E31 = 0
+ 0

32 0 − 4 E32 = − 1
2H1 +D

+ ⇑
33 0 − 4 E33 = − 1

4H1 + 1
4D

+ ↑
34 0 − 4 E34 = 1

4H1 + 1
4D

+ ↓
35 0 − 4 E35 = 1

2H1 +D
+ ⇓

36 ⇑ − 2 E36 = −H1 + 2D
+ ⇑

37 ⇑ − 4 E37 = − 3
4H1 + 5

4D

+ ↑
38 ⇑ − 4 E38 = − 1

4H1 + 5
4D

+ ↓
39 ⇑ − 4 E39 = 2D

+ ⇓
40 ↑ − 2 E40 = − 1

2H1 + 1
2D

+ ↑
41 ↑ − 4 E41 = 1

2D

+ ↓
42 ↑ − 4 E42 = 1

4H1 + 5
4D

+ ⇓
43 ↓ − 2 E43 = 1

2H1 + 1
2D

+ ↓
44 ↓ − 4 E44 = 3

4H1 + 5
4D

+ ⇓
45 ⇓ − 2 E45 = H1 + 2D

+ ⇓

diagram for this system is given by the lineJ2 = 0 in figure 1. The ordered phases of the
J1–D model atT = 0 are separated at the two critical values corresponding toD/|J1| = 2

3

(between the ground state of theS = ±2, σ = ± 1
2 model and that of theS = ±1, σ = ± 1

2

model) andD/|J1| = 2 (between the ground state of theS = ±1, σ = ± 1
2 model and that

of the S = 0, σ = ± 1
2 model).
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0.0 1.0 2.0 3.0 4.0
D/|J1|

-2

-1

0

1

2

J2
/|J

1|
(D/2|J1|) - (

1/3)

(-D/2|J1|) + (1/3)

(D/2|J1|) - 1

(-D/2|J1|) + 1

14

21

12

25

1,16

31

Figure 1. The ground state diagram for theJ1–J2–D model. The configurations of the unit cell
in each of the five regions are labelled as in table 1.

3. The Monte Carlo simulation

We use standard Monte Carlo techniques [17] to simulate the Hamiltonian described by (1)
on square lattices ofL × L sites with periodic boundary conditions. Configurations are
generated by sweeping through the lattice and flipping the spins one at a time. The flips
are accepted or rejected by the heat bath algorithm, such that, once the equilibrium has
been reached, the probability of a particular configuration is proportional to the Boltzmann
factor. We chooseL = 60. Data were generated with 105 Monte Carlo steps per site
after discarding the firsts 103 steps per site. The error bars were calculated by taking all
the measurements and grouping them in ten blocks. The values obtained in this way are
statistically independent and we can take their standard deviation as the error estimate.

We calculated the internal energy per site,

E = (1/L2)〈H 〉 (2)

the specific heat,

C = (β2/L2)[〈H 2〉 − 〈H 〉2] (3)

the sublattice magnetizations,M1 andM2, defined as

M1 = 2

L2

〈∑
i

Si

〉
(4)

and

M2 = 2

L2

〈∑
j

σj

〉
(5)

the total magnetization per spin,M = (M1+M2)/2, and the order parameters

O± = 1

L2

〈∣∣∣∣∑
i,j

(Si ± σj )
∣∣∣∣〉. (6)

The averages are taken over all the configurations, the sums overi are over all the sites
with S spins and the sums overj are over all the sites withσ spins. Each sum hasL2/2
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terms. In order to verify our results, we compared them with exact enumeration studies
for L = 2. We also checked that the ground state diagrams are reproduced for different
combinations of parameters in the Hamiltonian.

The compensation point,Tcomp, can be located by finding the crossing point between
the absolute values of the sublattice magnetizations,

|M1(Tcomp)| = |M2(Tcomp)| (7)

with the conditions

sign[M1(Tcomp)] = −sign[M2(Tcomp)] and Tcomp < Tc. (8)

These conditions ensure that atTcomp the two sublattice magnetizations cancel each other,
whereas at the critical temperature,Tc, both go to zero.

0.0 1.0 2.0
T

-1.5

-1.0

-0.5

0.0

0.5

E

D=0.4

D=0.65

D=1.7

D=1.0

Figure 2. Energy againstT for several values ofD/|J1|, J1 = −1, in the different regions
shown in figure 1 corresponding toJ2 = 0. In most cases the error bars cannot be observed
because they are smaller than the symbols chosen.

4. Results

We start by testing the predictions for the critical temperatures of theJ1–D model given
by the effective-field theory [12]. The ground state for this system corresponds to the line
J2 = 0 in figure 1. By means of a Monte Carlo simulation we explore the finite-temperature
behaviour of the magnetization, the energy, the specific heat and the order parameter in the
different regions of the parameter space. All the calculations were performed withJ1 = −1.

In figure 2, we show the energy as a function of the temperature for several values of
D/|J1|. As expected, the ground state energies coincide with those calculated in table 1.
Several specific heat curves are shown in figure 3; the critical temperatures (Tc) are obtained
by locating the maxima of the curves. In figure 4, we show the finite-temperature phase
diagram calculated with the Monte Carlo method. Also, in the same figure, we present the
results given by effective-field theory [12]. Notice that the two curves have a similar shape
but effective-field theory overestimates the critical temperatures. In the limit,D→−∞, the
Monte Carlo results are in excellent agreement with those of a nearest-neighbour spin1

2 Ising
model,Tc(exact) = 2.269. Effective-field theory predicts the existence of a tricritical point
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0.0 0.5 1.0 1.5 2.0 2.5
T

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

C

D=0.4

D=0.65

D=1.0

D=1.5

D=1.7

Figure 3. Specific heat againstT for different values ofD/|J1|, J1 = −1. The location of the
maximum gives an estimate ofTc.

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
D/|J1|

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
c

Effective Field

2.269

Figure 4. The finite-temperature phase diagram for theJ1–D model. Monte Carlo results
are indicated by solid circles with error estimates. The solid line corresponds to the effective-
field approximation [12]. In the limitD → −∞ the system reduces to a nearest-neighbour
spin 1

2 Ising system. The Monte Carlo simulations give the correct value ofTc in this limit,
Tc(exact) = 2.269.

at D/|J1| = 1.965, Tc = 0.5138 [12]. Our small-scale simulations show no evidence of a
tricritical point at finite temperature, instead our results suggest that the critical temperature
goes to zero whenD/|J1| goes to the critical value of two.

In figure 5, we show the total magnetization,(M1 + M2)/2, as a function of the
temperature, for several values of the parameterD/|J1|. To avoid confusion due to the
well known phenomenon of the flipping of the entire spin system near the critical point,
we choose the conventionM1 > 0 andM2 < 0, such that when flipping is observed at
high temperatures we change the signs of the magnetizations to adhere to the convention.
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The magnetization curves do not seem to indicate the presence of a nonzero tricritical
temperature near the valueD/|J1| = 2.

It is interesting to notice, in figure 5, the peculiar behaviour of the magnetization near
the critical values ofD/|J1| shown in figure 1 (D/|J1| = 2

3, 2). WhenD/|J1| is very small
the magnetization behaves as that of a ferromagnet, decaying from its maximum value at
T = 0 following a Q type curve in the Ńeel classification [2], but asD/|J1| increases and
approaches its critical value of23, the magnetization at low temperature presents a rather
rapid decrease from its value atT = 0, as shown in figure 5(a) forD = 0.65. This
low-temperature behaviour is not predicted by Néel theory of ferrimagnetism. A similar
behaviour has been observed in amorphous ferrites [18].

When D/|J1| = 2
3, the zero-temperature value of the magnetization is 0.5, which

indicates that the ground state is a mixed state where theS spins are distributed in the
S = 2 or S = 1 state with equal probability, and theσ spins take the value of− 1

2. When
D/|J1| is very close to and greater than23 (the next region in the ground state diagram)
the total magnetization at low temperature increases very rapidly from its zero-temperature
value before decaying atTc (M type behaviour), but asD/|J1| keeps increasing the rise of
the low-temperature magnetization value is less pronounced, until, for aD/|J1| value near
unity, the magnetization behaves again in the standard way for a ferromagnet, decreasing
from its zero-temperature value in a Q type curve. As the next critical point,D/|J1| = 2, is
approached, the rapid drop in the total magnetization at low temperatures is observed again,
but in this case is due to the fact that the critical temperature is very low.

The magnetization curves indicate that this model has no compensation point, i.e.
the total magnetization is never zero belowTc (behaviour type N). It is evident that the
conditions given by (7) and (8) are not satisfied. The absolute values of the sublattice
magnetizations are equal only atTc, where both go to zero. Also, we observe that the
S sublattice is the one with the strongest dependence on theD/|J1| parameter.

5. Conclusions

We have applied a Monte Carlo algorithm to the study of a mixed Ising model on a
square lattice, where spinsS = ±2, ±1, 0 are alternated with spinsσ = ± 1

2. Choosing
antiferromagnetic nearest-neighbour interactions provides us with a simple but interesting
model of ferrimagnetic behaviour.

We have calculated exactly the ground state energies for a Hamiltonian with nearest-
neighbour interactions, external fields and the crystal field, and have shown the phase
diagram for a particular combination of parameters in the Hamiltonian.

In order to perform the Monte Carlo simulation and compare our results with those
obtained by effective-field theory, we chose to keep only the parameters associated with
the first-order interaction and the crystal field:J1 andD respectively. We presented results
for the magnetization, the energies and the specific heat for this model, as functions of the
temperature.

We found no evidence to support the effective-field prediction that theJ1–D model has
a tricritical point at a nonzero temperature [12]. This discordance is not surprising since
recent results for a similar model (S = ±1, 0, σ = ± 1

2), obtained with Monte Carlo and
transfer matrix techniques, indicate that mean- and effective-field predictions for tricritical
and compensation points are not reliable for these mixed systems [14]. However, a more
detailed analysis with larger lattices, either by studying the behaviour of the eigenvalues
of the transfer matrix [19] or by calculating the critical exponents, will be necessary to
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0.0 0.5 1.0 1.5
T

-0.1

0.1

0.3

0.5

0.7

M

D = 0.4

D =0.65

D = 0.7

D=0.2

D = 0.8

(a)

0.0 0.5 1.0
T

-0.1

0.0

0.1

0.2

M

D = 1.0

D=1.7

D = 1.975

D = 1.9

D = 1.5

(b)

Figure 5. The total magnetizationM = (M1 + M2)/2 as a function of the temperature is
shown in the different regions corresponding toJ2 = 0 in figure 1,J1 = −1. Notice howTc
shifts toward zero asD/|J1| increases towards the critical value of two. (a) Total magnetization
againstT for D = 0.2, 0.4, 0.65, 0.7 and 0.8. (b) Total magnetization againstT for D/|J1| = 1,
1.5, 1.7, 1.9 and 1.975.
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establish a definite conclusion on the existence of a tricritical point.
Also, we found that there is no compensation point for theJ1–D model. A previous

work carried out on theS = ±1, 0,σ = ± 1
2 model indicates that the next-nearest interactions

between theσ type spins are responsible for the existence of compensation points [14], and
a recent work shows that this is also the case for the present model [20].

This system has a more complex phase diagram than the spin 1–spin1
2 system. Its

ground state diagram presents two critical values (D/|J1| = 2
3, 2) whereas the spin 1–

spin 1
2 model has only one (D/|J1| = 2). This complexity is evident in the low-

temperature behaviour of the total magnetization, that shows a strong dependence on the
D/|J1| parameter. It is interesting to notice that whenD/|J1| approaches from below
the critical value of2

3, the total magnetization curve has a peculiar shape characterized,
at low temperatures, by a very rapid drop from its zero-temperature value, followed by
a somewhat more standard ferromagnetic type decay (Q type material) as the temperature
increases. This behaviour is not described by the Néel theory of ferrimagnetism; however
a similar behaviour has been reported in amorphous ferrites [18].
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