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Abstract. The incommensurate state and the incommensurate—commensurate (IC-C) transition
in a minimal Landau model for G&nl, are investigated using rigorous analytical and numer-
ical techniques. The Euler—Lagrange equations are solved numerically using parameters
for CsZnly; the results differ significantly from those obtained using the constant-amplitude
approximation. The minimal model predicts that the IC-C transition is first order, in agreement
with experiment; the predicted discontinuity of the wavenumpeit the transition is 42% of

the maximumyg, rather than the measured 50%. The predicted temperature dependence of the
IC wavenumber is too strong, and the predicted entropy change at the transition is too small,
suggesting that the transition in £, is more strongly first order than predicted by the
minimal model. Some general results for the asymptotic interaction of discommensurations are
also obtained.

1. Introduction

The compound CG&Znl, belongs to the KSeQ, family of incommensurate systems [1],
but is distinguished from the majority by a commensurate moduldeon= a*/2 (rather

than kc = a*/3). Various physical properties of ¢€&nl, have been investigated by a
variety of experimental techniques [2-12]: nuclear quadrupole resonance [2, 5, 6], x-
ray [2, 5, 6, 10], dielectric constant [3, 5, 6], Raman scattering [4, 9], nuclear magnetic
resonance [5], optical birefringence [7, 8, 9], and heat capacity methods [11, LZnIgs

has five phases [8, 9, 12Pnma (Z = 4) <> incommensurate> ferroelasticP2:n (Z = 8)

<« ferroelasticP1 < ferroelasticP1; the respective transitions occurfat= 117 K (second
order), T, = 108 K (first order), 104 K (second order) and 94 K (first order).

The three high-temperature phases (abbreviated as N, IC and C) of interest here
are described by a complex (two-component) order paran@tet |Q|exp(if) which,
unfortunately, has no simple physical interpretation; in almost the words of Cummins [1],
Q is neither a local variable (like the magnetization or the polarization) nor a pure normal-
mode coordinate, but rather a hybrid of both. For unit area normal ta-lieection and
length L in this direction, the average free-energy density is

L/2
F/L=L"" a0, o] de (1a)
where p; = |Q|cosd and p» = |Q|sing; these are formal definitiong( is not the jth
component of a physical vectp). The minimal free-energy density for £51, (relative to
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the disordered (N) state in whigh = 0) is the fourth-order Landau functional [13-18, 11]
Flpi(x), p2(x)]
= 3a(pf + p) + 3813 + p5)* — 3B2(p1 — 6pFp5 + p3)

—A(p1 dpp/dx — pz dpy/dx) + Sx[(dp1/dx)® + (dpa/dx)?] (10)
where only terms essential for describing the IC and C states are included. All of the
parameters but (which has the dependenae= ao(T — To) WhereTy is the superheating
limit of the C state) are assumed independent of the temper@tufeor stability,8; > 0,
|82l < B1, andk > 0; the phase can be defined so that > 0 andB,; > 0. The third
(anisotropy) term is—%ﬁz|Q|4cos49 expressed in terms gf; and p,.

The above density and extensions of it have been studied previously [13-18, 11]. The
N-IC transition is second order, occurring @t= A?/«. In the IC state,p; and p»
are periodic functions ok, with wavenumbely; the physical structure is modulated at
k; = (1/2+ g/a*)a*. When the domain structure is well developed, wide regions where
the phasée is close to the commensurate valuest0;/2 andx (and the amplitudeQ|
is close to the C valu@®. = pc = [—a/(B1 — B2)]¥?, with « < 0) alternate with narrow
regions (discommensurations) wherepasses through the unfavourable valdes/4 and
+3r/4 (and |Q] is typically depressed below:). The wavenumbeg, which is A/«
just below the N-IC transition, decreases with decreasing temperature; the IC-C transition
occurs at a value; which must be found numerically. The C state, which existsxfar 0
and is stable fow < «y, is fourfold degenerate, witlip1, p2) = (£pc, 0), (0, £p¢); the
C-state density i = —a?/[4(B1 — B2)] (With « < 0).

Recent experiments [11] make attractive a further Landau theory study8higs First,
the heat capacity in the IC phase just below the N-IC transition is constant (as predicted
by mean-field theory), rather than increasing sharply with temperature as observed in many
other compounds; that is, fluctuation effects appear to be small. Second, the data are
sufficient for estimation of enough of the parameters that quantitative comparison with
experiment is possible for quantities (also available) not used in estimating the parameters.

In [11] such a comparison for the minimal model of equation (1) was presented, but
the value of the parameter at the IC—C transition was estimated using the constant-
amplitude approximation [19] which, unfortunately, can be quantitatively inaccurate, and
even qualitatively incorrect. The following presents rigorous analytical and numerical
treatments of the modulation of both the amplitude and the phase. Emphasis is on parameter
values appropriate for G&nl,, but more general results are also presented. Section 2
describes the results of numerical solution of the Euler-Lagrange equations. Section 3
investigates analytically the order of the IC—C transition. Section 4 compares predictions
of the minimal model with experiment. The appendix gives a general analytical treatment
of the IC-C transition, valid for many models in the Lifshitz-invariant class.

The constant-amplitude approximation (whose inadequacy was already shown by Shiba
and Ishibashi [15]) gives results significantly different from those of numerical solution of
the Euler-Lagrange equations; it should not be used in a serious effort to confront theory
with experiment. The minimal Landau model predicts successfully that the IC-C transition
is first order, and the predicted discontinuity in the wavenumgbat the transition agrees
reasonably well with experiment. On the other hand, the predicted temperature dependence
of ¢ just above the transition is too strong, and the predicted change in the entropy at the
transition is too small; that is, the IC-C transition is apparently more strongly first order
than predicted. Since 2nl, appears to be well described by mean-field theory [11], it
would be reasonable to extend the minimal model; the additional terms necessary to improve
agreement with experiment involve, however, parameters difficult to estimate.
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2. Numerical results

Numerical solutions of the Euler—Lagrange equations

dzpl dpz 3 5

K gz 28 g, Tarrt (Bu—Bapi+ (Bt 3p2)papy =0 (2a)
o d

—K d:ZZ +2A % +apz + (BL — B2)P3 + (B + 3B2) p2p% =0 (2b)

for the density of equation §) were obtained (for given wavenumbegj as in [20]; the

free energy was then minimized with respect¢o The equations were solved from

x = 0 (the centre of a discommensuration) o= X (a point mid-way between two
discommensurations). Boundary conditions compatible with the differential equations
are the following. Atx = 0: |Q(x)| is even andfd(x) + = /4 is odd; equivalently,
p1(—x) = —pa(x) and po(—x) = —p1(x). At x = X: |Q(x)| is even andd(x) is odd,;
equivalently, p1(x) is even andp»(x) is odd. The free energy, the order parameter and
the spatial coordinate can be scaledras B1y*F, pi =vp; (j =12), andx = kx/A,

with y = A//Bix. The scaled densit§ depends on only two parameters= 8,/51 and

a = ko)A

Table 1. Values of the anisotropy parameter= g,/81 used in the solution of equation (2).
Column 2 gives numerical values fa, (the value ofa at the IC-C transition), column 3 the
differencea; — oy (@, is the value ofe for which the single-discommensuration state and
the commensurate state have the same free energy), column 4 the discrimimaataqt, and
column 5 the wavenumber just above the IC-C transition.

r kap /A% k(@p —ap)/A2 D Kkq/A
0.9 —05496 24x 1072 440 0.765
0.8 -1.019 18x 1073 180 0.568
0.7 —1.589 1x 1078 19 0.201
0.685 —1.685 2x 1078 —02 0241
0.6 —2.305 9x 1076 —116 0.343
0.5 —3.259 3x 10°° —245 0.398
0.44 —4.017 1x 1074 —320 0.416
0.4 —4.637 1x 1074 —369 0.422
0.3 —6.856 6x 10°° —460 0.413
0.2 -—-1117 1x 1077 —31.8 0.304
0.16 —1435 0 36 0

0.1 —2377 0 2295 0

Column 1 of table 1 gives the values of the anisotropy paramedervhich the IC state
and the IC—C transition were examined;= 0.44 is believed appropriate for €&nl, [11].
Some of the numerical results differ slightly from those of [18]. At the values0.2 in
the table, the transition is clearly first order numerically (and also analytically, as shown
in [18] and in section 3). At the values < 0.16, there is no evidence for a first-order
transition, but a very weak one cannot be ruled out numerically or analytically. Of course
there is no IC-C transition at = 0; p; and p, are sinusoidal for albe < A?/k, with
wavenumbely = A/x and amplitude (A%/x — o)/B1]Y2. Columns 2 to 5 give (2) the
value«, at the transition, (3) the difference between anda; (the latter is the value of
a at which the single-discommensuration state and the C state have the same free energy),
(4) the discriminantD (defined in the appendix) at = @,, and (5) the wavenumber
just above the transition. The nonmonotonic dependencg off » (note the minimum



520 A E Jacobs

nearr = 0.69) is clearly connected with the change discussed below in the asymptotic
behaviour of the order parameter and the vanishing of the second-order interaction energy
whenD = 0. Consequently the discontinuity incannot be used in general to estimate the
anisotropy parameter.

1.2 T

0.4 - b

, la/Q)
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Figure 1. The reduced amplitudgd /Q¢| (solid line) and phasé (dashed line) of the IC order
parameter as functions af/ X for r = 0.44 (the value for CgZnls) at a temperature just above
the IC—C transition. The point = 0 is at the centre of a discommensuration and the point
x = X is mid-way between two discommensurations.

The order parameter is sinusoidal at the N-IC transition. At the IC—C transition it is
solitonic at smallr, but neither solitonic nor sinusoidal at= 0.9. Figure 1 plots the
amplitude and phase fer= 0.44 atT just above the IC-C transition. The phase increases
monotonically. The amplitude at the centre of the discommensuratien() is reduced to
81% of the C value); it overshoots the C value (by a maximum of 0.5%xaK ~ 0.76)
over a broad region between the discommensurations£ab andx = 2X). Overshooting
at the IC—C transition in a one-dimensionally IC system appears to have been noticed first in
[21], for a charge-density-wave (CDW) model. The oscillations discussed in the appendix
occur at larger discommensuration spacing.

3. Analysis of the IC-C transition

An analysis similar to the following (with minor differences) was given in [18]. The

second-order interaction energy of discommensurations is obtained gisiag—2a and

g2 = —4ra/(1—r), with @ = ka/A?, in the results of the appendix; the discriminant is
D=4+41+nra/L—-r)+[@r - Da/@-n)> ®)

For the purpose of examining the order of the transiti@n,D and other quantities are
to be evaluated at the temperatufe (&, can be found from table 1). Figure 1 of [18]
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(& and » there arexa/A? andr here) shows thab is negative in the central region of
the a—r plane and positive elsewhere. The lirBs= 0 cross the IC-C transition line at
(ka/A?, r) ~ (—14,0.16) and (—1.7, 0.69), from table 1.

If the discriminant is positive, a simple analysis shows that equation (A9) gives four real
decay constants. In agreement with equation (19) of [18], the square bracket in equation
(A10) for the second-order interaction energy is

B=DY2+4+2—-(1-3na/(1—r) = —(2a/A)(dz/dy). 4

For strong anisotropyr(2 0.69), B is negative and the transition is first order [18]. For
weak anisotropy/( < 0.16), B is positive (suggesting a second-order transition) but no
conclusion can be drawn about the order without further analysis, for equation (A10) gives
only the asymptotic interaction; a numerical investigation of the dependenge-of; on

X is required. An extensive search for an interior minimum was conducted=a0.1 and

0.16, but none was found. For intermediate anisotropya& r < 0.69), the discriminant

is negative and the transition is first order (as shown in the appendix).

4. Comparison with experiment

The experimental results, plus the theoretical valuegf give only five relations for the

six parameters of the minimal Landau theory. Explicitly, the experimental results for (a)
the wavenumber &’ just belowT;, (b) the heat capacitg, at T just belowT; (relative

to the value at hight"), (c) the heat capacity &t just belowT;, (d) the value off; (116.9

K), (e) the value ofT; (107.6 K), plus some straightforward analysis, give [11]

q(T;) =0.135a" = A/k (5a)
C,(T;) = 0.54R = T;/(2B1) (5b)
C,(T;) = 0.88R = T,a2/[2(B1 — B2)] (50)
ao(T; — To) = A%/ (50)
ao(Ty — To) = o, (5¢)

where R is the gas constant. Despite the incomplete determination of the parameters,
checks of the theory are provided by measurements of two separate quantities, the IC-
phase wavenumber as a functionofparticularly the discontinuity at the IC—C transition)

and the entropy change at this transition. Equatiorly @nd (%) give immediately
Bi/a3 =108, K/R andr = B,/p1 = 0.43, both as in [11].

In the constant-amplitude approximation, the solution of the Euler-Lagrange equation
for the phase is c@29) = cd(rAx|m) wherei = 2|Q|+/B2/(mk) and cd is the Jacobian
elliptic function [22]; the average density is given by equation (2) of [11], but the following
replacements must be made to conform with the conventions of [R2}i) — K(m),

E(u) — E(m) and (except in the arguments of the elliptic integrads)> /m. Forr =
B2/B1 = 0.44, one finds the following results at the IC—C transition; = —3.438A%/«,
the discontinuity in the wavenumber 48 = 0.750A /k (as in [11]), and the change in the
entropy isAS = 0.55009A?/(B1k). Meleroet al [11] obtained the first and third of these
but did not quote the values. Equations (5) then gh/gyg = 155 K(a*) %, k/ag = 115
K(a*)~2 andTp = 1148 K; these differ slightly from the values quoted in [11], for unknown
reasons. The entropy change is thefi = 0.0106R (versus Q010R [11]).

Full numerical solution of the Euler-Lagrange equations (for= 0.44) gives
significantly different values, namely; = —4.017A%/k, Aq = 0.416A /k, and AS =
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Figure 2. The reduced wavenumbety/A in the IC phase of G&Znls. The points are the
experimental values (from [11]); the solid line gives the rigorous numerical result and the
dashed line the constant-amplitude approximation, bothrfer 0.44. The N-IC and IC-C
transitions occur at 116.9 K and 107.6 K; the short horizontal lines mark the discontinuity at
the latter.

0.289cpA?/(B1k). The revised parameters argag = 13.7 K(a*) 1, k /ag = 102 K(a*)~?
and T, = 1150 K, giving AS = 0.0049R.

Figure 2 compares the measured wavenumdfgfA in the IC phase with the two
numerical results (for = 0.44); the horizontal and vertical axes have been scaled, but the
comparison does not otherwise involve the Landau parameters. The measured discontinuity
in g atT; is 50% of the value at the N-IC transition (this may be an overestimate, because
of sample inhomogeneities), in good agreement with the rigorous numerical result (42%)
and poor agreement with the result of the constant-amplitude approximation (75% [11]).
The rigorous numerical result for the temperature dependengeatfo agrees better with
experiment, but the predicted dependence is too strong.

The entropy change at the IC—C transition is givem\a@s= 0.035R in [11] and Q02 R
in [12], but both are overestimates because of the difficulty in removing background. The
rigorous numerical resultAS = 0.0049R, is considerably smaller. There seems then no
justification for presenting the predictions of the minimal model for the heat capacity.

Of course the minimal model must fail quantitatively unless the order parameter (which,
unfortunately, cannot be measured directly) remains small throughout the IC phase. One
justification for the use of the minimal model, as a first approximation, is Thds close
to 7;: T, ~ 0.927T, . A second is that the thermodynamic data are consistent with the
integrated intensity of the x-ray satellite peak in the sense that the vall@|dbbtained
from the Landau theory scales with the latter [11]. But without estimates of the coefficients
of the higher-order terms, neither can one rule out the possibility that the agreement found
above is fortuitous; in fact, the evidence is that the higher-order terms have significant
effects.
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Appendix. Asymptotic interaction of discommensurations

This appendix determines the interaction energy of discommensurations, following [20]; the
approach, which grew out of the theory of superconductivity, has been applied to other IC
systems [23, 24, 18, 25, 26, 27, 28], but all these previous results are model specific. The
following provides a general method for finding the interaction energy, and obtains results
valid for a wide class of models, including the density of equatiab);(the following
restrictions apply: (a) the primary order parameter has two components, (b) any secondary
order parameters can be eliminated explicitly in favour of the primary order parameter,
(c) the incommensurate state is driven by a Lifshitz invariant and is spatially dependent in
only one direction, (d) the discommensurations are equally spaced and contribute equally to
the free energy, (e) systems with continuously degenerate commensurate states (such as the
frustrated antiferromagnet CsCyGR9] and some liquid crystals [30]) are excluded, plus
a few other mild restrictions noted below.

The free-energy density is assumed to have the form

Flp1. p2l = G(p1, p2) — D(p1. p2) (p1ps — p2py) + 3K (p1. p2) [(PD* + (P9)?]  (Al)

where the primes denote differentiation with respectxtoall derivatives are written
explicitly. G, D and K are analytic functions op; and p, with no explicit dependence

on x; they can include external fields provided that these do not favour any commensurate
state over any other (violating restriction (d) above). The commensurate states are given by
0 =m2r/n,m=0,...,n—1, through an anisotropy term like|Q|" cognf) in G. The
functions D and K may include higher-order terms in the Landau expansion in the strict
sense; for example, the form8 = A1 + Ay(p? + p3) and K = Ka+ Kp(p? + p3) are
important in the theory of liquid crystals (thte, term is responsible [27] for the re-entrance

of the smectic-€ phase under transverse magnetic field [31]). Mand K may include

terms generated on eliminating secondary order parameters.

The discommensuration spacing is{,2 so the sample contain®yc = L/(2X)
discommensurations; their interaction energy (which vanishe$ as o) is defined by
[F(X) = Fe]/L = (Fs — Fc)/(2X) + Finter(X)/ L (A2)

whereF, F; and Fs are the free energies of the IC, C and S states; the last is the state with
a single discommensuration, with order parameigrand densityFs = F[ps1, ps2. By
assumption, attention can be focused on one discommensuration, taken to be centse@dl at
wheref = —x/n; boundary conditions are given below equation (2). A rearrangement of
equation (A2) gives

T X o X
Finter(X) _ 1 / (F — Fo) dx — i (/ +/ > (Fs— Fo) dx. (A3)
_x 2X X —00

L 2X

Analytical determination offi,((X) is possible only for largeX. In the first integral
(lx] < 1X1), the IC order parameter is written @s(x) = psj(x) + p;(x) where p;(x) is
the perturbation due to the other discommensurations. In the other two intdgfats X),
the S order parameter is written g (x) = pc; + 8;(x); the commensurate valugs; are
different in the two regions (fox > X, pc1 = pe and pe; = 0). With this choice of signs,
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the deviationss; (which go to zero agx| — oo) are negative if the approach to the C
values is monotonic. The perturbations and the deviations are of the same size.
The first variation of the density,

8F = 8p1 (8F/8p1) + 8p2 (8F /8p2) + [D(p28p1 — p1dp2) + K(pydp1+ ph 5172)],
(A4)
gives the Euler-Lagrange equations as

8F/8p1 = G1— 2Dpy — D' pr — D1(p1ps — papy) — (Kpy)' + Ki[(pD)? + (p»)?] =0
(A5a)

8F/8p2 = G2+ 2Dpy + D' p1 — D2(p1ps — papy) — (Kpy) + 3Ka[(p))? + (pp)?] =0
(A5b)
whereG; = 9G(p1, p2)/9p;, etc. The second variation is then
82F = [(D18p1 + D28p2)(p23p1 — p1dp2) + K (3p18p} + 8p23p5)
+ (K18p1 + K28p2)(p18p1 + Phope)] - (A6)

These give the density differences in equation (A3) as perfect derivatives to the second
order required by a cancellation in first order.

By symmetry, the terms evaluated.at= +X are identical; symmetry also relates the
perturbations and the deviations By(X) = 61(X), p2(X) = —62(X), p1(X) = —81(X),
and p5(X) = 85,(X). To leading order, the interaction energy is then

F2.(X)/L = X1 [2A8:8, + « (8187 — 828%)],_, (A7)

where we have & = 2D + p. dD./dp. andx = K, with D, = D(pc, 0), dD./pc =
dD(p1, p2)/dp1 at (p1, p2) = (pc, 0), etc; the superscript is a reminder that the energy
is obtained to only second order. The derivative-free gamf the density appears only
implicitly in equation (A7), through the deviations.

Linear differential equations for the deviations are obtained by expansion of the Euler—
Lagrange equations (A5) about the C state to first ordet:in

—K(S:’I_, — 2A5/2 + Ge1161 =0 (A8(1)

—K(S’Z, + ZAS:/L + Geodp =0 (A8b)

whereG;; = %G (p1, P2)/0p;dp; at(ps, p2) = (pc, 0); the quantityG ¢y, vanishes ifG has
the formG(p1, p2) = f1(1Q]) — f2(]1Q]) cognd) with f> > 0. Substitution of the solutions
8 (x) = dj exp(—ax) gives the ratio of the amplitudes ds/d, = (ka? — G¢11)/(2Aa); the
allowed values of the decay constanare given by

(ka/A)? = [L(g1+ g2) —2] £ DY? (A9)

whereg; = kGe;;/A2, and the discriminant i = [1(g1 + g2) — 2]° — g142-

These results for the second-order interaction energy are valid &f gtlamped
oscillations of the interaction potential have been observed [32] ZRbBl;), but they
are useful for determining the order of the IC—C transition only at the temperatard,
(e = @) where the S and C states have the same free energy (the energy does not change if
a single discommensuration enters the C state). Some numerical effort may be necessary to
estimatex, , but an accurate value is not needed in most caseBjf(X) (not Fifﬁér(X))
is positive for all X at 7, (it vanishes typically as exp-2aX)/X in this case), energy
is required to introduce more discommensurations; the IC-C transition is second order,
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occurring atT = T;. If, on the other handFiner(X) is negative for some& atT = T,
energy can be gained if more discommensurations enter; a first-order transition occurs at
someT < T;.

If the discriminant is positive, one usually finds four real decay constants, two positive
and two negative (the latter correspond to approach of the C-state values froii and
are of no interest); imaginary solutions are occasionally found. Withe smaller of the
two positive decay constants, the second-order interaction energy is

F2 (x A2 g2X 1

'meL'( ) foe oy DV [Dl/z +2+ 5 (a1 - gz)] : (A10)

This vanishes whe® = 0, as found previously for specific models [18, 27]. No conclusion
can be drawn without further analysis, which requires a specific model; the square bracket
B in equation (A10) must be examined, as done in [20].Bl&k 0, the transition is first
order. If B > 0, the transition is not necessarily second order because of the possibility
(raised and examined in [20]) that there exists an interior minimum where the interaction
energy is negative; in this case the above analysis is inconclusive, and a full nhumerical
treatment is necessary.

A consequence is that a point where the discriminant vanishes is not necessarily a
multicritical point where the IC—C transition changes from first order< 0) to second
order. Some of the literature assumes that the transition is second orderDvhedy this
assumption, which is unjustified for any model without further analysis, is incorrect for
several models [18], including the model of equatioh)(Whenr > 0.69.

If the discriminant is negative, on the other hand, the transition is unambiguously first
order. The second-order interaction energy is formally

(2) —2a X
Flmeli(x) = |dl|2e4; {[(ZAdz/dl —xa+ Ka|d2/d1|2) + CC]
+ [e7 24X (2Ady/dy — ka + Ka(da/d1)?) + cC]) (AL

where the real parti of the decay constant is positive; the deviations have been written
aséj(x) = %dj exp(—agx — ia;x) + cc with complex amplitudes/; = |d;| exp(iy;). But
the first square bracket vanishes identically because

2Ady/dy — ka + kaldz/di|* = Geiala — a*)/la)? (A12)
and so equation (Al1l) simplifies to
F(Z) X AZ efzaRX
Finer ) _ 2 2° (—g1D)"? cos2a; X + ) (A13)
L 2% |alX

where ) is an unknown phase. The right-hand side can be made negative, and so the
transition is always first order when the discriminant is negativé at 7,. Of course the
second-order interaction energy must vanish wiita- 0 is approached frofD < 0 as
well as fromD > 0 (see equation (A10)), but this has not been demonstrated previously.

In some of the literature, the analysis for complex decay constants is stopped at equation
(A11), leading to the incorrect conclusion that the second-order interaction energy has the
form

F2 /L = exp(—2ag X)[C1 + C2c082a; X + P)]/ X

with C; # 0; the possibility of a second-order transition (whén> |C>|) is firmly denied

by equation (A13). The equivalent of equation (A12) was used for a CDW model in [20]
(which did not simplify the second square bracket). Equation (8.21) of [20], which is easily
obtained from the above results, is correct, contrary to the statement in [23].
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