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Abstract. The incommensurate state and the incommensurate–commensurate (IC–C) transition
in a minimal Landau model for Cs2ZnI4 are investigated using rigorous analytical and numer-
ical techniques. The Euler—Lagrange equations are solved numerically using parameters
for Cs2ZnI4; the results differ significantly from those obtained using the constant-amplitude
approximation. The minimal model predicts that the IC–C transition is first order, in agreement
with experiment; the predicted discontinuity of the wavenumberq at the transition is 42% of
the maximumq, rather than the measured 50%. The predicted temperature dependence of the
IC wavenumber is too strong, and the predicted entropy change at the transition is too small,
suggesting that the transition in Cs2ZnI4 is more strongly first order than predicted by the
minimal model. Some general results for the asymptotic interaction of discommensurations are
also obtained.

1. Introduction

The compound Cs2ZnI4 belongs to the K2SeO4 family of incommensurate systems [1],
but is distinguished from the majority by a commensurate modulationkC = a∗/2 (rather
than kC = a∗/3). Various physical properties of Cs2ZnI4 have been investigated by a
variety of experimental techniques [2–12]: nuclear quadrupole resonance [2, 5, 6], x-
ray [2, 5, 6, 10], dielectric constant [3, 5, 6], Raman scattering [4, 9], nuclear magnetic
resonance [5], optical birefringence [7, 8, 9], and heat capacity methods [11, 12]. Cs2ZnI4
has five phases [8, 9, 12]:Pnma (Z = 4) ↔ incommensurate↔ ferroelasticP 21n (Z = 8)
↔ ferroelasticP 1 ↔ ferroelasticP 1; the respective transitions occur atTI = 117 K (second
order),TL = 108 K (first order), 104 K (second order) and 94 K (first order).

The three high-temperature phases (abbreviated as N, IC and C) of interest here
are described by a complex (two-component) order parameterQ = |Q| exp(iθ) which,
unfortunately, has no simple physical interpretation; in almost the words of Cummins [1],
Q is neither a local variable (like the magnetization or the polarization) nor a pure normal-
mode coordinate, but rather a hybrid of both. For unit area normal to thex-direction and
lengthL in this direction, the average free-energy density is

F/L = L−1
∫ L/2

−L/2
F [p1(x), p2(x)] dx (1a)

wherep1 = |Q| cosθ and p2 = |Q| sinθ ; these are formal definitions (pj is not thej th
component of a physical vectorp). The minimal free-energy density for Cs2ZnI4 (relative to
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the disordered (N) state in whichQ = 0) is the fourth-order Landau functional [13–18, 11]

F [p1(x), p2(x)]

= 1
2α(p2

1 + p2
2) + 1

4β1(p
2
1 + p2

2)
2 − 1

4β2(p
4
1 − 6p2

1p
2
2 + p4

2)

−1(p1 dp2/dx − p2 dp1/dx) + 1
2κ[(dp1/dx)2 + (dp2/dx)2] (1b)

where only terms essential for describing the IC and C states are included. All of the
parameters butα (which has the dependenceα = α0(T − T0) whereT0 is the superheating
limit of the C state) are assumed independent of the temperatureT . For stability,β1 > 0,
|β2| < β1, andκ > 0; the phaseθ can be defined so that1 > 0 andβ2 > 0. The third
(anisotropy) term is− 1

4β2|Q|4 cos 4θ expressed in terms ofp1 andp2.
The above density and extensions of it have been studied previously [13–18, 11]. The

N–IC transition is second order, occurring atα = 12/κ. In the IC state,p1 and p2

are periodic functions ofx, with wavenumberq; the physical structure is modulated at
kI = (1/2 + q/a∗)a∗. When the domain structure is well developed, wide regions where
the phaseθ is close to the commensurate values 0,±π/2 andπ (and the amplitude|Q|
is close to the C valueQc = pc = [−α/(β1 − β2)]1/2, with α < 0) alternate with narrow
regions (discommensurations) whereθ passes through the unfavourable values±π/4 and
±3π/4 (and |Q| is typically depressed belowpc). The wavenumberq, which is 1/κ

just below the N–IC transition, decreases with decreasing temperature; the IC–C transition
occurs at a valueαL which must be found numerically. The C state, which exists forα < 0
and is stable forα < αL, is fourfold degenerate, with(p1, p2) = (±pc, 0), (0, ±pc); the
C-state density isFc = −α2/[4(β1 − β2)] (with α < 0).

Recent experiments [11] make attractive a further Landau theory study of Cs2ZnI4. First,
the heat capacity in the IC phase just below the N–IC transition is constant (as predicted
by mean-field theory), rather than increasing sharply with temperature as observed in many
other compounds; that is, fluctuation effects appear to be small. Second, the data are
sufficient for estimation of enough of the parameters that quantitative comparison with
experiment is possible for quantities (also available) not used in estimating the parameters.

In [11] such a comparison for the minimal model of equation (1) was presented, but
the value of the parameterα at the IC–C transition was estimated using the constant-
amplitude approximation [19] which, unfortunately, can be quantitatively inaccurate, and
even qualitatively incorrect. The following presents rigorous analytical and numerical
treatments of the modulation of both the amplitude and the phase. Emphasis is on parameter
values appropriate for Cs2ZnI4, but more general results are also presented. Section 2
describes the results of numerical solution of the Euler–Lagrange equations. Section 3
investigates analytically the order of the IC–C transition. Section 4 compares predictions
of the minimal model with experiment. The appendix gives a general analytical treatment
of the IC–C transition, valid for many models in the Lifshitz-invariant class.

The constant-amplitude approximation (whose inadequacy was already shown by Shiba
and Ishibashi [15]) gives results significantly different from those of numerical solution of
the Euler–Lagrange equations; it should not be used in a serious effort to confront theory
with experiment. The minimal Landau model predicts successfully that the IC–C transition
is first order, and the predicted discontinuity in the wavenumberq at the transition agrees
reasonably well with experiment. On the other hand, the predicted temperature dependence
of q just above the transition is too strong, and the predicted change in the entropy at the
transition is too small; that is, the IC–C transition is apparently more strongly first order
than predicted. Since Cs2ZnI4 appears to be well described by mean-field theory [11], it
would be reasonable to extend the minimal model; the additional terms necessary to improve
agreement with experiment involve, however, parameters difficult to estimate.
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2. Numerical results

Numerical solutions of the Euler–Lagrange equations

−κ
d2p1

dx2
− 21

dp2

dx
+ αp1 + (β1 − β2)p

3
1 + (β1 + 3β2)p1p

2
2 = 0 (2a)

−κ
d2p2

dx2
+ 21

dp1

dx
+ αp2 + (β1 − β2)p

3
2 + (β1 + 3β2)p2p

2
1 = 0 (2b)

for the density of equation (1b) were obtained (for given wavenumberq) as in [20]; the
free energy was then minimized with respect toq. The equations were solved from
x = 0 (the centre of a discommensuration) tox = X (a point mid-way between two
discommensurations). Boundary conditions compatible with the differential equations
are the following. At x = 0: |Q(x)| is even andθ(x) + π/4 is odd; equivalently,
p1(−x) = −p2(x) and p2(−x) = −p1(x). At x = X: |Q(x)| is even andθ(x) is odd;
equivalently,p1(x) is even andp2(x) is odd. The free energy, the order parameter and
the spatial coordinate can be scaled asF = β1γ

4F̄ , pj = γ p̄j (j = 1, 2), andx = κx̄/1,
with γ = 1/

√
β1κ. The scaled densitȳF depends on only two parameters,r = β2/β1 and

ᾱ = κα/12.

Table 1. Values of the anisotropy parameterr = β2/β1 used in the solution of equation (2).
Column 2 gives numerical values forαL (the value ofα at the IC–C transition), column 3 the
difference α̃L − αL (α̃L is the value ofα for which the single-discommensuration state and
the commensurate state have the same free energy), column 4 the discriminant atα = α̃L, and
column 5 the wavenumberq just above the IC–C transition.

r καL/12 κ(α̃L − αL)/12 D κq/1

0.9 −0.5496 2.4 × 10−2 44.0 0.765
0.8 −1.019 1.8 × 10−3 18.0 0.568
0.7 −1.589 1× 10−8 1.9 0.201
0.685 −1.685 2× 10−8 −0.2 0.241
0.6 −2.305 9× 10−6 −11.6 0.343
0.5 −3.259 3× 10−5 −24.5 0.398
0.44 −4.017 1× 10−4 −32.0 0.416
0.4 −4.637 1× 10−4 −36.9 0.422
0.3 −6.856 6× 10−5 −46.0 0.413
0.2 −11.17 1× 10−7 −31.8 0.304
0.16 −14.35 0 3.6 0
0.1 −23.77 0 229.5 0

Column 1 of table 1 gives the values of the anisotropy parameterr at which the IC state
and the IC–C transition were examined;r = 0.44 is believed appropriate for Cs2ZnI4 [11].
Some of the numerical results differ slightly from those of [18]. At the valuesr > 0.2 in
the table, the transition is clearly first order numerically (and also analytically, as shown
in [18] and in section 3). At the valuesr 6 0.16, there is no evidence for a first-order
transition, but a very weak one cannot be ruled out numerically or analytically. Of course
there is no IC–C transition atr = 0; p1 and p2 are sinusoidal for allα < 12/κ, with
wavenumberq = 1/κ and amplitude [(12/κ − α)/β1]1/2. Columns 2 to 5 give (2) the
valueαL at the transition, (3) the difference betweenαL and α̃L (the latter is the value of
α at which the single-discommensuration state and the C state have the same free energy),
(4) the discriminantD (defined in the appendix) atα = α̃L, and (5) the wavenumberq
just above the transition. The nonmonotonic dependence ofq on r (note the minimum
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near r = 0.69) is clearly connected with the change discussed below in the asymptotic
behaviour of the order parameter and the vanishing of the second-order interaction energy
whenD = 0. Consequently the discontinuity inq cannot be used in general to estimate the
anisotropy parameter.

Figure 1. The reduced amplitude|Q/Qc| (solid line) and phaseθ (dashed line) of the IC order
parameter as functions ofx/X for r = 0.44 (the value for Cs2ZnI4) at a temperature just above
the IC–C transition. The pointx = 0 is at the centre of a discommensuration and the point
x = X is mid-way between two discommensurations.

The order parameter is sinusoidal at the N–IC transition. At the IC–C transition it is
solitonic at smallr, but neither solitonic nor sinusoidal atr = 0.9. Figure 1 plots the
amplitude and phase forr = 0.44 atT just above the IC–C transition. The phase increases
monotonically. The amplitude at the centre of the discommensuration (x = 0) is reduced to
81% of the C valueQc; it overshoots the C value (by a maximum of 0.5% atx/X ≈ 0.76)
over a broad region between the discommensurations (atx = 0 andx = 2X). Overshooting
at the IC–C transition in a one-dimensionally IC system appears to have been noticed first in
[21], for a charge-density-wave (CDW) model. The oscillations discussed in the appendix
occur at larger discommensuration spacing.

3. Analysis of the IC–C transition

An analysis similar to the following (with minor differences) was given in [18]. The
second-order interaction energy of discommensurations is obtained usingg1 = −2ᾱ and
g2 = −4rᾱ/(1 − r), with ᾱ = κα/12, in the results of the appendix; the discriminant is

D = 4 + 4(1 + r)ᾱ/(1 − r) + [(3r − 1)ᾱ/(1 − r)]2. (3)

For the purpose of examining the order of the transition,ᾱ, D and other quantities are
to be evaluated at the temperatureT̃L (α̃L can be found from table 1). Figure 1 of [18]
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(α̂ and γ̂2 there areκα/12 and r here) shows thatD is negative in the central region of
the α–r plane and positive elsewhere. The linesD = 0 cross the IC–C transition line at
(κα/12, r) ≈ (−14, 0.16) and(−1.7, 0.69), from table 1.

If the discriminant is positive, a simple analysis shows that equation (A9) gives four real
decay constants. In agreement with equation (19) of [18], the square bracket in equation
(A10) for the second-order interaction energy is

B = D1/2 + 2 − (1 − 3r)ᾱ/(1 − r) = −(2κa/1)(d2/d1). (4)

For strong anisotropy (r & 0.69), B is negative and the transition is first order [18]. For
weak anisotropy (r . 0.16), B is positive (suggesting a second-order transition) but no
conclusion can be drawn about the order without further analysis, for equation (A10) gives
only the asymptotic interaction; a numerical investigation of the dependence ofF − Fc on
X is required. An extensive search for an interior minimum was conducted atr = 0.1 and
0.16, but none was found. For intermediate anisotropy (0.16 . r . 0.69), the discriminant
is negative and the transition is first order (as shown in the appendix).

4. Comparison with experiment

The experimental results, plus the theoretical value ofαL, give only five relations for the
six parameters of the minimal Landau theory. Explicitly, the experimental results for (a)
the wavenumber atT just belowTI , (b) the heat capacityCp at T just belowTI (relative
to the value at highT ), (c) the heat capacity atT just belowTL, (d) the value ofTI (116.9
K), (e) the value ofTL (107.6 K), plus some straightforward analysis, give [11]

q(T −
I ) = 0.135a∗ = 1/κ (5a)

Cp(T −
I ) = 0.54R = TIα

2
0/(2β1) (5b)

Cp(T −
L ) = 0.88R = TLα2

0/[2(β1 − β2)] (5c)

α0(TI − T0) = 12/κ (5d)

α0(TL − T0) = αL (5e)

where R is the gas constant. Despite the incomplete determination of the parameters,
checks of the theory are provided by measurements of two separate quantities, the IC-
phase wavenumber as a function ofT (particularly the discontinuity at the IC–C transition)
and the entropy change at this transition. Equations (5b) and (5c) give immediately
β1/α

2
0 = 108.2 K/R andr = β2/β1 = 0.435, both as in [11].

In the constant-amplitude approximation, the solution of the Euler–Lagrange equation
for the phase is cos(2θ) = cd(λx|m) whereλ = 2|Q|√β2/(mκ) and cd is the Jacobian
elliptic function [22]; the average density is given by equation (2) of [11], but the following
replacements must be made to conform with the conventions of [22]:K(u) → K(m),
E(u) → E(m) and (except in the arguments of the elliptic integrals)u → √

m. For r =
β2/β1 = 0.44, one finds the following results at the IC–C transition:αL = −3.43812/κ,
the discontinuity in the wavenumber is1q = 0.7501/κ (as in [11]), and the change in the
entropy is1S = 0.550α01

2/(β1κ). Melero et al [11] obtained the first and third of these
but did not quote the values. Equations (5) then give1/α0 = 15.5 K(a∗)−1, κ/α0 = 115
K(a∗)−2 andT0 = 114.8 K; these differ slightly from the values quoted in [11], for unknown
reasons. The entropy change is then1S = 0.0106R (versus 0.010R [11]).

Full numerical solution of the Euler–Lagrange equations (forr = 0.44) gives
significantly different values, namelyαL = −4.01712/κ, 1q = 0.4161/κ, and 1S =
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Figure 2. The reduced wavenumberκq/1 in the IC phase of Cs2ZnI4. The points are the
experimental values (from [11]); the solid line gives the rigorous numerical result and the
dashed line the constant-amplitude approximation, both forr = 0.44. The N–IC and IC–C
transitions occur at 116.9 K and 107.6 K; the short horizontal lines mark the discontinuity at
the latter.

0.289α01
2/(β1κ). The revised parameters are1/α0 = 13.7 K(a∗)−1, κ/α0 = 102 K(a∗)−2

andT0 = 115.0 K, giving 1S = 0.0049R.
Figure 2 compares the measured wavenumberκq/1 in the IC phase with the two

numerical results (forr = 0.44); the horizontal and vertical axes have been scaled, but the
comparison does not otherwise involve the Landau parameters. The measured discontinuity
in q at TL is 50% of the value at the N–IC transition (this may be an overestimate, because
of sample inhomogeneities), in good agreement with the rigorous numerical result (42%)
and poor agreement with the result of the constant-amplitude approximation (75% [11]).
The rigorous numerical result for the temperature dependence ofq also agrees better with
experiment, but the predicted dependence is too strong.

The entropy change at the IC–C transition is given as1S = 0.035R in [11] and 0.02R

in [12], but both are overestimates because of the difficulty in removing background. The
rigorous numerical result,1S = 0.0049R, is considerably smaller. There seems then no
justification for presenting the predictions of the minimal model for the heat capacity.

Of course the minimal model must fail quantitatively unless the order parameter (which,
unfortunately, cannot be measured directly) remains small throughout the IC phase. One
justification for the use of the minimal model, as a first approximation, is thatTL is close
to TI : TL ≈ 0.92TI . A second is that the thermodynamic data are consistent with the
integrated intensity of the x-ray satellite peak in the sense that the value of|Q|2 obtained
from the Landau theory scales with the latter [11]. But without estimates of the coefficients
of the higher-order terms, neither can one rule out the possibility that the agreement found
above is fortuitous; in fact, the evidence is that the higher-order terms have significant
effects.
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Appendix. Asymptotic interaction of discommensurations

This appendix determines the interaction energy of discommensurations, following [20]; the
approach, which grew out of the theory of superconductivity, has been applied to other IC
systems [23, 24, 18, 25, 26, 27, 28], but all these previous results are model specific. The
following provides a general method for finding the interaction energy, and obtains results
valid for a wide class of models, including the density of equation (1b); the following
restrictions apply: (a) the primary order parameter has two components, (b) any secondary
order parameters can be eliminated explicitly in favour of the primary order parameter,
(c) the incommensurate state is driven by a Lifshitz invariant and is spatially dependent in
only one direction, (d) the discommensurations are equally spaced and contribute equally to
the free energy, (e) systems with continuously degenerate commensurate states (such as the
frustrated antiferromagnet CsCuCl3 [29] and some liquid crystals [30]) are excluded, plus
a few other mild restrictions noted below.

The free-energy density is assumed to have the form

F [p1, p2] = G(p1, p2) − D(p1, p2) (p1p
′
2 − p2p

′
1) + 1

2K(p1, p2) [(p′
1)

2 + (p′
2)

2] (A1)

where the primes denote differentiation with respect tox; all derivatives are written
explicitly. G, D and K are analytic functions ofp1 and p2 with no explicit dependence
on x; they can include external fields provided that these do not favour any commensurate
state over any other (violating restriction (d) above). The commensurate states are given by
θ = m 2π/n, m = 0, . . . , n − 1, through an anisotropy term like−|Q|n cos(nθ) in G. The
functionsD and K may include higher-order terms in the Landau expansion in the strict
sense; for example, the formsD = 11 + 12(p

2
1 + p2

2) and K = Ka + Kb(p
2
1 + p2

2) are
important in the theory of liquid crystals (the12 term is responsible [27] for the re-entrance
of the smectic-C∗ phase under transverse magnetic field [31]). OrD and K may include
terms generated on eliminating secondary order parameters.

The discommensuration spacing is 2X, so the sample containsNdc = L/(2X)

discommensurations; their interaction energy (which vanishes asX → ∞) is defined by

[F(X) − Fc]/L = (Fs − Fc)/(2X) + Finter(X)/L (A2)

whereF , Fc andFs are the free energies of the IC, C and S states; the last is the state with
a single discommensuration, with order parameterpsj and densityFs = F [ps1, ps2]. By
assumption, attention can be focused on one discommensuration, taken to be centred atx = 0
whereθ = −π/n; boundary conditions are given below equation (2). A rearrangement of
equation (A2) gives

Finter(X)

L
= 1

2X

∫ X

−X

(F − Fs) dx − 1

2X

(∫ ∞

X

+
∫ −X

−∞

)
(Fs − Fc) dx. (A3)

Analytical determination ofFinter(X) is possible only for largeX. In the first integral
(|x| 6 |X|), the IC order parameter is written aspj (x) = psj (x) + p̃j (x) where p̃j (x) is
the perturbation due to the other discommensurations. In the other two integrals (|x| > X),
the S order parameter is written aspsj (x) = pcj + δj (x); the commensurate valuespcj are
different in the two regions (forx > X, pc1 = pc andpc2 = 0). With this choice of signs,
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the deviationsδj (which go to zero as|x| → ∞) are negative if the approach to the C
values is monotonic. The perturbations and the deviations are of the same size.

The first variation of the density,

δF = δp1 (δF/δp1) + δp2 (δF/δp2) + [
D(p2 δp1 − p1 δp2) + K

(
p′

1 δp1 + p′
2 δp2

)]′

(A4)

gives the Euler–Lagrange equations as

δF/δp1 = G1 − 2Dp′
2 − D′p2 − D1(p1p

′
2 − p2p

′
1) − (Kp′

1)
′ + 1

2K1[(p′
1)

2 + (p′
2)

2] = 0

(A5a)

δF/δp2 = G2 + 2Dp′
1 + D′p1 − D2(p1p

′
2 − p2p

′
1) − (Kp′

2)
′ + 1

2K2[(p′
1)

2 + (p′
2)

2] = 0

(A5b)

whereGj = ∂G(p1, p2)/∂pj , etc. The second variation is then

δ2F = [
(D1δp1 + D2δp2)(p2δp1 − p1δp2) + K

(
δp1δp

′
1 + δp2δp

′
2

)
+ (K1δp1 + K2δp2)

(
p′

1δp1 + p′
2δp2

)]′
. (A6)

These give the density differences in equation (A3) as perfect derivatives to the second
order required by a cancellation in first order.

By symmetry, the terms evaluated atx = ±X are identical; symmetry also relates the
perturbations and the deviations byp̃1(X) = δ1(X), p̃2(X) = −δ2(X), p̃′

1(X) = −δ′
1(X),

and p̃′
2(X) = δ′

2(X). To leading order, the interaction energy is then

F
(2)

inter(X)/L = X−1
[
21δ1δ2 + κ

(
δ1δ

′
1 − δ2δ

′
2

)]
x=X

(A7)

where we have 21 = 2Dc + pc dDc/dpc and κ = Kc, with Dc = D(pc, 0), dDc/pc =
∂D(p1, p2)/∂p1 at (p1, p2) = (pc, 0), etc; the superscript is a reminder that the energy
is obtained to only second order. The derivative-free partG of the density appears only
implicitly in equation (A7), through the deviations.

Linear differential equations for the deviations are obtained by expansion of the Euler–
Lagrange equations (A5) about the C state to first order inδj :

−κδ′′
1 − 21δ′

2 + Gc11δ1 = 0 (A8a)

−κδ′′
2 + 21δ′

1 + Gc22δ2 = 0 (A8b)

whereGcij = ∂2G(p1, p2)/∂pi∂pj at (p1, p2) = (pc, 0); the quantityGc12 vanishes ifG has
the formG(p1, p2) = f1(|Q|) − f2(|Q|) cos(nθ) with f2 > 0. Substitution of the solutions
δj (x) = dj exp(−ax) gives the ratio of the amplitudes asd2/d1 = (κa2 − Gc11)/(21a); the
allowed values of the decay constanta are given by

(κa/1)2 = [
1
2(g1 + g2) − 2

] ± D1/2 (A9)

wheregj = κGcjj /1
2, and the discriminant isD = [

1
2(g1 + g2) − 2

]2 − g1g2.
These results for the second-order interaction energy are valid at allT (damped

oscillations of the interaction potential have been observed [32] in Rb2ZnCl4), but they
are useful for determining the order of the IC–C transition only at the temperatureT = T̃L

(α = α̃L) where the S and C states have the same free energy (the energy does not change if
a single discommensuration enters the C state). Some numerical effort may be necessary to
estimateα̃L, but an accurate value is not needed in most cases. IfFinter(X) (not F

(2)

inter(X))
is positive for all X at T̃L (it vanishes typically as exp(−2aX)/X in this case), energy
is required to introduce more discommensurations; the IC–C transition is second order,
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occurring atT = T̃L. If, on the other hand,Finter(X) is negative for someX at T = T̃L,
energy can be gained if more discommensurations enter; a first-order transition occurs at
someT < T̃L.

If the discriminant is positive, one usually finds four real decay constants, two positive
and two negative (the latter correspond to approach of the C-state values fromx > X and
are of no interest); imaginary solutions are occasionally found. Witha the smaller of the
two positive decay constants, the second-order interaction energy is

F
(2)

inter(X)

L
= d2

1
12

2κ

e−2aX

aX
D1/2

[
D1/2 + 2 + 1

2
(g1 − g2)

]
. (A10)

This vanishes whenD = 0, as found previously for specific models [18, 27]. No conclusion
can be drawn without further analysis, which requires a specific model; the square bracket
B in equation (A10) must be examined, as done in [20]. IfB < 0, the transition is first
order. If B > 0, the transition is not necessarily second order because of the possibility
(raised and examined in [20]) that there exists an interior minimum where the interaction
energy is negative; in this case the above analysis is inconclusive, and a full numerical
treatment is necessary.

A consequence is that a point where the discriminant vanishes is not necessarily a
multicritical point where the IC–C transition changes from first order (D < 0) to second
order. Some of the literature assumes that the transition is second order whenD > 0; this
assumption, which is unjustified for any model without further analysis, is incorrect for
several models [18], including the model of equation (1b) whenr & 0.69.

If the discriminant is negative, on the other hand, the transition is unambiguously first
order. The second-order interaction energy is formally

F
(2)

inter(X)

L
= |d1|2 e−2aRX

4X

{[(
21d2/d1 − κa + κa|d2/d1|2

) + CC
]

+ [
e−2iaI Xe2iψ1

(
21d2/d1 − κa + κa(d2/d1)

2
) + CC

]}
(A11)

where the real partaR of the decay constant is positive; the deviations have been written
as δj (x) = 1

2dj exp(−aRx − iaIx) + CC with complex amplitudesdj = |dj | exp(iψj ). But
the first square bracket vanishes identically because

21d2/d1 − κa + κa|d2/d1|2 = Gc11(a − a∗)/|a|2 (A12)

and so equation (A11) simplifies to

F
(2)

inter(X)

L
= |d1|2 12

2κ

e−2aRX

|a|X (−g1D)1/2 cos(2aIX + ψ) (A13)

where ψ is an unknown phase. The right-hand side can be made negative, and so the
transition is always first order when the discriminant is negative atT = T̃L. Of course the
second-order interaction energy must vanish whenD = 0 is approached fromD < 0 as
well as fromD > 0 (see equation (A10)), but this has not been demonstrated previously.

In some of the literature, the analysis for complex decay constants is stopped at equation
(A11), leading to the incorrect conclusion that the second-order interaction energy has the
form

F
(2)

inter/L = exp(−2αRX)[C1 + C2 cos(2αIX + ψ)]/X

with C1 6= 0; the possibility of a second-order transition (whenC1 > |C2|) is firmly denied
by equation (A13). The equivalent of equation (A12) was used for a CDW model in [20]
(which did not simplify the second square bracket). Equation (8.21) of [20], which is easily
obtained from the above results, is correct, contrary to the statement in [23].
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