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Abstract
We study optical effects in a hybrid system composed of a semiconductor quantum dot and a
spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use
modified nonlinear density matrix equations for the description of the optical properties of the
system and obtain a closed-form expression for the linear susceptibilities of the quantum dot,
the metal nanoparticle, and the total system. We then investigate the dependence of the
susceptibility on the interparticle distance as well as on the material parameters of the hybrid
system. We find that the susceptibility of the quantum dot exhibits optical transparency for
specific frequencies. In addition, we show that there is a range of frequencies of the applied
field for which the susceptibility of the semiconductor quantum dot leads to gain. This
suggests that in such a hybrid system quantum coherence can reverse the course of energy
transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also
explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by
the presence of the quantum dot.

(Some figures may appear in colour only in the online journal)

1. Introduction

The optical properties of complex nanosystems that com-
bine semiconductor quantum dots (SQDs) and plasmonic
nanostructures, such as spherical metallic nanoparticles
(MNPs) and metallic nanorods, have attracted significant
interest in recent years. The placement of the SQD next
to plasmonic nanostructures leads to significant alteration
of the electromagnetic field felt by the quantum systems
due to the interaction between the excitons from the SQD
and the surface plasmons of the metallic nanostructures.
This has significant influence on the optical properties
of the hybrid complexes, and leads to several interesting
phenomena, for example, the creation of controlled Rabi
oscillations [1, 2], plasmonic meta-resonances [2], tunable
ultrafast nanoswitches [3], modified resonance fluorescence
and photon statistics [4, 5], and intrinsic optical bistability [6]
in SQD–MNP hybrid systems.

In addition, the nonlinear optical response of SQD–MNP
complexes and the creation of controlled slow light [7],
gain without inversion [8] and optical bistability [9] under
the interaction of a weak probe field and a strong pump
field have been studied. Furthermore, it has recently been
shown [10] that the combination of SQD–MNP hybrids that
are coupled by a weak probe field, a strong pump field
and nanomechanical resonators has the potential to lead to
ultrasensitive mass detection.

In all of these studies the optical response of the probe
field is studied solely by the optical susceptibility of the SQD.
In fact, in the absence of the pump field it has been shown
that the linear absorption spectrum of an SQD–MNP hybrid
system has a Lorenzian form and its width and height is
strongly dependent on the distance between the SQD and the
MNP.

In this work we calculate and analyze the linear optical
susceptibility of an SQD–MNP hybrid system. The hybrid
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complex that we study is comprised of a spherical MNP and
a small SQD. The SQD is described by a two-level system
and the interaction of the system with an external laser field is
described by the modified nonlinear density matrix equations
that take into account the interaction between excitons and
surface plasmons [11–13]. This methodology has recently
been used in such systems, or in directly related systems that
contain plasmonic nanorods and multi-level quantum dots, for
the analysis of their optical properties [1–10] and for the study
of energy absorption and the creation of the nonlinear Fano
effect in energy absorption [11–22].

Here, we present approximate analytical solutions of the
nonlinear density matrix equations and use these solutions
for the determination of the linear optical susceptibilities of
the SQD, the MNP and the total system. We find that the
linear optical susceptibility of the SQD leads to an absorption
spectrum that is not Lorenzian. The absorption spectrum can
become zero for specific frequencies and even negative, so
gain without inversion is possible for a range of frequencies.
In addition, we show that the linear susceptibility of the MNP
is strongly influenced by the presence of the SQD. We find
that both the SQD and the MNP susceptibilities contribute to
the optical properties of the hybrid system. We investigate the
dependence of the linear optical susceptibilities of the SQD,
the MNP and the total system on the interparticle distance as
well as on material parameters of the hybrid system. Actually,
all of these effects occur due to the strong exciton–plasmon
coupling and do not need the use of additional external
(coherent or incoherent) fields.

Note that the negative absorption in the SQD spectrum
predicted here is different from that predicted in another
publication in the same system by one of us [8], as there the
gain in the probe field occurs under the influence of a strong
pump field. In this paper, however, no external pumping field
is used, and the gain occurs due to energy transfer from the
MNP to the SQD. This is an important result, as it suggests
that the quantum coherence generated in the SQD–MNP
system can reverse the course of energy transfer as dictated
by Förster energy transfer [15].

2. Calculation of the susceptibilities

We consider a hybrid structure composed of a spherical
MNP of radius a and a spherical SQD with radius b,
in an environment with dielectric constant εenv, as shown
in figure 1. The center-to-center distance between the two
particles is represented by R. We also assume that the radius of
the SQD is much smaller than the radius of the MNP and also
consider that R > a. This system interacts with an oscillating
electromagnetic field E(t) = E0 cos(ωt), applied along the
ẑ direction, which excites the interband transition between
the two energy levels of the SQD |1〉 → |2〉, with exciton
energy equal to h̄ω0. Only these two levels contribute to the
dynamics of the system and an oscillating dipole moment is
induced. The dielectric constant of the SQD is represented by
εS, while we treat the MNP as a classical dielectric particle
with dielectric function εm(ω).

The electromagnetic field also excites plasmons on the
surface of the MNP. These plasmonic excitations provide a

Figure 1. The hybrid system constitutes of an SQD of radius b
which is coupled to an MNP of radius a. The centers of the two
particles are separated by a distance represented by R.

strong continuous spectral response. Such surface plasmons
influence the excitons and induce dipole–dipole interaction
between excitons and plasmons [11]. This interaction is
responsible for the coupling between the two particles and
leads to Förster energy transfer [15]. Taking into account the
symmetry of the SQD and assuming that the electromagnetic
field is linearly polarized, the Hamiltonian of the system takes
the form

H = h̄ω0|2〉〈2| − µESQD (|1〉〈2| + |2〉〈1|) , (1)

where µ represents the dipole moment of the SQD
corresponding to the single exciton transition, and ESQD
represents the electric field inside the SQD, which is explicitly
written as [12, 13]:

ESQD =
h̄

µ
[(�+ Gσ) e−iωt

+
(
�∗ + G∗σ ∗

)
eiωt
]. (2)

We introduce the slowly varying quantities σ = ρ21eiωt

and σ ∗ = ρ12e−iωt, with ρij being the density matrix elements.
We also define the parameters� and G respectively as [12, 13]

� =
E0µ

2h̄εeffS

(
1+

saγ1a3

R3

)
and

G =
N∑

n=1

1
4πεenv

(n+ 1)2γna2n+1µ2

h̄ε2
effSR2n+4

,

(3)

where γn =
εm(ω)−εenv

εm(ω)+
n+1

n εenv
and εeffS =

2εenv+εS
3εenv

, with ε0 being

the dielectric constant of the vacuum and sa = 2 as the applied
field is parallel to the interparticle axis of the system (z axis).
The parameter� is related to the direct coupling to the applied
field (first term), as well as to the field from the MNP that is
induced by the applied field (second term). The parameter G
represents the self-interaction of the SQD. This arises from
the procedure described below. At first, the electromagnetic
field polarizes the SQD, which in turn polarizes the MNP.
The MNP then produces a field that interacts with the SQD
(dipole effect). However, in this study, we are aiming to be
more precise and thus take into account multipole effects [12].
Below, we will take N = 10 in our calculations, as we find that
this is enough for obtaining converging results.

Our goal is to obtain an analytical expression for
the first order susceptibility χ (1) of the system in a
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straightforward manner. This is given by the sum of the
first order susceptibility of the SQD, χSQD, and the first
order susceptibility of the MNP, χMNP. We initially derive
an expression for the first order susceptibility that determines
the optical response of the SQD [7–9]. For this we derive
the density matrix equations, which describe the dynamics of
the system. These under the rotating wave approximation are
given by [11–13]

σ̇ (t) = −
1
T2
σ(t)+ i�1(t)+ iG1(t)σ (t)+ iδσ (t), (4)

1̇(t) = 2i�∗σ(t)− 2i�σ ∗(t)

+ 4GIσ(t)σ
∗(t)−

1(t)− 1
T1

. (5)

In equations (4) and (5) 1(t) = σ11(t) − σ22(t) corresponds
to the population difference between the two energy levels,
which is a real quantity, δ = ω − ω0 is the detuning of the
applied field from resonance and GI represents the imaginary
part of the parameter G. Moreover, T1 is the population
relaxation time, while T2 is the relaxation due to dephasing
processes of the SQD under the presence of the MNP. The
relaxation time T1, and thus the relaxation time T2, are also
influenced by the presence of the MNP [23–26]. However,
for the parameters that we use here the values of T1,T2 do
not practically change in the frequency region of interest,
and therefore will be considered constant in this study, as in
previous papers concerning similar systems [1–21].

From equation (4) in the steady state we obtain

σ = −
�1

δ + G1+ i/T2
. (6)

If we substitute equation (6) in (5), solve the last one in the
steady state and approximate 1 at first order according to
perturbation theory, we find that1 ≈ 1. As χSQD =

20
ε0E0Vµσ ,

where 0 is the optical confinement factor and V is the volume
of the SQD [27], we obtain the following analytical expression
for the linear susceptibility of the SQD:

χSQD = −
0

V

µ2κT2

h̄ε0

T2 (δ + GR)− i (1+ T2GI)[
(1+ T2GI)

2
+ T2

2 (δ + GR)
2] , (7)

where κ =
(
1+ saγ1a3/R3

)
/εeffS.

Then, we determine the first order optical susceptibility
of the MNP. The polarization of the MNP is written as [12]

PMNP = P(+)MNPe−iωt
+ c.c., (8)

where

P(+)MNP = 3εenvγ1

[
E0

2
+

1
4πεenv

saµσ

εeffSR3

]
. (9)

As χMNP =
2

ε0E0
P(+)MNP we obtain

χMNP = 3γ1

[
εenv

ε0
−

1
4πε0εeffS

saµ
2κT2

h̄R3

×
T2(δ + GR)− i(1+ T2GI)

[(1+ T2GI)2 + T2
2 (δ + GR)2]

]
. (10)

In the case where the frequency range of interest is such
that the parameters γ1 = γ1R + iγ1I, κ = κR + iκI and G =
GR + iGI are practically independent of the frequency, we
can easily estimate from equation (7) the values of several
characteristic features of the real and imaginary part of the
susceptibility of the SQD. Hence, as far as the real part is
concerned, we find that it becomes zero when

δ = −GR −
κI

κR

(
1
T2
+ GI

)
, (11)

and has its maximum and minimum values when

δmax = −GR −

(
1
T2
+ GI

) κI

κR
+

[
1+

(
κI

κR

)2
]1/2

 ,
(12)

and

δmin = −GR −

(
1
T2
+ GI

) κI

κR
−

[
1+

(
κI

κR

)2
]1/2

 .
(13)

That is, it is shifted with respect to the value of the
detuning at which the real part becomes zero by ( 1

T2
+GI)[1+

( κI
κR
)2]1/2 on both sides (right/left) and hence the gap between

the minimum and the maximum is 2( 1
T2
+ GI)[1+ (

κI
κR
)2]1/2.

Moreover, from equation (7) we conclude that the zero of
the imaginary part of the susceptibility of the SQD occurs
at

δ = −GR +
κR

κI

(
1
T2
+ GI

)
. (14)

For higher values of the detuning, we have gain in
the SQD, and this gain is without population inversion.
The maximum and minimum peaks of the imaginary part
respectively arise at

δmax = −GR +

(
1
T2
+ GI

)κR

κI
−

[
1+

(
κR

κI

)2
]1/2

 ,
(15)

and

δmin = −GR +

(
1
T2
+ GI

)κR

κI
+

[
1+

(
κR

κI

)2
]1/2

 .
(16)

In fact, equations (15) and (16) predict, in the case that
κR � κI which is the usual situation, that the maximum
occurs at approximately δ ∼ −GR and the minimum (which
corresponds to the gain dip) at δ = −GR + 2 κR

κI
( 1

T2
+ GI).

Finally, we can identify the magnitude of the absorption and
the gain peak, which are respectively equal to

Im[χSQD]max

=
0

V

µ2T2

h̄ε0

1
2 (1+ T2GI)

κ2
I

[κ2
R + κ

2
I ]

1/2 − κR
, (17)
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Im[χSQD]min

= −
0

V

µ2T2

h̄ε0

1
2 (1+ T2GI)

κ2
I

[κ2
R + κ

2
I ]

1/2 + κR
. (18)

Similarly, in this case of practically frequency-
independent parameters, the values of several characteristic
features of the real and imaginary part of the MNP
susceptibility can be estimated from equation (10) by
performing simple calculations to find the roots of the
susceptibility and its derivative. However, the analytical
expressions for the values of the detuning at which the real
and imaginary part of the MNP susceptibility becomes zero
are very lengthy and intractable and give practically no more
information.

On the other hand, it becomes apparent by comparing
equations (7) and (10) that the values of the detuning at which
the maximum and minimum values of the susceptibilities
occur should have the same functional form. The latter
occurs as the derivative of equation (10) is practically the
same with the derivative of equation (7), once we replace
the parameter κ of equation (7) with the parameter κ̃(≡κ ·
γ1 = κ̃R + iκ̃I). Therefore, in order to estimate the position
of the minima and maxima of the real and imaginary
susceptibilities we can use equations (12), (13), (15) and (16)
by just replacing the parameter κ with the parameter κ̃ . For
example, we show the characteristic values related to the
minimum of the imaginary part of the susceptibility to arise
at

δmin = −GR +

(
1
T2
+ GI

) κ̃R

κ̃I
+

[
1+

(
κ̃R

κ̃I

)2
]1/2

 ,
(19)

showing a value equal to

Im[χMNP]min =
3εenv

ε0
γ1I

+
χ0

MNP

2 (1+ T2GI)

κ̃2
I

[[κ̃2
R + κ̃

2
I ]

1/2 + κ̃R]
, (20)

where χ0
MNP ≡ −

3saµ
2T2

4πε0εeffSh̄R3 .
Following exactly the same reasoning we can get simple

expressions for the extreme values and the detuning at
which these extreme values occur for the real and imaginary
part of the total susceptibility. Hence, for all equations
determining these features we get expressions of the same
functional form, with proper replacement of the important
parameter κ . In order to clarify what changes are needed
for the expressions in the total susceptibility, we present the
characteristic values of the detuning at which occurs the
minimum of the imaginary part of the susceptibility and the
minimum value:

δmin = −GR +

(
1
T2
+ GI

)[
(|χ0

SQD|κI + |χ
0
MNP|κ̃I)

(|χ0
SQD|κR + |χ

0
MNP|κ̃R)

+

[
1+

(
(|χ0

SQD|κI + |χ
0
MNP|κ̃I)

(|χ0
SQD|κR + |χ

0
MNP|κ̃R)

)2]1/2]
, (21)

Figure 2. The spectral form of the real, (a), and imaginary part, (b)
and (c), of the linear susceptibility of the SQD, χSQD, as a function
of the detuning h̄δ of the probe field for several values of the
interparticle distance: R = 11 nm (solid curve), 12 nm (dotted
curve) and 13 nm (dashed curve). The rest parameters are
0/V = 5× 1023 m−3, a = 7.5 nm, T2 = 0.3 ns, εenv = ε0, εS =

6ε0, h̄ω0 = 2.5 eV and µ = 0.65e nm.

Im[χ (1)]min =
3εenv

ε0
γ1I − ((|χ

0
SQD|κI + |χ

0
MNP|κ̃I)

2)

× (2(1+ T2GI)[[(|χ
0
MNP|κ̃R + |χ

0
SQD|κR)

2

+ (|χ0
SQD|κI + |χ

0
MNP|κ̃I)

2
]
1/2

+ (|χ0
MNP|κ̃R + |χ

0
SQD|κR)])

−1, (22)

where χ0
SQD ≡ −

0
V
µ2T2
h̄ε0

.
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Figure 3. The spectral form of the real, (a), and imaginary part, (b),
of the linear susceptibility of the MNP, χMNP, as a function of the
detuning h̄δ of the applied field for the same parameters as in
figure 2. The interparticle distance is R = 11 nm (solid curve),
12 nm (dotted curve) and 13 nm (dashed curve).

We note that the MNP plays a crucial role in the gain
without inversion, as due to the interaction between the
excitons of the SQD and the surface plasmons of the MNP,
energy is transferred from the MNP to the SQD, and this
makes gain without inversion possible.

3. Form of the susceptibilities

In the following we present results for the spectral form of
the linear susceptibility. Initially, in figures 2–7, we take the
dephasing times to be T2 = 0.3 ns as in previous studies, see
e.g. [2, 3, 6, 10–13, 15]. The dielectric constants take different
values for the environment and the SQD. Here, we consider
that εS = 6ε0 and εenv = ε0, where ε0 is the dielectric constant
of the vacuum. In the strongly confined regime for the SQD,
we take 0/V = 5 × 1023 m−3. Moreover, for the dielectric
function εm(ω) of the MNP we use the experimental values
that correspond to the case of gold, according to [28]. The
interband optical transition matrix element is µ = 0.65e nm,
while the energy gap between the two levels that contribute
to the dynamics is h̄ω0 = 2.5 eV at the plasmon peak of the
MNP. These parameters have been used in various studies, see

Figure 4. The spectral form of the real, (a), and imaginary part, (b),
of the total susceptibility, χ (1), as a function of the detuning h̄δ of
the applied field for the same parameters as in figure 2. The
interparticle distance is R = 11 nm (solid curve), 12 nm (dotted
curve) and 13 nm (dashed curve).

e.g. [2, 3, 6, 10–13, 15], and correspond to colloidal SQDs
(typically CdSe [6]).

In figures 2–7 we study the dependence of the linear
susceptibilities of the SQD, the MNP and the total system on
the center-to-center distance between the SQD and the MNP.
Figures 2–4 correspond to several low values of the parameter
R, while figures 5–7 depict higher values of it. In all figures,
the susceptibilities are plotted as a function of the detuning
h̄δ [=h̄(ω − ω0)] of the probe field, while we consider the
radius of the metal nanoparticle to be a = 7.5 nm.

In all these figures 2–7 the previously mentioned features,
described by equations (11)–(22), are observed at positions
and take values described by these expressions, as in this
range of interest γ1, κ,G are almost constant. Moreover, as
1/T2 = 3.34 ns−1, in all cases studied in figures 2–4 the 1/T2
term is much smaller than the real and imaginary part of G and
its contribution can be considered of minor importance (i.e. in
most cases it can be practically ignored).

Then, we discuss in more detail the results obtained
for longer interparticle distance (shown in figures 5–7).
In this case, the range of interest is very narrow and to
an excellent approximation the G-parameter is constant.
Contrary to the previously discussed figures 2–4 the parameter

5
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Figure 5. The same as in figure 2, for different values of the
interparticle distances R = 16.5 nm (solid curve), 20 nm (dotted
curve), 30 nm (dashed curve) and 80 nm (dashed–dotted curve).

1/T2(=3.34 ns−1) is now very important in the explanation
of the observed features, as G has comparable or smaller
values when compared to 1/T2. All the features that
characterize these figures are explained by means of the
equations (11)–(22). However, for high interparticle distances,
the imaginary part of the κ-parameter is rather small and
we get simplified expressions for (a) the value of the
detuning at resonance for Re[χSQD] which is practically equal
to −GR (see equation (11)) and (b) the width (now, the
absorption curve is rather symmetric) which is estimated
by the simplification of equations (12) and (13) to be
approximately equal to 2( 1

T2
+ GI).

Figure 6. The same as in figure 5 but for χMNP. The interparticle
distance is R = 16.5 nm (solid curve), 20 nm (dotted curve), 30 nm
(dashed curve) and 80 nm (dashed–dotted curve).

In general, we note that the position of this resonance
moves towards higher values of the detuning parameter as the
parameter R increases. This was expected, since all the three
parameters GR,GI, κI/κR decrease, when the interparticle
distance increases. Moreover, as the SQD approaches the
MNP, the two sidebands increase in magnitude and shrink in
the direction of the detuning (i.e. a decrease of the ‘width’
arises), while the dispersion at resonance becomes steeper.

The most striking of our findings is that for all values
of the interparticle distance (see figures 2–5), we note that
the absorption coefficient Im[χSQD] becomes negative for a

6
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Figure 7. The same as in figure 5 but for χ (1). The interparticle
distance is R = 16.5 nm (solid curve), 20 nm (dotted curve), 30 nm
(dashed curve) and 80 nm (dashed–dotted curve).

certain range of detunings, to the right of the absorption peak.
This is easily explained from the expression of the minimum
value of the absorption coefficient (see equation (18)) where
we observe that no matter what the values of all parameters of
the equation, it gets a negative value. We note, however, that
for large interparticle distance the gain becomes practically
zero. The negative value of the imaginary part of the SQD
susceptibility means that we have gain in this frequency
region. Its origin lies in the coherent interaction between the
SQD and the plasmons that are induced on the surface of the
MNP, and the induced energy transfer between the MNP and
the SQD due to this interaction. The systematic study reveals

Figure 8. The spectral form of the real, (a), and imaginary part, (b),
of the linear susceptibility of the SQD, χSQD, as a function of the
detuning h̄δ of the applied field, for an epitaxial system with
parameters a = 10 nm, h̄/T2 = 2 meV, h̄ω0 = 1.546 eV,
εenv = εS = 12ε0 and µ = 0.6e nm, for several values of the
interparticle distance: R = 14 nm (solid curve), 18 nm (dotted
curve), 25 nm (dashed curve) and 80 nm (dashed–dotted curve).

that the increase of the interparticle distance R shifts the
absorption resonance frequency to higher values. If we take
into consideration the modification of the different parameters
as the interparticle distance increases, we conclude that this
zero point moves towards lower values of the detuning for
small values of center-to-center distance R. However, for
higher values of it the zero point once again starts moving
to higher δ. In the special case where the two nanoparticles
are far away from each other, the gain peak practically
extinguishes. Moreover, the gain peak, depicted in more detail
in figures 2(c) and 5(c), reaches its highest value at about
R = 16.5 nm (solid curve in figure 5(c)). For even lower or
higher values of the interparticle distance, the gain peak is
weaker and the region of the detuning for which we observe
gain is narrower.

All features observed related to the position and the
value of the imaginary part of the SQD susceptibility can
be understood in terms of the behavior of the imaginary part
of G and κ-parameters. Our results have shown that GI and
the factor containing the real and imaginary part of κ in

equation (16), i.e.
[κ2

R+κ
2
I ]

1/2
+κR

κI
, are decreasing and increasing

functions of R, respectively. These opposite trends explain
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Figure 9. The spectral form of the real, (a) and (c), and imaginary part, (b) and (d), of χMNP as a function of the detuning h̄δ of the applied
field for the same parameters as in figure 8. The interparticle distance is R = 14 nm (solid curve), 18 nm (dotted curve), 25 nm (dashed
curve) and 80 nm (dashed–dotted curve).

why we get an optimal value for the negative imaginary part
of the SQD susceptibility (see equation (18)) and why the
minimum value occurs at very high detuning at the two limits,
i.e. very low and very high separations of the SQD–MNP. In
fact, at interparticle distance at around 20 nm, GI and 1

T2
have

almost the same value and after R = 30nm GI is much smaller
than 1

T2
which makes the term 2( 1

T2
+ GI) an R-independent

term.
To obtain a complete picture of the interplay between

the excitons of the SQD and the plasmons of the MNP we
study in figures 3(b), 6(b) and (c) the imaginary part of
the susceptibility of the MNP. It becomes obvious that the
coefficient Im [χMNP] gets negative values for a very narrow
range of distances R (see dotted curve in figure 6(c) where
R = 20 nm). This is explained by equation (20) where, for
the system under investigation, we observe that the first part
of Im[χMNP] is positive and independent of R and the second
part is negative and R-dependent.

However, it is very important to note that even for the
cases showing a negative imaginary part of the susceptibility
of the SQD and the MNP, the imaginary part of the total
susceptibility is positive, as it should be due the conservation
of the energy in the system. Even in the cases where both
SQD and MNP susceptibilities exhibit negative values (see
for example the dotted curves in figures 6(c) and 5(c)),
the total susceptibility is positive as these features occur at

different values of detuning. Moreover, a systematic study of
the imaginary part of the total susceptibility (see figures 4
and 7) shows that it is always positive. As we observe
in equation (22) one part of Im[χ (1)]min is positive and
independent of R, as γ1I is a function of only the detuning,
and the second part is negative and R-dependent, as GI, χ

0
MNP

and all κ-parameters are functions of R. By taking the
derivative of the R-dependent part of the total susceptibility
(equation (22)) we find that the largest absolute value of
the second R-dependent part occurs for R ∼ 16 nm. The
value we get is 1.4 and hence the imaginary part of the total
susceptibility is positive and equal to 0.96.

In figures 8–10, we investigate the impact of the
interparticle distance on the linear susceptibilities for a set
of parameters that correspond to an epitaxial SQD–MNP(Au)
at a low temperature regime [12]. Here, the radius a of the
MNP is equal to 10 nm, the decay and dephasing times
are T1 = T2/2 and h̄/T2 = 2 meV respectively and the gap
between the two energy levels is h̄ω0 = 1.546 eV, where the
plasmon peak of the MNP occurs when it is embedded in
a high refractive index material. Furthermore, the dielectric
constants of the environment and the SQD are εenv = εS =

12ε0 and the electric dipole matrix element is µ = 0.6e nm,
as in [12]. These parameters correspond to epitaxial SQD
(typically GaAs/AlGaAs). In this case, the characteristics of
the curves show a significant change from those of the system

8
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Figure 10. The spectral form of the real, (a) and (c), and imaginary part, (b) and (d), of χ (1) as a function of the detuning h̄δ of the applied
field for the same parameters as in figure 8. The interparticle distance is R = 14 nm (solid curve), 18 nm (dotted curve), 25 nm (dashed
curve) and 80 nm (dashed–dotted curve).

studied previously. Here, the dispersion and the absorption
curves have a Fano-type shape. The functional form of the

Fano resonance is (δ−qFano1int)
2

δ2+12
int

(plus a negative constant),

where 1int is the interaction-induced broadening and qFano is
the Fano factor. First, we note that for all cases studied (i.e. for
various distances) the curves corresponding to the real and
imaginary part of the linear susceptibility χSQD can be fitted
by an interaction broadening (1int), that takes values in the
range between 1 meV and 3 meV. This reveals, as expected,
that the most important contribution on the broadening comes
from the dephasing time T2 (as h̄/T2 = 2 meV) and not
from the G-parameter, which for both the real and imaginary
part always shows values less than 0.1 meV. In addition,
the dimensionless parameter qFano that corresponds to the
physical quantities Re[χSQD] and Im[χSQD] takes values in
the region 0.3–2.

Figure 9 of the MNP susceptibilities and figure 10 of the
total susceptibility reveal that the response of the SQD–MNP
hybrid system to the external field is different when compared
to the previous one studied in figures 2–7. Here, very broad
dispersion and absorption spectra are found, which are only
modified for a frequency region of a few meV near zero
detuning due to the presence of the SQD. The findings here

also confirm that the imaginary part of the susceptibility of
the total system never becomes negative.

Before closing this section, we mention that we have
also studied the influence of the SQD dipole orientation with
respect to the MNP surface to the presented results, as it is
well known that this has an important role in the interaction
of SQD–MNP systems; see for example [11, 12, 14, 22, 29].
In the present results different SQD dipole orientations lead to
different quantitative results; however the qualitative features
of the above results remain unchanged. In addition, we have
studied the influence of different dielectric constants of the
environment on the results and found that they have a small
influence on the reported spectra, so the results presented
above are still valid.

4. Summary

We studied theoretically optical phenomena in a hybrid
system composed of an SQD and a spherical MNP that
interacts with an electromagnetic field. For the theoretical
analysis we used modified nonlinear density matrix equations.
These equations also contain terms which describe the
interaction between excitons and surface plasmons. We take

9
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the steady state limit of the density matrix equations and
obtain a closed-form expression for the linear susceptibilities
of the SQD, the MNP and the total system. We investigate
the susceptibility dependence on the interparticle distance as
well as on material parameters of the hybrid system. We find
that the linear optical susceptibility of the SQD leads to an
absorption spectrum that is not Lorenzian. The absorption
spectrum of the SQD can become zero for specific frequencies
and exhibit gain without inversion for a range of frequencies.
In addition, we show that the linear susceptibility of the
MNP is strongly influenced by the presence of the SQD.
Both the SQD and the MNP have a significant contribution
in the optical properties of the hybrid system. In all the
cases studied the total optical susceptibility leads to an always
positive imaginary part, even in cases where both the SQD
susceptibility and the MNP susceptibility are negative for
different regions of the spectrum. Finally, one can extend the
present formalism for calculating the nonlinear Kerr effect or
higher order susceptibilities. This can be done by properly
using the methodology of [30]. We intend to do this in a
forthcoming work.
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