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To the sincere regret of the author, a temporary misunder-
standing led to the inclusion of an incomplete explanation 
and estimator for uncertainties on the integrated data (equa-
tion (35) of section 3.4.10 [6]). While the explanation was 
incorrect, the  actual software implementation used by the 
author in his other works did have the correct estimator, and 
their experimental results therefore (fortunately) remain unaf-
fected. The author apologises for any inconvenience this may 
have caused.

The incorrect estimator included in the original work 
describes the sample standard deviation of the pixel values in 
the bin. When this is used as an estimator for the uncertainty 
of the mean value in the bin, it leads to an overestimation of 
the uncertainty. The correct estimator which should have been 
used is the 'standard error of the mean', which is the sample 
standard deviation divided by the square root of the number of 
data points which the bin comprises of [4].

The difference between the two can be most clearly 
explained through a gedankenexperiment. If there are an infi-
nite number of data points in the bin, the sample standard 
deviation would reach a finite value denoting the spread of 
the values in the bin. The standard error of the mean, how-
ever, would approach zero, indicating that the calculated mean 
value is very precise.

Written correctly, the affected paragraph in section 3.4.10 
reads:

Data binning. At some point in the data correction proce-
dure for isotropically scattering samples, a data reduction 
step is performed, known as ‘integration’, ‘averaging’, or 
‘binning’. For isotropically scattering samples, a reduction in 

dimensionality of the data usually accompanies this procedure 
(e.g. from 2D images to 1D plots), performed by grouping 
and averaging pixels with similar scattering angle q irrespec-
tive of their azimuthal angle on the detector (denoted ψ). For 
anisotropically scattering samples pixels with similar q and ψ 
can be combined to form a new 2D dataset but with a reduced 
amount of datapoints [7, 8], though some dispense with bin-
ning altogether [5].

The advantages of this step are threefold. Firstly, the data 
becomes more manageable, allowing for example faster fit-
ting and improved data visualisation. Secondly, the relative 
data uncertainties become smaller for the averaged data. 
Lastly, the standard error of the mean of the pixel values in 
each group (c.q. bin) can provide a good estimate for the 
actual uncertainty on the average value if this standard error 
exceeds the photon counting statistics-based estimate propa-
gated until this step1.

More specifically: for radial averaging, the many data-
points collected from each pixel on the the detector are grouped 
according to their q-value into a small number of q-bins. For 
each bin, the mean scattering angle, q, and its corresponding 
mean I q( )qbin  is calculated alongside the uncertainty estimate on 
the mean. In this reduction step, each measured datapoint Ij col-
lected between the bin edges (class limits) qn and qn+1 is aver-
aged and assumed valid for the mean = 〈 ∈ 〉+q q q q[ , ]n n 1 , i.e.:

= 〈 ∈ 〉+I q I q q q( ) ( [ , ])j n nqbin 1 (1)
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with the uncertainty on I q( )qbin  estimated as:
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where the summation is over all datapoints j falling within the 
bin edges and Nqbin the total number of datapoints in the bin. As 
previously mentioned and evident from equation 2, the maxi-
mum value is chosen between the propagated uncertainty and 
the standard error of the mean to provide the uncertainty esti-
mate for the bin mean I q( )qbin . In other words, if the standard 
error of the mean in the bin exceeds the estimate based on the 
previously propagated uncertainty, the standard error is consid-
ered to be the more accurate estimate. This can be further aug-
mented to never have a relative uncertainty estimate smaller 
than 1% of the intensity, as it is (even with the most stringent 
corrections) challenging to get more accurate than this [2].

There is still a choice to be made in this procedure, which 
is the spacing between the bin edges. Normally, this is chosen 

either uniform or logarithmically spaced (with more data 
points at low values) [3]. However, for data with sharp fea-
tures, a more involved choice might be preferred [1, 9].
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Abstract
For obtaining reliable nanostructural details of large amounts of sample—and if it is
applicable—small-angle scattering (SAS) is a prime technique to use. It promises to obtain
bulk-scale, statistically sound information on the morphological details of the nanostructure,
and has thus led to many a researcher investing their time in it over the last eight decades of
development. Due to pressure from scientists requesting more details on increasingly complex
nanostructures, as well as the ever improving instrumentation leaving less margin for
ambiguity, small-angle scattering methodologies have been evolving at a high pace over the
past few decades.

As the quality of any results can only be as good as the data that go into these
methodologies, the improvements in data collection and all imaginable data correction steps
are reviewed here. This work is intended to provide a comprehensive overview of all data
corrections, to aid the small-angle scatterer to decide which are relevant for their measurement
and how these corrections are performed. Clear mathematical descriptions of the corrections
are provided where feasible. Furthermore, as no quality data exist without a decent estimate of
their precision, the error estimation and propagation through all these steps are provided
alongside the corrections. With these data corrections, the collected small-angle scattering
pattern can be made of the highest standard, allowing for authoritative nanostructural
characterization through its analysis. A brief background of small-angle scattering, the
instrumentation developments over the years, and pitfalls that may be encountered upon data
interpretation are provided as well.

(Some figures may appear in colour only in the online journal)
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1. Introduction

1.1. Scattering to small angles

The interaction of radiation with inhomogeneities in matter
can cause a small deviation of the radiation from its incident
direction, called small-angle scattering (figure 1). Such
small-angle scattering (SAS) occurs in all kinds of materials,
be they (partially) crystalline or amorphous solids, liquids or
even gases, and can take place for a wide variety of radiation,
such as electrons (SAES) [159, 21], gamma rays (SAGS)
[91, 90], light (LS) [73, 27], x-rays (SAXS) [102, 63, 2] and
even neutrons (SANS) [2, 10, 75]. For the purpose of this
review, we shall limit ourselves to x-ray scattering. This is
one of the more prolific sub-fields of small-angle scattering,
though it should be noted that many of the principles and
corrections presented here, which apply to x-rays, may be
applied to neutrons as well as some of the other forms.

The phenomenon of small-angle scattering can and has
been explained in a variety of ways, with many explanations
starting from the interaction between a wave and a point-
shaped interacting object [63, 51]. For crystallographers,
however, this phenomenon may be more readily understood
as peak broadening of the [000] reflection (which is present
for all materials), whereas for the mathematically inclined,
small-angle scattering can be defined as the observation of
a slice through the intensity component of the 3D Fourier
transform of the electron density [34, 2, 170, 155, 135].

Small-angle x-ray scattering can be applied to a large
variety of samples, with the majority consisting of two-phase
systems [180]. In multiphase systems where the electron
density of one phase is drastically higher than that of
the remaining phases a two-phase approximation can be
made [100]. This assumption can be done as the scattering
power in SAXS is related to the electron density contrast
between the phases (squared), so that the larger the difference
in electron density, the larger the scattering contribution. With
such a two-phase approximation, SAXS is used to study
precipitation in metal alloys [54, 36], structural defects in
diamonds [164], pore structures in fibres [186, 25, 135],
particle growth in solutions [190], coarsening of catalyst parti-
cles on membranes [167], characterization of catalysts [158],
soot growth in flames [89], structures in glasses [192], void
structure in ceramics [2], and for structural correlations in liq-
uids [184], to name but a few besides the plethora of biological
studies (which are well discussed in other work [96, 176]).

Small-angle scattering thus has a wide field of
applicability in systems with only one or two phases. When

Figure 1. The scattering of radiation to small angles by a sample
(small-angle scattering). Angles normally used for diffraction
analysis are also shown.

the number of phases in the sample is increased to three,
the complexity increases dramatically, drastically lowering
the fields of application [180]. Some existing examples are
studies on the extraction of hydrocarbons from coal [28],
absorption studies on carbon fibres [79] and determination
of closed versus open pores in geopolymers [112]1. For
multiphase systems straightforward SAXS is rarely attempted,
though some groundwork for such applications has recently
been laid [181]. Instead, element-specific techniques such
as anomalous SAXS (ASAXS) [192, 180] or combinations
between SAXS and SANS [129] are used to extract
element-specific information.

One additional drawback of SAXS, besides its preference
for two-phase systems, is the ambiguity of the resulting data.
As in common, straightforward SAXS measurements only
the scattering intensity is collected (and not the phase of
the photons), critical information is lost which prevents the
full retrieval of the original structure (the ‘phase problem’).
As concisely explained by Shull and Roess [165]: ‘Basically
it is the distribution of electron density which produces the
scattering, and therefore nothing more than this distribution,
if that much, can be obtained without ambiguity from the
x-ray data’. This means that a multitude of solutions may be
equally valid for a particular set of collected intensities which
may only be resolved by obtaining structural information from
other techniques such as transmission electron microscopy
(TEM) [197] or atom probe (AP) [76, 77]. This has drastic
effects on the retrievable information.

In particular, of the three most-wanted morphological
aspects: (1) shape, (2) polydispersity, and (3) packing, two
must be known or assumed to obtain information on the
third [63, 51, 137]2. This can be illustrated with a few
examples. By making a monodisperse assumption about
the particle size distribution and assuming infinite dilution
(i.e. no packing effects), the possible particle shapes become
limited and can be extracted by low-resolution molecule shape

1 In neutron scattering, one of the three phases can sometimes be ‘tuned
out’ through smart solvent choices, essentially resulting in a scattering pattern
effected by two contrasting phases.
2 These three cannot be uniquely separated due to the theoretical
impossibility for unambiguous separation between the interparticle- and
intraparticle scattering [63, 51, 137] (i.e. it is impossible to separate shape
and polydispersity from packing effects), and the impossibility to determine
uniquely the particle size distribution as well as the shape of the particles
from the scattering pattern [63]. The correlation function and chord length
distribution (which combine these three contributions) are, however, unique
for a given small-angle scattering pattern.
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Figure 2. Typical size range of distinguishable nanostructural
features (horizontal axis) and sampling volume (vertical axis) of
various volumetric techniques: transmission electron microscopy
(TEM), atom probe (AP), tomography and small-angle and
ultra-small-angle scattering techniques (SAS/ultraSAS). Dots
indicate straightforward extensibility in the indicated direction.

resolving programs [177]. Alternatively, knowledge on the
particle size distribution and particle shape can result in a
solution for the arrangement of the particles in space, as
applied in structure resolving programs [187, 147]. Lastly, by
making a low-density packing assumption and given a known
particle shape (from TEM), a unique particle size distribution
remains [111, 133, 132, 150, 158].

Despite these drawbacks, many practical applications
have confirmed the validity of such small-angle scattering-
derived information. For example, literature shows good
agreement between TEM and SAXS analyses of gold
nanoparticles [119], krypton bubbles in copper [139],
commercially available silica sphere dispersions [64], coated
silica particles [32, 136], zeolite precursor particles [33],
spherical precipitates in Ni-alloys [162], and the diameter of
rod-like precipitates in MgZn alloys [150], to name but a few.

Small-angle x-ray scattering thus needs to be combined
with supporting techniques (such as TEM, AP or porosimetry)
and is best performed on samples with two main contrasting
phases. When these conditions are met, however, it will
provide information on morphological features ranging from
the sub-nanometre region to several micron. This information
is valid for the entire irradiated volume of sample, which can
be tuned from cubic micrometres to cubic millimetres and
beyond (figure 2). Furthermore, it can quantify the structural
details of samples that are more challenging to quantify using
electron microscopy, such as structures of glasses, fractal
structures and numerous in situ studies, as well as volume
fraction and size distribution studies.

1.2. The push for better data

From the inception of SAXS around the 1930s, significant
effort was expended on improving the data obtained from
the instruments as it became clear to the early researchers
that what you get out of it depends on what you put into it
(i.e. that the quality of the results were linearly dependent

on the quality of the data collected). A good overview of
the early efforts is given by Bolduan and Bear [15]. In
particular, advances in collimation led to the widespread use
of three collimators to reduce background scattering [15, 198],
focusing and monochromatization crystals (and even practical
point-focusing monochromators [48, 49, 163, 56]), high-
intensity x-ray sources and total reflective mirrors. These early
developments have led to near-universal adoption of all of
these elements in subsequent instruments to improve the flux
and signal-to-noise ratio.

X-ray sources in particular have increased drastically in
brightness, leading to a similar increase in photon flux at the
sample position for many small-angle scattering instruments.
Initially, photon fluxes from laboratory sources were on the
order of 103 to 104 photons s−1 (at the SAXS instrument
sample position, estimated using Fankuchen [49]). This
has increased to the current flux from microsource tubes
and rotating anode generators of about 107 photons s−1,
useful for most common x-ray scattering experiments. For
monitoring of dynamic processes, position-resolved, or SAXS
tomography experiments where higher fluxes are required,
synchrotron-based instruments can deliver around 1011–1013

photons s−1 to the sample environment. On specialized
beamlines such as BL19LXU at the SPring-8 synchrotron,
fluxes of 1014 photons s−1 can be obtained. X-ray lasers such
as SACLA in Japan, the European XFEL and the LCLS in the
US provide very intense pulses of x-rays, but the total flux is
typically only about 1011 photons s−1.

The thus obtained reduction of parasitic scattering and
increase in flux was further exploited by the advent of new
detection systems. The first SAXS instruments employed
step-scanning Geiger counters [87] or photographic film (with
a notable instrument even using three photographic films
simultaneously [72] so that sufficient information could be
collected to measure in absolute units [71]), which were
rather laborious and time-consuming detection solutions.
The photographic films in particular had a very nonlinear
response to the incident intensity, necessitating complex
corrections [23]. The advent of image plates [29] and 2D
gas-filled wire detectors [57] mostly replaced the prior
solutions, though image plates have a low time resolution
(given the need to read and erase them), and the 2D
gas-filled wire detectors suffer from a low spatial resolution
due to a considerable point-spread function [108]. Charge
coupled device (CCD) detectors enjoy a modicum of success,
though they suffer from reduced sensitivity alongside a
slew of other issues [7]. A costly but overall relatively
problem-free detector came about with the development of
the direct-detection photon counting detector systems such as
the linear position sensitive MYTHEN detector [156], the 2D
PILATUS detector [44], its upcoming successor, the EIGER
detector [88], and the Medipix and PIXcel detectors [19]. The
required corrections for these detectors will be discussed in
section 3.3.

1.3. The next steps

A typical small-angle measurement currently consists of three
steps: a rather straightforward data collection step, a data

3
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Figure 3. The required components for a small-angle scattering experiment.

correction step to isolate the scattering signal from sample-
and instrumental distortions, and an analysis step. While
several works exist that detail the measurement procedure
as well as the analysis [170], comprehensive reviews of all
possible data correction steps are less easy to find. This
work therefore discusses the data collection and in particular
highlights the possible data correction steps. After the data
correction steps, a corrected scattering pattern of the highest
of standards is obtained, which can be quite valuable. Good
quality data and a good understanding of their accuracy and
information content limitations greatly facilitates the process
of data analysis and therefore forms the basis of any sound
structural insights.

2. Data collection

2.1. The importance of good data

At the core of a good small-angle scattering methodology lies
the collection of reliable, consistent data with good estimates
for the data uncertainty. Once high-quality data have been
collected for a particular sample, it can be forever be subjected
to a variety of analyses. The data collected in the timespan
of several days, during sample measurements at synchrotrons
in particular, is often subjected to analysis (many) months
after the measurement. Ensuring that the collected scattering
pattern is an accurate representation of the actual scattering,
therefore, is of the utmost importance in any small-angle
scattering methodology.

It almost does not need mentioning that conversely,
poorly collected data should be shunned. It will confuse at
best, and provide wrong conclusions at worst which could lead
to disaster. Poorly collected small-angle scattering data have
little to no information content in small-angle scattering, and
likely consists of mostly background and parasitic scattering.
In order to aid the novice researcher in collecting sufficient
(and the right) information from a SAXS measurement, a data
collection checklist is provided in the appendix.

2.2. Instrumentation

While in the past many instruments were designed and built
in-house, nowadays many good instruments can be obtained
from a large variety of instrument manufacturers. Given the
current ease of obtaining money for a complete instrument
rather than instrument development, and the drastic reduction
in time required between planning and operation, the
extra cost involved may in many cases be offset by the
benefits. These instruments come in a variety of flavours

and colours, but can essentially be divided into three main
classes: (1) pinhole-collimated instruments, (2) slit-collimated
instruments, and (3) Bonse–Hart instruments relying on
multi-bounce crystals as angle selectors3.

2.2.1. Pinhole-collimated instruments. The first of these
three, pinhole-collimated instruments (schematically shown
in figure 3) have become very popular due to their
flexibility in terms of samples and easy availability of data
reduction and analysis procedures. While initially eschewed
for slit-collimated instruments due to the drastically higher
primary beam intensity of the latter, improvements in
point-source x-ray generators as well as 2D focusing optics
have reduced the weight of this argument somewhat. This
class of instruments also dominates the small-angle scattering
field at synchrotrons as well as neutron sources due to their
aforementioned flexibility.

These instruments typically consist of a point-based x-ray
source followed by x-ray optics. These optics are either used
to parallelize the photons emanating from the source, or
focus the x-rays to a spot on the detector or sample. After
the x-ray optics, the beam is then further collimated using
either three or more collimators made from round pinholes
or sets of slit blades, separated by tens of centimetres to
several metres (a particular effect of the collimation on beam
properties is given in section 2.2.4). While the third collimator
was required to remove slit or pinhole scattering from the
second collimator [15, 196, 138], the recent development of
single-crystalline ‘scatterless’ slits remove the need for the
third collimator [58, 109].

There are two main instrument variants in circulation
as to what happens after the collimation section. One type
of instrument ends the in-vacuum collimation section with
an x-ray transparent window, allowing for an in-air sample
placement and environment before entering another x-ray
transparent window delimiting the vacuum section to the
detector (this sample-to-detector vacuum section is also
known as the ‘flight tube’). As this introduction of two
x-ray transparent windows and an air path generates a
non-negligible amount of small-angle scattering background,
it does not lend itself well to samples with low scattering
power [43]. The second instrument variant, therefore, consists
of a vacuum sample chamber (and often a vacuum valve
which can be closed to maintain the vacuum in the flight
tube during the sample change procedure), and thus allows an

3 A good review of instrumentation is also given by Chu and Hsiao [25].
Furthermore, tools for instrument design evaluation have recently become
available [95].
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uninterrupted flightpath from collimation through the sample
into the flight tube. While this generates the least unwanted
scattering, it does add restrictions to the sample and sample
environments that can be put in place [138].

At the end of the flight tube sits the in-vacuum
beamstop, whose purpose is to prevent the transmitted beam
from damaging the detector or causing unwanted parasitic
scattering, and can be one of three types. This beamstop can
be a normal beamstop, which blocks all of the transmitted
beam. It is useful in many cases, however, to have an estimate
for the amount of radiation flux present in the transmitted
beam. To this end, the beamstop can be replaced or augmented
with a small PIN diode, which measures the flux directly
(albeit on arbitrary scale), or the beamstop can be made
‘semitransparent’, meaning that the beamstop is adapted to
pass through a heavily attenuated amount of radiation which
subsequently falls onto the detector. The presence of either
of the two latter options can be used to benefit the accuracy
of the data reduction step, leading to more accurate data and
therefore more accurate results.

Finally, the flight tube exits in a window followed
(almost) immediately by the detector. For detectors with a
large detecting area, this exit window (and the flight tube
exit section) must be engineered to be strong and large,
sometimes leading to visible parasitic scattering from the
window material. It is therefore recommended to keep the
detector small, allowing for a small and modular flight tube
with very little exit window issues. Alternatively, for very
modern systems, some detectors can work in-vacuum as
well which removes this last (small) source of parasitic
scattering and allows for step-less translation of the detector
and beamstop within this vacuum, drastically increasing the
flexibility in angular measurement range.

One alternative to this type of instrument was the
‘Huxley–Holmes’ camera which contained two separate
optical components for monochromatization and focusing, to
achieve a very low background [202]. While this instrument is
performing well, the authors currently recommend going for
a more common configuration instead consisting of focusing
optics followed by scatterless slits [201].

2.2.2. Slit-collimated instruments. A second type of
instrument exists which is much more compact than the
pinhole-collimated systems, is less expensive and illuminates
a larger amount of sample to collect more scattering.
This type of instrument is often referred to as a ‘Kratky’
or ‘block-collimated’ camera, perhaps best explained by
Kratky [103] and Glatter and Kratky [63]. This camera is
commonly built on an x-ray source emitting a beam with
a line-shaped cross-section, and collimates the x-ray beam
using rectangular blocks of metal4. While this instrument
is sometimes referred to as an ultra-small-angle scattering
instrument, it is typically used as a normal small-angle
scattering instrument.

4 A subsequent interesting improvement by Schnabel [157] using glass
blocks in the collimation system did not catch on, whereas beam
monochromatization and/or focusing has been a quite widely implemented
improvement [55].

The line-shaped cross-section of the x-ray beam does
bring with it a major drawback, in that the collected scattering
pattern is substantially different from the pattern one would
obtain from a pinhole-collimated instrument, and therefore
needs a modified data correction procedure. Effectively, the
scattering pattern is distorted or blurred due to a superposition
of intensity contributions from various scattering points along
the line-shaped beam. While the collected ‘slit-smeared’
scattering patterns can be subjected to a numerical correction
to compensate for this smearing effect, such desmearing
processes in the best case merely amplify the noise in the
system and in the worst case introduces artefacts which
could be mistaken for real features [188]. This desmearing
procedure will be discussed in more detail in section 3.4.9.
Furthermore, analysis of samples containing an anisotropic
structure becomes more tedious, leaving the instrument most
suited to isotropically scattering samples.

There are a number of instruments preceding the
block-collimated camera, which employed a line-shaped x-ray
beam collimated with a series of slits [149, 198, 72]. While
these formed the basis of the first SAXS instruments, and are
by definition slit-collimated instruments, they are no longer in
widespread use.

2.2.3. Bonse–Hart instruments. A third type of instrument
is one particularly suitable for ultra-small-angle scattering
purposes (for the analysis of larger structures typically from
several nanometres to several microns), and is known as
the ‘Bonse–Hart’ camera [17]. These instruments utilize the
high angular selectivity of crystalline reflections to single
out a very narrow band of scattering angles for observation,
i.e. using the crystals as angle selectors both for collimation-
as well as analysis purposes. While the idea of using
crystalline reflections was not new [49, 149], the advantage
of the implementation by Bonse and Hart [17] was the use
of multiple reflections in channel-cut crystals to improve the
off-angle signal rejection in a straightforward manner [26].

The incident beam is collimated to a highly parallel beam
through multiple crystalline reflections rejecting all but the
angles in reflection condition. The sample is placed into this
parallel beam effecting small-angle scattering as the beam
passes through the sample. A second crystal (a.k.a. ‘analyser
crystal’) is then used to pick out a single angular band of the
scattered radiation. Through rotation of the analyser crystal,
the scattered intensity at various angles can be evaluated
with an extremely high angular precision or resolution.
A few standalone instruments have been constructed on
synchrotrons [26, 40, 84, 81], and several more have
been built as complementary instruments around laboratory
x-ray sources (tube—as well as rotating anode sources)
[17, 65, 106, 26].

The instrument angular resolution is defined mostly by
the rocking curve of the crystalline reflection, also known as
the ‘Darwin width’, which is the angular bandpass window
of the crystalline reflection [5, 82]. While a large variety
of crystalline materials can be used in the instrument, the
channel-cut crystals are usually made from either silicon or
germanium due to their high degree of crystalline perfection
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over large sizes [5]. These crystals have Darwin widths
(FWHM) for the common (111) and (220) x-ray reflections
of about 0.0002◦, thus defining the q-resolution for most
such instruments to be about 0.001 nm−1 (where the multiple
reflections do not change the Darwin width, but improve
the off-reflection rejection) [26, 178, 40, 65, 106]. When a
higher resolution is required, for example to measure larger
structures, the combination of high-energy and higher-order
crystalline reflections can lead to a ten-fold increase in
resolution [82]. Neutrons can also be used instead of x-rays,
as the Darwin width for a neutron reflection is about 0.105
times that of the x-ray counterpart, which can therefore lead
to a similar increase in resolution [5].

As the channel-cut crystals only collimate in one
direction, these instruments suffer from a similar slit-
smearing effect as the Kratky-type instruments discussed in
section 2.2.2. Desmearing of the data is therefore required,
unless effort and intensity is expended to collimate the
beam in the perpendicular direction as well [105, 65]. An
additional drawback to these instruments is the requirement
for a step-scanning evaluation of the scattering curve5,
which increases measurement times considerably. Due to
the fast intensity falloff at higher angles, and the extremely
narrow angular acceptance window of the analyser crystal,
this instrument performs best at ultra-small angles but has
much reduced efficiency at larger angles. These properties
render this type of instrument a useful addition to existing
SAXS instrumentation, but is less frequently encountered
as a standalone instrument. Given the particulars of the
data, Bonse–Hart data correction may require additional
consideration (e.g. for the determination of the sample
transmission factor and the effects of the rocking curve on the
data) [26, 178, 203].

While the difference between a Kratky camera and a
Bonse–Hart camera initially seemed to be in favour of the
Kratky camera [104], it gradually became clear that both
instruments have their place in the lab. For small-angle
scattering measurements on weakly scattering systems at
common small angles (i.e. 0.1 ≤ q (nm−1) ≤ 3), a Kratky
camera performs very well, while for measurements to very
small angles (i.e. below q (nm−1) ≈ 0.1) the Bonse–Hart
approach would be the preferred instrument [37, 26].

2.2.4. A note on collimation and coherence. In typical
scattering measurements, only a fraction of the volume
is irradiated with coherent radiation (i.e. with in-phase
electromagnetic fields), therefore only that fraction of
the irradiated sample volume contributes to the scattered
intensity [189]. In other words, the irradiated sample
volume typically contains a multitude of so-called ‘coherence
volumes’, each of which contributes to the scattering pattern.
As there is no inter-volume coherence, it is the sum of the
scattering intensities (as opposed to the sum of the amplitudes)
from each of these volumes that is detected [110].

These coherence volumes are defined by two compo-
nents, the longitudinal component (parallel to the beam

5 Though there are efforts in neutron scattering to overcome this
limitation [127].

Figure 4. Coherence volume after a slit. The larger the slit, the
smaller the transversal coherence length.

direction) and the transversal component (perpendicular to the
beam direction, see figure 4). The longitudinal component is
dependent on the degree of monochromaticity of the radiation,
and is large for monochromatic radiation and quite small
for polychromatic beams [110]. The transversal dimension ζt
of the coherence volume is defined through the collimation,
in particular through the dimensions of the beam-defining
collimator and its distance to the sample, and can be estimated
as [189]:

ζt =
λl

w
(1)

where λ is the wavelength of the radiation, l the distance
between the beam-defining collimator and the sample, and w
the size of the collimator opening (ζt can be calculated for
each direction for collimators with nonuniform openings).

The estimation of the transversal coherence length is
an important check for experiments. Scattering objects with
dimensions close to or larger than the transversal coherence
length may not contribute significantly to the small-angle
scattering as the coherence volume will be within a uniform
region of material (an effect seen amongst others by Rosalie
and Pauw [150]). This effect can be exploited to investigate
the actual transversal coherence length in an instrument as
shown by Gibaud et al [61]. For a more detailed treatment
of coherence (i.e. when it is approaching significance or
what happens when a single coherence volume encompasses
the sample), the reader is referred to the aforementioned
literature.

3. Data reduction and correction

3.1. What corrections?

While a scattering pattern may have been recorded on
the best available instrumentation, there are nonetheless
some corrections to be done. The corrections must correct
(as much as possible) for any data distortions introduced
by the x-ray detection system. Further small corrections
consist of spherical corrections, polarization correction
and sample self-absorption correction. More significant
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corrections are corrections for background, dark current
or natural background, deadtime correction and scaling to
absolute units. Many of these steps also need to be done in
an appropriate order. These corrections will be discussed in
this section, accompanied by magnitude estimates and error
propagation methods where appropriate. Note that the data
corrections and correction sequences provided here are given
with pinhole-collimated instruments in mind. While most
corrections translate to the slit-collimated- and Bonse–Hart
instrument types as well, data correction for these two
may require extra care. In particular for Bonse Hart-specific
corrections and considerations, the reader is referred to Zhang
and Ilavsky [203] and Chu et al [26].

The goal of all these corrections is to recover the
true scattering cross-section (which is often still called the
‘intensity’ or ‘absolute intensity’ colloquially) as well as an
estimate for its relative σr and absolute uncertainty σa for all
datapoints j: Itrue,j ± σr,j ± σa (though more advanced error
analysis is possible [74]). Note that the absolute uncertainty is
independent of the datapoints as it is the uncertainty estimate
for the total scaling of the scattering cross-section.

It is the common consensus in the small-angle scattering
community that ensuring the correct implementation of
all these data corrections rests on the shoulders of the
instrument manufacturer, the beam line responsible (in case
of synchrotrons) or the instrument responsible. In other
words, the beginning small-angle scatterer should never have
to deal with these, and should receive corrected scattering
cross-sections with uncertainties. The reasoning behind this
is that in order to do most of these corrections a level
of instrument understanding and characterization is needed
which cannot be expected of the casual user. In reality,
however, the user can be left to their own devices and an
idea on the required steps and sequence may be of some help.
Several data processing packages are available to aid the user
with the most pressing data correction steps [13, 80, 95, 93]
(not an exhaustive list).

The purpose of this section is to introduce every possible
correction, and provide a modular toolbox for constructing
data correction sequences. Some corrections are ‘turtles all
the way down’, increasing in complexity the more it is
investigated. For these, only the top ‘turtles’ are given, with
enough references to fine-tune the details as required. Finally,
example data correction schemes are given of increasing
complexity to accommodate the occasional experimentalist,
the professional and the SAXS-o-philic perfectionist.

3.2. Data reduction steps and sequence

The required data steps are indicated in table 1, ordered
by their approximate position in the data reduction and
correction sequence. Where applicable, the paragraph in
which the data correction in question is discussed is indicated
as well. Convenient two-letter abbreviations have also been
provided. While the table includes a fair few corrections and
is suitable to a variety of detectors, it should not be considered
universal as some detectors are in need of more corrections, or
application of the corrections in a slightly different order.

3.3. Detector corrections

In order to detect x-rays, a wide variety of detectors
have become available. Depending on the detection method,
imperfections and physical limitations may cause a deviation
of the detected signal from the true signal (the number of
scattered photons). In a perfect case, you would measure
the same (true) scattering signal irrespective of the type of
detector used.

Real detectors, however, have imperfections, tradeoffs
and drawbacks. Some of these detectors and their individual
drawbacks will be discussed here, after elaboration on
the possible distortions. The distortions can generally be
divided into two categories, intensity distortions and geometry
distortions. Intensity distortions are deviations in the amount
of measured intensity, and geometry distortions are deviations
in the location of the detected intensity. First and foremost,
there are data read-in corrections to consider.

3.3.1. Data read-in corrections: DS. The first step for any
data correction is to read in the information from detectors.
While for point- and linear position sensitive detectors
(PSDs), the choice has almost universally been made for the
convenience of ASCII data, for image detectors this has not
been so straightforward.

Therefore, whenever a detector system is bought,
particular attention needs to be paid to the data format of the
images one obtains. For some reason, quite a few detector
manufacturers worldwide prefer their own image data formats
over more standard image formats (a list of some of these
formats can be found in the documentation accompanying the
NIKA package [80]). This tendency hinders data preservation
efforts (though one should preserve corrected and reduced
data rather than the original data, a point discussed in
section 3.6) and sometimes causes read-in issues of the data
in data reduction packages. Two cases in particular have come
to the attention of the author, the Rigaku data format and the
Bruker data format, which will be used to illustrate the issue.

The Rigaku data format has all the characteristics of a
16-bit TIFF image, and will actually load as such. Without
going into details, 16 bits (per image value) would get you a
maximum per-pixel value of 216: 65 536. This value would
be insufficient for storing the number of photons obtained
for example from the aforementioned PILATUS hybrid pixel
detector, which therefore uses a 32-bit image format. The
Rigaku format treats such count numbers slightly differently
in order to store them in 16 bits: 15 bits behave like normal
bits up to a value of 215 (32 768), the 16th bit acts not as
a standard bit but as a ‘multiply-by-32’-flag6. While this is
documented [148], the danger lies in the compatibility of
their data format with standard binary data: the intensities
will be wrong, but the scientist ignorant of this issue will not
immediately notice something is awry.

The Bruker data format, on the other hand, is unlikely to
be compatible with any standard image reading routines, and

6 Not quite true, the 16th bit acts as a ‘multiply-by’ flag, with the actual
integer listed in the image header.
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Table 1. The data reduction and correction steps in approximate order of application. The abbreviations in the ‘Abbrv.’-column are listed in
the appendix. The columns ‘σr’ and ‘σa’ indicate whether a correction affects either the relative uncertainty and/or the absolute uncertainty
(if so, column marked with ◦). Also indicated are four types of detectors (CCD: a typical CCD detector with tapered fibres or image
intensifier, IP: image plate, DD: direct-detection systems such as the hybrid pixel detectors, and WD: wire detectors and similar), whose
columns indicate the severity of the effect of each correction for that detector, where ‘+’ indicates the correction has to be applied, ‘−’
indicates a minor correction that can be ignored. Complexity (Cx) column indicates the approximate complexity of the correction
implementation, with 0 being easy, and 3 complicated.

Step no. Abbrv. Description Section σr σa CCD IP DD WD Cx

(1) DS Data read-in corrections for manufacturer’s data storage
peculiarities

3.3.1 + + + + 0–3

(2) DZ Dezingering—removing high-energy radiation streaks 3.3.2 + − − − 2
(3) FF Detector flat-field correction 3.3.3 ◦ + − + + 1
(4) DT Detector deadtime correction (photon counting

detectors)
3.3.4 ◦ − − − + 2

(5) GA Detector nonlinear response (gamma) correction 3.3.5 ◦ + − − + 1
(6) TI Normalize by measurement time 3.4.3 ◦ ◦ + + + + 0
(7) DC Subtraction of natural background or dark current

measurement (itself subjected, when applicable, to
steps 1–6)

3.3.6 + + + + 0

(8) FL Normalize by incident flux 3.4.2 ◦ ◦ + + + + 0
(9) TR Normalize by transmission 3.4.2 ◦ ◦ + + + + 0
(10) GD Detector geometric distortion correction 3.3.7 ◦ + ± − + 3
(11) SP Spherical distortion correction (area dilation) 3.4.6 ◦ − − − − 1
(12) PO Correct for polarization (even for unpolarized beams) 3.4.1 ◦ − − − − 1
(13) SA Correct for sample self-absorption 3.4.7 ◦ − − − − 1–3
(14) BG Subtract background (itself subjected to steps 1–11) 3.4.5 ◦ ◦ + + + + 0
(15 TH Normalize by sample thickness 3.4.3 ◦ + + + + 0
(16) AU Scale to absolute units 3.4.4 ◦ + + + + 1
(17) MK Mask dead and/or shadowed pixels 3.3.8 + + + + 0
(18) MS Correct for multiple scatteringa 3.4.8 ◦ − − − − 3
(19) SM Correct for instrumental smearing effectsa 3.4.9 ◦ − − − − 3
(20) — Radial or azimuthal averaging 3.4.10 ◦ 0

a These are more robustly dealt with by smearing the data fitting model rather than desmearing the data.

authoritative information on the image format is not very easy
to obtain. Some of their image formats appears to use an 8-bit
image format (i.e. with per-pixel maximum values of 256),
with a subsequent ‘overflow’ list detailing pixels that have
exceeded this 8-bit limit. Implementation and read-in of these
data is therefore cumbersome, perhaps even unnecessarily
complicated given the alternatives.

In the best case, detector systems adhere to known and
common image formats [44]. Active development is ongoing
for supporting detector data of these and more complicated
multi-chip detectors and instruments in the NeXus format
[94, 99]. The NeXus format itself is based on the very
versatile, portable, well-documented and open HDF5 data
storage format [53]. Such standards will hopefully resolve
some of the challenges related to data ingestion into data
reduction procedures.

3.3.2. Dezingering: DZ. Spurious signals can be detected for
a range of reasons: from external sources such as cosmic rays,
nearby x-ray sources or atmospheric radioactive decay, or
from internal sources such as the employed electronics. These
often appear as spikes or streaks in the detected signal, varying
in location and amount from image to image. Integrating
(e.g. CCD) detectors without energy discrimination are most
heavily affected by these phenomena, whilst photon counting,
energy discriminating detectors often only show a single extra
count (or streak of 1 extra count) upon event occurrence.

Given their potentially high values, zingers can signif-
icantly affect the recorded signal, and should be removed
in CCD-based detectors. The trick for their detection
and subsequent removal is to record multiple images per
measurement and mask all statistically significant differences.
A suitable computational procedure is described by Barna
et al [7] and Nielsen et al [128].

3.3.3. Flat-field correction: FF. No two detection surfaces
(pixels) are exactly the same due to manufacturing tolerances,
slight damage or differences in the underlying electronics, to
name but a few. Therefore, every detector apart from point
detectors (i.e. every spatially resolved detector) has to be
corrected for interpixel sensitivity, with the notable exception
of image plates7. These interpixel sensitivity variations can
easily be on the order of 15% for some detectors [182]. The
correction is straightforward in theory: collect a uniform, high
amount of scattering on the detector, assume the per-pixel
detector response should be identical for this scattering, and
use the relative difference in detected signal between the
pixels as a normalization matrix for future measurements.
In practice, though, uniformly distributing a large number of
photons (of the right energy) on the detector surface can be a
challenge.

7 Image plates (due to their positioning uncertainties during read-out) cannot
be corrected for this effect and it is fortunate that it appears to play a very
minor role in their accuracy [85].
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One solution is to irradiate directly with a low-power
x-ray source placed some distance from the detector, as
discussed in detail by Barna et al [7]. This solution needs
small corrections for area dilation and air absorption, in
addition to a few more detector-specific ones, and needs a
separate check of the uniformity of the source. The advantage
is that it can be tuned to the energy of interest, and that a
sufficient number of photons is easily acquired [146, 41, 59].

Alternatively, doped glasses can be used to obtain a
flat-field image, as suggested by Moy et al [121]. This has
the advantage of reduced complexity in setting up the flat-field
measurement, but may suffer from nonuniform images [7] and
has a reduced photon flux. Some use the uniform scattering
of water as flat-field measurement data, despite water not
scattering uniformly at very small angles (though this can
be corrected for), and the scattering intensity at larger angles
being quite low for obtaining good per-pixel statistics [125].
Similarly, samples with known scattering behaviour can be
used for such purposes [59].

Another solution common in laboratory settings is the use
of radioactive sources (emitters) which can be easily accom-
modated in most instruments [126]. The major drawback of
that solution is the differences between the emitter energy and
the energy used during normal measurements, and a very low
detected count rate necessitating impractically long collection
times for decent flat-field images. The alternative suggested
by Né et al [126] is the image collection during slow and
well-controlled scanning of an emitter over the detector
surface, with the challenge of achieving a homogeneous
exposure.

The alternatives which place the radiation source at
the sample location share one further advantage in case of
detectors using phosphorescent screens. The advantage is
that through placement of the radiating source at the sample
location, one simultaneously corrects for the dependency of
the response of phosphorescent screens to the direction of
incident photons. If this is not done, one might consider
correcting for this effect separately [7, 199].

Given these challenges, it is therefore recommended for
(time-stable) detectors to obtain flat-field images from the
manufacturer who should be equipped to record these. The
corrected intensity Ij,cor for datapoint j can be retrieved from
the input intensity Ij using a flat-field image Fj (which can be
normalized to 1 to avoid large numbers):

Ij,cor =
Ij

Fj
. (2)

If there are uncertainties available when performing this step,
they will propagate as:

σr,j,cor = Ij,cor

√[
σr,j

Ij

]2

+

[
σ(Fj)

Fj

]2

. (3)

3.3.4. Deadtime correction: DT. After arrival of a photon on
a detection surface or in a detection volume, a certain amount
of time is needed for the detector to recover from this event
before a second photon can be detected. This time is called

the ‘dead time’: a photon arriving in this timespan will not
be detected. More precisely, the electronic pulses generated
by the arrival of two near-simultaneous photons will start to
overlap, causing either rejection of both photons due to the
compound pulse being too high (energy rejection), or the two
pulses being counted as one. This is discussed clearly by
Laundy and Collins [107].

This correction can be unnecessary for some of the
modern hybrid detectors at the count-rates they are commonly
subjected to. The PILATUS detector, for example, only shows
a >2% deviation from a linear response at an incident photon
rate of more than 450 000 photons/pixel s−1 [101]. Gas-based
detectors, especially 1D and 2D wire detectors very much
need this correction.

One aspect of this correction that is of high importance
is that when the data uncertainty is calculated based on
counting statistics (i.e. Poisson statistics), these uncertainties
should be calculated from the detected photons, not from the
deadtime-corrected photons. This implies that there is a count
rate characteristic for each detector beyond which the data
accuracy decreases! This phenomenon is evident from Laundy
and Collins [107].

The number of deadtime-corrected counts Ijcor can be
obtained from the detected number of counts Ij collected in
time t by numerically finding a solution for [107]:

Ij = Ij,cor exp(−Ij,corT) (4)

with

T =
τ1 + τ2

t
(5)

where τ1 is the minimum time difference required between
a prior pulse and the current pulse for the current pulse to
be recorded correctly. Similarly, τ2 is the minimum arrival
time difference required between the current pulse and a
subsequent pulse for the current pulse to be recorded correctly.
As pulses follow an asymmetric profile like a log-normal
function, these two times can be different (for a 1 µs pulse
shaping time this can be τ1 = 3.0 µs and τ2 = 2.0 µs [107]).

At this point we can also estimate the uncertainty (stan-
dard deviation) σr,j for the corrected counts through [107]:

σr,j =

[
{(1− Ij,corT)

2Ij}

{
1+ 2 exp

(
−Ij,cor

max(τ1, τ2)

t

)

− 2
(
1+ Ij,corT

)
exp

(
−Ij,corT

)}−1
] 1

2

. (6)

Interestingly, if τ1 and τ2 are known, the true uncertainty σr,j
can be retrieved from the deadtime-corrected values through
insertion of equation (4) into (6), which may be of use in
detector systems where the deadtime correction is performed
by the detector system itself.

3.3.5. Gamma correction: GA. Most non-photon counting
detectors do not necessarily give an output linearly
proportional to the incident amount of radiation. This used
to be especially severe for films, which required accurate
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corrections for each film type [23]. For more modern detection
systems the effect appears small (i.e. on the order of 1%), but
may nevertheless be considered especially when approaching
the limits of the dynamic range [123, 124, 67]. It is relevant for
image plates [118, 29, 126, 8] and may be considered for some
CCD detectors as well [67]. It may even be relevant for some
gas-based photon counting detectors insofar it is not already
accounted for with the deadtime correction [8].

This correction can be applied by characterizing the
detector response for various fluxes of incident radiation,
for example through attenuating monochromatic radiation
using a series of calibrated foils to reduce the incident
flux [67]. Simply collecting radiation for a longer time
may obfuscate the detector response to incident flux with
other time-dependent effects especially for image plates [29],
unless this is explicitly taken into account [67]. Furthermore,
the energy of the incident radiation has to be identical to
the energy used for normal measurements, as the gamma
correction can be energy dependent [85].

One alternative solution to circumvent the need for this
correction is to determine the range of incident radiation
amounts where the detector response is linear, and to stay
within that range. For samples which exhibit scattering
covering a wider dynamic range than thus supported,
attenuators can be devised in the beam path to locally
attenuate the signal [125]. Introducing additional elements
into the beam path may, however, cause scattering or act as
a high-pass energy filter leading to ‘radiation hardening’, and
such modifications should therefore not be applied without
thorough considerations of the consequences.

Lastly, while it cannot be considered a true nonlinearity
correction, for image plates the measured intensity is also a
function of measurement time (i.e. the delay after exposure
before measuring) [126]. Internal decay causes a reduction of
the measurable signal over time, with a fast decay component
(with a half-time on the order of minutes) and a slow
decay component (on the order of hours). Effectively, this
can even cause intensity variations on the order of several
per cent during the read-out of the image plate. A decay
time correction should therefore be considered for accurate
reproduction of intensity, and such a correction is described
amongst others by Hammersley et al [67]. It should be noted
that this time decay is likely also dependent on the energy of
the used x-rays as it is for protons [16].

This correction is applied if the nonlinear behaviour of
the intensity can be expressed as a function of the incident
radiation γ (I):

Ij,cor = γ (Ij). (7)

The relative datapoint uncertainty scales similarly:

σr,j,cor = σr,j
γ (Ij)

Ij
. (8)

3.3.6. Darkcurrent and natural background correction: DC.
There are two factors adding to the detected signal even
without the presence of an x-ray beam, these are the detector
‘dark current’ and the omnipresent natural radiation. While

these are two separate effects, their correction is identical
and can be simultaneously considered. The cause of the
dark current signal depends on the detector. Some detector
electronics add their own ‘pedestal’ bias to prevent negative
voltages entering the analogue-to-digital converter (ADC)
[7, 125], which can be considered a form of dark current.
CCD chips may also exhibit a baseline noise, also known
as ‘read noise’, photomultiplier tubes (PMTs) in image plate
systems detect a small leak current without any incident
photons and ion chambers also detect a small current without
radiation. Natural background radiation furthermore adds a
time-proportional level of noise in any detector [126].

The dark current components are homogeneously dis-
tributed over the entire detector, and can thus (for statistical
purposes) be corrected for by subtraction of a single
value from each detected pixel value. This single value
is a summation of all three dark current components:
a time-independent component, a time-dependent compo-
nent and a flux-dependent component. To elaborate, the
time-independent component would be the base amount
(‘pedestal’)-level, applicable to detectors based on PMTs and
CCDs [39]. Naturally occurring background radiation can be
considered part of the time-dependent component, visible in
every detector. One important note here is that the image
plates start collecting natural radiation from the time of
their last erasure rather than from the start of the measure-
ment [126]. Some detectors may also show a time-dependent
dark current in addition to the natural background [124].
These two components can be easily determined through
evaluation of the total detected signal as a function of
exposure time without an applied x-ray beam. The last
component, the flux-dependent dark current level is a specific
complication encountered in some image-intensifier-based
CCD detectors, and requires the simultaneous determination
of the dark current signal alongside the measured signal
through partial masking of the detection surface with x-ray
absorbent material [143, 125].

This can be expressed mathematically as:

Ij,cor = Ij −

(
Da + Dbt + Dc

(∫
j
Ij

))
(9)

where Da is the time-independent component, Db the time-
dependent factor times the measurement time t, and Dc the
flux-dependent component for those detectors suffering from
that particular complication (determined simultaneously with
the measurement). Image plates furthermore have a natural
decay which means that the time-dependent component may
not be truly linear over large timescales. It is therefore
best practice to determine the dark current contribution
using exposure times similar to the measurement times.
For accurate determination of the dark current contribution
when measurement times are small, the averaging of multiple
exposures on the timescale of the measurement can improve
statistics [125].

As the dark current is ideally pixel-independent, Da,Db
and Dc can be determined to high precision when averaged
over the entire detector. This should render their relative
uncertainties σ(D)/D rather small thus only having a minor
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effect on the intensity uncertainty. The uncertainty should
propagate (assuming Poisson statistics) approximately as:

σr,j,cor

=

√
σ 2

r,j + σ(Da)2 + (tσ(Db))2 + σ

(
Dc

(∫
j
Ij

))2

. (10)

3.3.7. Geometric distortion: GD. Among the more
complicated detector corrections is that of the geometric
distortion, which can be severe for some detectors (in
particular for wire detectors and image-intensifier-based CCD
detectors), small for others (i.e. <1% for fibre-optically
coupled CCD detectors) [124], to non-existent for direct-
detection systems. The electronics and design of image
intensifiers in CCD cameras and electronics of wire detectors
can give rise to pixels being assigned incorrect geometric
positions, leading to geometric distortion [7]. Even image
plate readers can show this effect due to the read-out
mechanics [108], and it therefore seems a necessary correction
for all detectors save those based on direct-detection (e.g. the
PILATUS detector). In order to put the detected pixels back
in their right ‘place’, i.e. in a location corresponding to the
arrival location of the detected photon on the detector surface,
a geometric distortion correction must take place.

The most common method for this is to place a mask
with regularly spaced holes in front of the detector, which
is subsequently irradiated with more-or-less uniform photons
originating from the sample position. This then allows for the
evaluation of where on the detector the photons are observed
versus where the photons actually arrived through the holes in
the mask [108, 185].

These corrections only really can take care of smoothly
varying distortions, and are ill-suited for corrections of abrupt
distortions as those found upon occurrence of discontinuous
shears in fibre-optically coupled detectors [7]. Corrections
for these distortions must be considered separately [35].
Rather than trying to correct the actual image by, for
example, inserting or interpolating pixel values (e.g. [185]),
one good way of dealing with these corrections is to determine
a coordinate look-up table (‘displacement maps’) for each
pixel. These maps can subsequently be used during the data
averaging procedure (see section 3.4.10) to put the detected
datapoints in the right bins [92, 93].

Image plates, besides the small geometric distortion
mentioned above also require a specific correction: one that
corrects for variance in subsequent placements of image
plates. Since it is mechanically challenging to reproducibly
place an image plate to within 50 µm (or approximate grain
size), every image plate may be slightly offset. The variance
in placement for a given image plate placement and read-out
procedure (ideally designed to minimize placement variance)
can be quantified and evaluated for significance of severity.
If necessary, symmetry in the scattering patterns can be
exploited to determine the beam centre of every image. A
procedure for achieving this is described by Le Flanchec
et al [108].

Due to the detector specificity of the required correction
and the relatively complex procedure, the methods for

correcting image distortions are not reproduced here.
Geometric distortions should not affect the datapoint
uncertainties.

3.3.8. Masking of incorrect pixels: MK. In virtually any
detection system there will be ‘broken’ pixels, either pinned to
the maximum or minimum value, or simply giving incorrect
response to the incident radiation. Additionally, pixels masked
by the beamstop or the beamstop holder should be ignored
as well. For masking these, an oft used technique is to
record a scattering pattern of a strong scatterer, after which a
Boolean array can be manually generated, indicating for each
pixel whether it should be masked or not. For space-saving
purposes, this Boolean array can be reduced to a list of pixel
indices to be masked.

This array (or list of pixel indices) can subsequently
be used in the averaging procedure to not consider invalid
pixels in the procedure. Such masking does not affect the
uncertainties.

3.4. Other corrections

There are a range of corrections to be done that are
independent from the type of detector used. These are
corrections for e.g. sample transmission (closely related to
the background subtraction), correction for polarization and
area dilation. Included in these correction is the correction
(or rather the scaling) to go from ‘intensity’ to scattering
cross-section which can later be used to retrieve volume
fractions or number of scatterers to a reasonably good degree
(with an expected accuracy σa/I of about 10%).

3.4.1. Polarization correction: PO. The scattering effect
of photons depends on the polarization of the incident
radiation and the direction of the scattered radiation [168].
This phenomenon causes a slight reduction in intensity.
While this effect is commonly corrected for in wide angle
diffraction studies, it is often considered negligible in
small-angle scattering data correction [141, 14, 145, 128].
When quantified, the correction amounts to nearly 1% for
scattering angles 2θ of about 5◦. This correction applies both
to unpolarized radiation as well as polarized radiation, in the
former the correction is isotropic, and in the latter anisotropic
(as shown in figure 5). Depending on the angular range
collected, the polarization correction may be considered for
a slight increase in accuracy.

The correction factor for 2D detector images is given by
Hura et al [78] as:

Ij,cor = Ij[Pi(1− (sin(ψ) sin(2θ))2)

+ (1− Pi)(1− (cos(ψ) sin(2θ))2)] (11)

where ψ is the azimuthal angle on the detector surface
(defined here clockwise, 0 at 12 o’clock) 2θ the scattering
angle, and Pi the fraction of incident radiation polarized
in the horizontal plane (azimuthal angle of 90◦)8. The

8 A 2D solution more tuned to crystallographic studies is given by
Azaroff [4].
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correction for unpolarized radiation is achieved when Pi =

0.5, most synchrotron beam lines have a Pi ≈ 0.95.9 As
this is a correction between datapoint values, only the
relative uncertainty σr,j is affected similarly to the effect of
polarization on the intensity:

σr,j,cor = σr,j[Pi(1− (sin(ψ) sin(2θ))2)

+ (1− Pi)(1− (cos(ψ) sin(2θ))2)]. (12)

3.4.2. Transmission and flux corrections: TR and FL. Any
material inserted into the beam absorbs a certain amount
of radiation [78, 3]. This affects the amount of background
scattering impinging on the detector as well as the amount of
scattering of the remaining radiation by the sample (differing
slightly depending on the path through the sample as well
as shown in section 3.4.7). As the amount of radiation
scattered by the sample is typically small, the absorption or
transmission factor can be determined by measuring the flux
directly before and after the sample.

There are three commonly applied methods for mea-
suring the sample absorption, one ‘in situ’ method com-
monly found at synchrotrons and two offline methods. At
synchrotrons, so-called ionization chamber detectors can be
installed (usually in air) directly before and after the sample
position. These detectors are very straightforward in their
construction, typically consisting of two electrodes suspended
in air [161, 179, 117]. They are particularly suitable as they
exhibit no parasitic scattering and can be used to monitor
the incident flux as well as the absorption over the duration
of the measurement. Assuming a non-identical but linear
response for both upstream (u) and downstream (d) detectors,
the readings without sample (indicated with subscript 0) and
after sample insertion (subscripted 1) can be used to calculate
the transmission factor Tr through:

Tr =

Id,1
Iu,1

Id,0
Iu,0

=
Id,1Iu,0

Iu,1Id,0
. (13)

It is not always possible to insert ionization chambers,
for example when working with a completely evacuated
instrument. In that case, two alternative solutions can be
applied to measure the beam flux sequentially before and
after insertion of the sample. In one solution, the beamstop is
modified to either: (1) allow for a small fraction of the direct
beam to pass through and be detected by the main detector
(i.e. a ‘semitransparent beamstop’), or (2) where the beamstop
is augmented with a small10 pin-diode measuring the direct
beam flux [120, 45]. The second option is to place a strong
scatterer in the beam downstream from the sample position,
and measure the integrated scattering signal from the strong
scatterer [138]. For the beamstop modification case, the ratio

9 A more flexible description of polarization can be achieved by using the
four Stokes parameters. Work is underway at some facilities to implement
this in data correction procedures.
10 These can even be made very small for microbeam applications as shown
by Englich et al [46].

of the two fluxes (before and after insertion of the sample) is
the transmission factor. In the last case, the ratio of the two in-
tegrated intensities on the detector is the transmission factor:

Tr =
I1

I0
(14)

where I0 is the intensity of the primary beam without
sample, and I1 the intensity of the beam after insertion
(and downstream) of the sample. A transmission factor
correction for highly absorbing samples scattering to wide
angles is discussed in section 3.4.7. The transmission factor is
dependent on the linear absorption coefficient µ and thickness
d of a material through:

Tr = exp (−µd) . (15)

The transmission correction can be applied by dividing
the detected intensity with the transmission factor. Further-
more, the detected intensity is proportional to the incident flux
on the material fs, which can be similarly corrected for:

Ij,cor =
Ij

Trfs
. (16)

The relative intensity uncertainty remains largely
unaffected by this correction (if the background is small
and/or shows little localization), but the absolute uncertainty
is directly related to the uncertainties of the measured
transmission and flux:

σa,cor =
∑

j

Ij,cor

√√√√[ σa∑
j Ij

]2

+

[
σ(Tr)

Tr

]2

+

[
σ(fs)

fs

]2

.

(17)

3.4.3. Time and thickness corrections: TI and TH. The
time and thickness corrections are nearly identical to the
transmission and flux corrections (section 3.4.2) and equally
straightforward: the detected intensity is proportional to the
measurement time11, and the amount of scattered radiation
is proportional to the amount of material in the beam. The
thickness correction is applied to correct for differences in the
amount of material in the beam.

These two corrections are applied through normalization
of the measured intensity with the sample measurement time
ts and thickness ds:

Ij,cor =
Ij

tsds
, (18)

with uncertainty

σa,cor =
∑

j

Ij,cor

√√√√[ σa∑
j Ij

]2

+

[
σ(ts)

ts

]2

+

[
σ(ds)

ds

]2

.

(19)

3.4.4. Absolute intensity correction: AU. Scaling the data to
reflect the materials’ differential scattering cross-section can

11 With the notable exception of image plates which suffer from competitive
decay. This decay should be corrected for before this step as discussed in
section 3.3.5.
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Figure 5. Correction factor for two-dimensional detectors given 95% in-plane polarization (typical reported value for synchrotrons), and no
polarization (i.e. 50% in-plane polarization).

be a great boon to the value of the data. This scaling allows
for the evaluation of the scattering power of the sample in
material specific absolute terms which can lead to e.g. the
determination of the volume fraction of scatterers or their
specific surface area and to check the validity of assumptions
made. Furthermore, it allows for proper scaling between
techniques, and can help distinguish multiple scattering
effects. This scaling gives the scattering profile the units of
scattering probability per unit time, per sample volume, per
incident flux and per solid angle, which if worked out comes
to m−1 sr−1 (though centimetres are sometimes used instead
of metres) [195, 14, 42, 204].

This scaling can be achieved in two ways; either through
direct calibration with samples whose scattering power can
be calculated, or through the use of secondary standards. A
discussion of the benefits and drawbacks of either have been
well explained by Dreiss et al [42]. The most straightforward
method is using a secondary standard such as Lupolen or
calibrated glassy carbon samples [152, 204], as they do
not require detailed knowledge on detector behaviour and
beam profiles, and scatter significantly allowing for rapid
collection of sufficient intensity to perform the calibration.
The scattering of these samples in absolute intensity units is
determined separately, and its calibrated datafile should come
with the sample [195, 204]. By comparing the intensity in
the calibrated datafile with the locally collected intensity, a
calibration factor C can be determined:

C =

(
δ6
δ�

)
st

Ist,cor
(20)

where the subscript st denotes the calibration standard, and
Ist,cor is the measured and corrected intensity and

(
δ6
δ�

)
st is

the known scattering pattern (calibrated datafile) from the
calibration sample. The calibration factor can be determined
by a least-squares fit or linear regression (with least squares
allowing for inclusion of counting statistics and optional flat
background contribution).

The accuracy of this determination depends on a large
amount of uncertainties. Practically, though, an accuracy of

about 10% can be achieved [122]. It may be approximated as:

[
σ(C)

C

]2

=

∑j σ
((
δ6
δ�

)
st,j

)
∑

j

(
δ6
δ�

)
st,j

2

+

[∑
j σa∑
j Ij

]2

. (21)

The approximation is finally applied to the measured data
as:

Ij,cor = IjC. (22)

Whose absolute uncertainty follows:

σa,cor =
∑

j

Ij,cor

√√√√[ σa∑
j Ij

]2

+

[
σ(C)

C

]2

. (23)

3.4.5. Background correction: BG. In any scattering
measurement, it is of great importance to isolate the (coherent)
scattering of the objects under investigation from all other
parasitic scattering contributions such as windows, solvents,
gases, collimators, sample holders and any incoherent
scattering components. For example, this would be the
removal of the scattering of capillaries and solvents from the
scattering pattern of a suspension or solution, or the removal
of instrumental background (scattering from windows, air
spaces, etc) from the scattering pattern collected for a
polymer film. A background measurement thus contains as
many as possible of the components present in the sample
measurement, minus the actual sample. A detailed discussion
of suitable background samples can be found in Brûlet
et al [18].

In most cases, the background measurement should
be performed with as many variables identical to the
sample measurement, and subjected to the same data
corrections12. This means that the background measurement

12 The background thickness correction for measurements where the
background measurement consists of no sample at all (f.ex. backgrounds for
film samples or sheets) is slightly special. The ‘thickness’ of this background
measurement should be set identical to the thickness of the sample in the
sample measurement.
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Figure 6. The need for spherical corrections illustrated for straight
detectors (as opposed to tilted detectors). One unit angle covers a
different number of pixels, which needs to be corrected for.

should be measured for the same amount of time as
the sample measurement. However, in case the detector
behaviour is well characterized and the signal-to-noise ratio
(i.e. the sample-to-background scattering signal) is large,
the sample-to-background measurement time ratio may be
skewed (to favour sample measurement time) in order to
improve the statistics after background subtraction [169, 134].
The correction is applied as:

Ij,cor = Ij − Ij,b (24)

with Ij,b the background measurement intensity for datapoint
j. The uncertainties, both absolute and relative, propagate as
follows:

σr,j,cor =

√
σ 2

r,j + σ
2
r,j,b (25)

σa,cor =

√
σ 2

a + σ
2
a,b. (26)

3.4.6. Correcting for spherical angles: SP. Most detectors
are flat with uniform, square pixels, but we wish to collect
the intensity over a solid angle of a (virtual) sphere. The
projection of the detector pixels on the sphere results in a
difference in solid angle covered by each pixel (illustrated
in figure 6) [14, 7, 108]. Therefore, we need to correct the
intensity for the difference between these areas13.

The correction for this effect achieved by means of a few
geometrical parameters. This correction is given by [14] as:

L2
P

pxpy

LP

L0
(27)

where LP is the distance from the sample to the pixel, L0 the
distance from the sample to the point of normal incidence
(usually identical to the direct beam position except in case
of tilted detectors), and px and py are the sizes of the pixels
in the horizontal and vertical direction, respectively. As it is
unnormalized, this correction factor typically assumes very

13 This is further exacerbated if the detector is tilted with respect to the beam,
and thus has a ‘point of normal incidence’ with respect to the sample which
differs from the direct beam position.

Figure 7. Area dilation correction showing an increasing need for
application of the correction beyond about 5◦.

large values. When normalized to assume a value of 1 at the
point of normal incidence, the correction becomes:

Ij,cor = Ij
L3

P

L3
0

. (28)

Its magnitude is shown in figure 7, and is generally less
than 1% for scattering angles lower than 5◦. It very quickly
becomes more severe beyond those angles.

3.4.7. Sample self-absorption correction: SA. When
scattering occurs in a sample, the scattered radiation has
to travel some distance through the sample. Depending on
the sample geometry and the scattering angle, this scattered
radiation has to travel through more or less material. The
direction-dependent absorption thus occurring can induce an
angle-dependent scattered intensity reduction which is most
severe for scattering to wider angles and for samples with
a high attenuation coefficient [18, 175, 200, 11]. This is
essentially a correction of the transmission factor correction
described in section 3.4.2.

Its correction for plate-like samples to a scattering pattern
takes the form of:

Ij,cor =

Ij
1− T

[
1

cos(2θ)−1
]

ln(T)− 1
cos(2θ) ln(T)

, for 2θ 6= 0

Ij, for 2θ = 0

(29)

which can be expressed in terms of linear absorption
coefficient µ and thickness d as:

Ij,cor =


sIj exp(µd)

− exp(−µd)+ exp (−µd/ cos(2θ))
µd − µd/ cos(2θ)

,

for 2θ 6= 0

Ij, for 2θ = 0

(30)

where 2θ denotes the scattering angle. As the numerator and
denominator of the fraction tend to zero for 2θ = 0, at that
point Ij,cor = Ij must be substituted. This correction is only
valid for plate-like samples, for which it is still straightforward
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Figure 8. Absorption due to sample geometry for a sample for a
range of absorptions.

to derive. For spherical samples and cylindrical samples,
the direction-dependent attenuation becomes much more
complicated [175, 200], and an extra level of difficulty is
added for off-centre beams [11].

Figure 8 shows the magnitude of the correction
depending on the transmission factor and scattering angle.
As previously remarked, the effect is most severe for highly
absorbing samples and wide angles.

As the correction is rather minimal for small-angle
scattering, its effects on the uncertainties are expected equally
negligible. Given the estimated complexity of the uncertainty
propagation in this case, its derivation is here omitted.

3.4.8. Multiple scattering correction: MS. Multiple
scattering occurs when a scattered photon still travelling
through the material undergoes a subsequent scattering event.
As the probability for any photon to scatter (irrespective of
whether it has scattered or not) is proportional to the scattering
cross-section of the material and the amount of sample in
the beam, multiple scattering becomes more dominant for
strongly scattering, thick samples [154, 30, 115, 114]. It
effects a ‘smearing’ of the true scattering profile, which can
significantly affect analyses [24, 30].

When the possibility of multiple scattering exists for a
particular sample measurement (i.e. with a transmission factor
below approximately 1/e and strongly scattering samples) it
is prudent to test whether it is a significant contribution. This
can be performed experimentally by measuring samples with
different thicknesses or by changing the incident wavelength.
If the scattering profile after corrections significantly differ,
chances are that multiple scattering may need to be accounted
for [114]. Alternatively, the multiple scattering effect can
be estimated analytically [154] or using Monte Carlo based
procedures [30, 160].

Like any smearing effect, correcting data (also known as
‘desmearing’) for multiple scattering effects is much more
involved than smearing the model fitting function. When
given the choice, implementing a smearing procedure in the
fitting model rather than desmearing the data is preferred [60].
Correcting for multiple scattering is generally a complex, iter-
ative procedure where the multiple scattering smearing profile
is estimated and removed from the data [114]. It becomes
even more complicated for samples with direction-dependent

sample thicknesses and hence different multiple scattering
probabilities [12, 174]. One avenue for simplifying the
correction and estimation is by approximation of the multiple
scattering effect as mainly consisting of double scattering
[24, 60, 11].

3.4.9. Instrumental smearing effects correction: SM. Be-
sides the smearing effect of the multiple scattering phe-
nomenon, there are more aspects which contribute to a
reduction in definition, or sharpness of the scattering pattern
(graphically explained in figure 9). These are: (a) the
wavelength spread, (b) the beam divergence and (c) the
beam profile at the sample, (d) finite sample thickness
effects, and (e) the finite resolution of the detector due
to detection position sensing limitations [140, 6, 70].
All these aspects effect a smearing or ‘blurring’ of the
observed scattering pattern that can reduce the definition
of sharp features, which in turn may lead to (for example)
an overestimation of polydispersity. This paragraph will
introduce the aforementioned five aspects.

The wavelength spread 1λ
λ

directly affects the smearing
in q-space as it introduces a spectrum rather than a single
value for the wavelength, leading to a distribution Rw(q, 〈q〉)
of q around the mean 〈q〉. This smearing effect by Rw(q, 〈q〉)
is proportional to [140]:

Ism(〈q〉) =
∫
∞

0
R(q, 〈q〉)I(q) dq. (31)

For most pinhole-collimated, crystal-monochromated x-ray
instruments, the wavelength spread, and therefore Rw(q, 〈q〉)
is very small compared to the other resolution-limiting
factors such as collimation effects and detector spread. The
wavelength spread in these systems typically assumes values
smaller than 10−3 and is therefore often not considered [140].
For Bonse–Hart instruments, however, the monochromaticity
is tied to the instrument resolution and its consideration is
therefore a necessity [26, 178, 203].

The smearing effect due to the sample thickness is
similarly very small. This is the smearing effect introduced
by a variation in the sample-to-detector distance due to the
sample radius (as the exact origin of a scattering event may
lie anywhere within the sample). The maximum relative
deviation in q: 1q

q can be easily derived from geometrical
considerations, resulting in a function of the scattering angle
2θ , the mean distance from the sample to the detector L0 and
the sample radius r:

1q

q
= 2−

2

sin θ

√(
L0+rs

L0 tan θ

)2
+ 1

. (32)

Evaluation of the deviation given by equation (32) for typical
values of 2θ,L0 and r (5◦, 1 m and 1 mm, respectively)
shows that the resulting uncertainty in q due to the sample
thickness is only a fraction of a per cent (0.2% for the example
values given). Incidentally, the same equation can be used to
determine the uncertainty in q arising from uncertainties in the
sample-to-detector distance measurement.
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Figure 9. Different smearing contributions affecting the scattering pattern.

Besides the previous two, the incident beam charac-
teristics (in particular its profile and divergence defined by
the collimation) and detector position sensing inaccuracies
also cause a smearing of the detected scattering pattern
[140, 6, 70]. The finite beam size, defined by the collimation,
has a smearing effect similar to the previously discussed
sample thickness effect, where the scattering events are
distributed in space over the entire irradiated sample
cross-section. This leads to a distribution of scattering angles
impinging on each detector position rather than a single value.
This finite beam width effect, with the beam radius denoted as
rb, can be derived in the same way as the sample thickness
effect, leading to:

1q

q
= 2−

2

sin θ

√(
L0

L0 tan θ−rb

)2
+ 1

. (33)

Evaluating this for a variety of configurations shows that this
effect may assume significant values for smaller angles and
large beams. This is one of the aspects limiting the final
resolution of an instrument, along with the beam divergence
and detector position resolution.

The collimation defines both the beam size at the sample
position as well as the divergence of the beam. The divergence
of the beam at the sample position similarly effects an angular
spread 1θ

θ
that smears the definition of q. A good derivation

of this is available in the literature [140, 138]. Lastly, the
finite position sensitivity of the detector introduces yet another
smearing contribution, at minimum defined by the size of the
individual detection elements, but commonly defined by the
point-spread function of the detector [138].

While these beam- and detector-contributions can be
considered separately, the compound smearing contributions
can be directly evaluated as the image of the direct beam on
the detector (with which the ‘true’ scattering convolves) [141].
It has recently been demonstrated that the compound method
produces more accurate results than the separate approach in
practice [38].

These smearing effects are often not considered in
the evaluation or correction of pinhole-collimated x-ray

scattering instruments (if they are considered, they are
usually incorporated as a model smearing rather than a
data desmearing). There are some notable exceptions by
Le Flanchec et al [108] and Stribeck and Nochel [172],
in the latter example it is applied to allow for improved
intercomparability of 2D scattering patterns collected with
differing collimation.

Beam desmearing corrections are more commonly
applied for instruments with line-collimated beams (e.g. in-
struments discussed in sections 2.2.2 and 2.2.3), though
model smearing rather than data desmearing is still recom-
mended [65, 151]. As slit-smeared instruments have existed
as long as small-angle scattering itself, desmearing procedures
are available of many types and vintages. Some notable ones
include Lake [105]; Strobl [173]; Vonk [191]; Glatter [62]
and Singh et al [166]. One commonly implemented iterative
desmearing procedure is described by Lake [105, 188].
The disadvantages of any desmearing procedure are their
tendency to amplify small differences leading to increased
noise levels, and their arbitrary cut-off criterion [173]. The
former disadvantage is partially offset by the improved data
accuracy of the initial data (due to the increased flux of
slit-collimated instruments), and the second can be overcome
through introduction of cut-off criteria [188].

3.4.10. Data binning. At some point in the data
correction procedure for isotropically scattering samples, a
data reduction step is performed, known as ‘integration’,
‘averaging’ or ‘binning’. For isotropically scattering samples,
a reduction in dimensionality of the data usually accompanies
this procedure (e.g. from 2D images to 1D plots), performed
by grouping and averaging pixels with similar scattering angle
q irrespective of their azimuthal angle on the detector (denoted
ψ). For anisotropically scattering samples, pixels with similar
q and ψ can be combined to form a new 2D dataset but with
a reduced number or different distribution of datapoints [135,
132], though some dispense with binning altogether [131].

The advantages of this step are threefold. Firstly, the
data become more manageable, allowing for faster fitting
and improved data visualization. Secondly, the relative data
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uncertainties become smaller for the averaged data. Lastly, the
standard deviation between similar pixels in a group (or bin)
can provide a good estimate for the actual uncertainty on the
average value if this standard deviation exceeds the photon
counting statistics-based estimate propagated until this step14.

More specifically [133]: for radial averaging the many
datapoints Ij collected from each pixel on the detector are
reduced into a small number of q-bins Iqbin before the data
analysis procedures. In this reduction step, each measured
datapoint collected between the bin edges (class limits) qn and
qn+1 is averaged and assumed valid for the mean q̄ = 〈q ∈
[qn, qn+1]〉, i.e.:

Iqbin(q̄) = 〈Ij(q ∈ [qn, qn+1])〉, (34)

with the uncertainty defined as

σr,qbin = max



1
Nqbin

√ ∑
q∈[qn,qn+1]

σ 2
r,j√√√√ 1

Nqbin − 1

∑
q∈[qn,qn+1]

(
Ij − Iqbin

)2 (35)

where the summation is over all datapoints j falling within the
bin edges and Nqbin is the total number of datapoints in the bin.
As previously mentioned and evident from equation (35), the
maximum value is chosen between the propagated uncertainty
and the sample standard deviation in the bin. In other words, if
the sample standard deviation of the pixels in the bin exceeds
the estimate based on the previously propagated uncertainty,
the sample standard deviation is considered a more accurate
estimate. This can be further augmented to never have a
relative uncertainty estimate less than 1% of the intensity, as
it is (even with the most stringent corrections) challenging to
get more accurate than this [78].

There is still a choice to be made in this procedure,
that is the spacing between the bin edges. Normally, this is
chosen either uniform or logarithmically spaced (with more
data points at low values) [80]. However, for data with sharp
features, a more involved choice might be preferred [153, 22].

3.5. The order of corrections for a standard sample

The absolute minimal number of corrections (figure 10) to
apply consist of the normalizations to time, transmission
and thickness and subtraction of the background. This works
reasonably well for strongly scattering samples with low
absorptions, without strong absorbance from the container.
Furthermore it requires a problem-free detector and a stable
x-ray source.

The standard set of corrections are a little more
involved but allow for more flexible experimental conditions
(figure 11). Strongly absorbing samples, samples with low
scattering power and instruments with imperfect detectors

14 The photon counting (Poisson) statistics defines the absolute minimum
possible uncertainty in any counting procedure. It does not consider other
contributors to noise such as the variance between pixel sensitivities or
electronic noise.

Figure 10. Minimum amount of corrections suitable for samples
without a strongly absorbing container, with a stable x-ray beam, a
good detector and low dark current and/or natural background.

(CCD’s, image plates and wire chambers) are supported
by this scheme. Samples contained in a strongly scattering
and/or absorbing container, however, are not supported by
this scheme. Its application to such samples would lead
to an incorrect estimation of the absolute scattering power
from such samples. In case the sample container shows
appreciable scattering, this scheme furthermore leads to
incorrect background subtraction.

The corrections described above work reasonably well for
most samples. There is, however, one more level of difficulty
in the search for perfection when working with samples
in containers (e.g. capillaries, or other container-sample-
container sandwiches). The challenge with these is that the
incident radiation first encounters an amount of absorbing
and scattering container material, then passes through the
absorbing and scattering sample, upon which it again passes
through an amount of absorbing and scattering container
material15.

In advanced corrections, suitable for most samples
imaginable, one would need to apply to the scattering image.

(i) A background correction for the scattering from
the upstream container wall, corrected for direction-

15 With yet another challenge created by capillaries, as their diameter and
wall thickness is not all that well defined, and an off-centred beam would
make direction-dependent absorption corrections unwieldy.
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Figure 11. Standard sequence of corrections suitable for samples without a strongly absorbing container.

dependent absorption by the upstream container wall, the
sample as well as the downstream container wall.

(ii) Corrections for the actual sample thickness, incident flux
reduced by the absorption of the first container wall and
direction-dependent absorption by both the sample as
well as the downstream container wall.

(iii) A background correction for the scattering (now from a
primary beam reduced in intensity by the absorption from
the upstream container wall and the sample) from the
downstream container wall and its direction-dependent
absorption.

Such a scheme would require the splitting of scattering
intensity of the sample container and a non-self-scattering
direction-dependent absorption correction. Work in that
direction has been shown by (amongst others) Brûlet
et al [18].

3.6. The development of corrected data storage standards

Besides efforts to store the raw collected data in archival
formats currently underway at some of the larger institutions,
there has also been some development in storing the data
obtained after application of all these corrections in a
universal (archival) format. These can be separated into two

categories: the storage of integrated data (1D), and the storage
of data of higher dimensionality (2D or more). Both formats
should allow for the storage of accompanying metadata.

The opinions on the storage type of corrected (and
integrated) 1D small-angle scattering data is roughly divided
into two factions. The most common format for exchange and
storage of such data is as a human-readable file (in either
ASCII or UTF-8 encoding) consisting of a header containing
the metadata, and the body containing the corrected data
commonly in scattering vector Q, scattering cross-section I
and the estimated uncertainty on the latter [86]. The benefits
of this storage method is that it is easily understood and
accepted by users and programs alike. It is furthermore one of
the easiest formats to write for the scientist-cum-programmer.
The disadvantage is that it is an ill-defined, ad hoc standard,
which may or may not contain all essential information in the
header. While the sasCIF effort set out to alleviate some of
these issues, its current state is unknown [113].

The second corrected 1D data storage type has recently
emerged from a lengthy development process in collaboration
with the small-angle scattering community. This ‘canSAS 1D’
format is an XML-based data storage format, acting as a
flexible but well-defined container that can accommodate a
large variety of data [20]. The disadvantage is the necessity
to write in an XML-based format which is not overly
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complicated but requires a modicum of effort to implement.
The adoption of this standard is slow but gradual.

The storage of corrected multidimensional (2D and
higher) SAS data is surprisingly less bifurcated. The general
consensus in the community is that simple image file types
are insufficient to encapsulate all the details of the corrected
data, and that a hierarchical data format such as that provided
by the HDF5 format is required [53]. Building upon the
base HDF5 structure is the NeXus format for storing (raw)
instrument data at large facilities [94, 99], and building upon
that (or at least offering compatibility) is the SAS-specific
‘canSAS2012’ format [20]. This allows for the storage of
any data, of which a subset is required data (in particular
the scattering intensity and orthogonal scattering vectors). As
there are but very few programs available capable of analysing
2D data, its adoption rate cannot be estimated.

4. What’s next? A few words on data fitting

After correction of the collected data to obtain the scattering
from the substance of interest (and only that substance),
the data can be subjected to data analysis to extract
relevant physical parameters. Such data analyses are heavily
dependent on the material and structure in question, and
very few general paths to answers exist. However, similar
structures and materials often require similar data analysis
pathways, so that these may be used as guidance to develop
the analysis methodology for a novel material. It should here
be noted that the examples given in this section are written
based on experiences of the application of SAXS in materials
science. Given the lack of similar experience in the field
of biological scattering, this paragraph does not purport to
apply to the increasingly prominent field of scattering from
biological systems. While parallels may be drawn, the reader
is rather referred to other excellent material pertaining to the
fitting of data from biological scattering experiments such as
Svergun and Koch [176]; Koch et al [96].

In the early days—without the convenience of near-
obscene amounts of computing power—data analysis mainly
revolved around severe assumptions allowing for data
linearization. Examples of these are still found, with their
linearized data often denoted as ‘Guinier plots’ [66] (also
developed by several others [50]), ‘Debye–Büche plots’ [34],
‘Kratky plots’ [63] and ‘Porod plots’ [63], to name but a few.
While these linearizations may have some value for rough
evaluation of data, they should never be relied upon as the final
analysis. One of the major drawbacks of linearization of data
is the visual skewing of the datapoint weights, especially if
no data uncertainty information is available, the linearization
will put a heavy emphasis on either the initial (‘Guinier’)
or the latter datapoints (‘Porod’), and forcibly effect a linear
interrelationship. They furthermore often rely on data which
either have a high probability of distortion (such as the Guinier
plot, which can be easily affected by structure factor effects,
smearing or parasitic scattering) or a very low signal-to-noise
ratio (such as the Porod plot, which is highly reliant on
accurate background subtraction and minimization of the
instrumental scattering). If and when these plots are exploited

to obtain numbers, ensure that the related fits are performed
on the original data, not on the linearized data. The use of
modernized variants is recommended, which are available for
some of the aforementioned relationships. These modernized
variants may be capable of fitting an extended region of
data [9, 68].

A much more appropriate data fitting methodology came
about following the spread of computers. Least-squares fitting
of data to appropriate models can deliver better quality results
from data. If the data are complete with accurate uncertainty
estimates, models can be evaluated on their descriptive ability
and over-fitting can be prevented. A good treatise on this
methodology is given by Pedersen [137]. These fitting meth-
ods typically consist of a combination of functions describing
each of the three previously described morphological aspects
(see section 1.1): (1) a ‘form factor’ function describing
the elementary scatterer shape (the intraparticle scattering
contribution), (2) a size distribution function descriptive
of the dispersity in size of the elementary scatterers, and
(3) a ‘structure factor’ which describes the interparticle
scattering contribution. While more flexible than their
predecessors (the linearized approximations), these models do
require assumptions to be made on all three morphological
aspects (see section 1.1). For example, work by Abecassis
et al [1] assumes diluteness (i.e. a uniform ‘structure factor’
contribution equalling 1), a Gaussian-shaped size distribution
of scatterers, and a spherical shape for the scatterers.

As the assumption of two of the morphological aspects
fixes the third to a single unique solution, the most modern
data analysis methods revolve around the form-free retrieval
of the unassumed aspect. When possible, these methods
should be preferred as they reduce the number of assumptions
made, and may be more straightforward to fully describe the
data with, and may be easier to justify the assumptions of
(as only two, not three assumptions have to be justified). As
several of these methods have been mentioned in section 1.1,
they are not repeated here.

Whichever route is chosen for analysis, there are a few
data analysis pitfalls to be wary of:

• Data linearization. As noted by others, data linearization
has become unnecessary in current-day analyses [171].
They can be used as a quick evaluation of the data, but their
use as a final recourse should be discouraged. In particular
the actual graphical analysis of linearized data is a practice
that should be retired. The most extreme cases, where the
linearized data are not linear yet still subjected to graphical
analyses, are occasionally encountered [31, 193]. When
linearizations are used to extract parameters, they should at
least exhibit a linear region (as reiterated by Porod [144]).

• Uniqueness ‘it fits, so it must be true’. As indicated
in section 1.1, there are a large number of solutions
that would fit a given scattering pattern, necessitating
assumptions for two of the three morphological aspects
of packing, polydispersity and shape. The assumptions
should ideally be supported with supplementary techniques
such as microscopy or porosimetry, or from fundamental
considerations of the emergence of the scatterers (as
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expressly stated by Evrard and Pusztai [47]). In standard
least-squares fitting procedures, however, assumptions
have to be made on all three aspects which often leads
to imperfect descriptions of the scattering data. It may
then transpire that, once a combination of aspects has
been found that fits the data, it is thought that these
must be the correct aspects as they describe the data
(a form of circular reasoning similar to the logical
fallacy of ‘begging the question’). In other words, quoting
Dr J Ilavsky: ‘The fact that A model fits your data is
NOT proof that it is THE appropriate model’. While this
fallacy is not always clearly indicated, some papers do
indicate that the success of a particular structural model
to describe the data is evidence for its validity [183, 130,
116]. As mentioned, the choice of any particular model
should be supported by complementary information from
other techniques.
• Lack of uncertainties and overly optimistic fits. Uncer-

tainties allow for the weighting of the data to their
uncertainty, so that accurate datapoints weigh more heavily
in least-squares optimization than datapoints with large
uncertainties. Furthermore, the provision of uncertainties
allows for determination of a goodness of fit value which
indicates whether or not the model fits the data (on average)
to within the uncertainty of the data [137, 133]. A lack
of uncertainties does not allow any further evaluation
of a model than an estimation by eye, whose analysis
capabilities are easily swayed by the choice of axes
and datapoint size. Coupled with a modicum of ‘wishful
thinking’, this may lead to overly optimistic fits that only
coarsely describe the data. Such fits still provide structural
parameters, but their veracity is dubious. An example of
optimistic data fitting is given by [194], with poor fits to
data with unknown uncertainties. Fortunately, their results
appear to agree with TEM data.
• Unsuitable range. A scattering pattern is metrologically

limited to a finite angular range with equally limited
angular steps. It can be shown that the smallest measurable
feature is closely related to the largest measurable angle
through Rmin ≈ π/max(q) [133]. The largest measurable
feature is ultimately limited to the angular divergence
of the incident beam (as can be easily derived from
considerations of the Bonse–Hart-type diffractometer). It
can be approximated as Rmax ≈ π/w, where w is the width
of the beam profile on the detector in q. It will in most
cases be further limited by the smallest step size in q of the
detection system. When the determined structural features
from data analysis contain information on sizes beyond
these limits, a check for their evidence in the measured data
must be made.

Through recognition of these pitfalls as well as a
thorough understanding of the limitations and applicability of
the applied models, reliable data analysis may be achieved.
To aid the process of fitting of data, many software packages
have become available over time, a few of which should
be considered. Commonly used packages (for non-biological
systems) are Irena [83], SASfit [97, 98] and Scatter [52].

There is furthermore a large set of tools available in the
ATSAS package [142]. To ease the troubles of software
installation, web-based analysis tools have recently become
available such as for the ATSAS package and a Bayesian
inverse Fourier transform routine by Hansen [69].

5. Conclusions

The improvements in the small-angle scattering instrumenta-
tion have recently enabled easy collection of data from a large
variety of ex situ and in situ studies. This data theoretically
contains a wealth of information on the nanostructure in the
sample, the scope of which is best illustrated by the (rapidly
increasing) number of publications applying small-angle
scattering to a great number of fields. Its elucidative power
thus exemplified, it is time to ensure that the data that form
the basis of these interpretations are of the highest quality, so
that the conclusions can be sound and authoritative.

It is the author’s hope that the comprehensive set of data
corrections provided herein (with consistent equations for the
correction as well as the uncertainty propagation) can be a
step towards this goal. While most corrections have details
that have necessarily been left out, the information given
may provide the insight required to determine which of the
corrections are required, at what stage, to what accuracy and
at what cost of programmatical complexity.

The casual small-angle scattering user should expect to
get accurate data (subjected to the most stringent corrections)
from the instrument responsible, and should never have to
implement corrections. Ideally, the user would also be able
to confer with a data analysis expert on the best analysis
methodology to apply. If and when this comes to pass, it
should never be forgotten that underneath all the gloss lies an
instrument made from common nuts and bolts, that data are
trimmed and adjusted to remove—as much as possible—the
nuts and bolts from the equation, and that in the nuts and bolts
lie the limitations of the technique. Understanding of the nuts
and bolts, the corrections, the analyses and their limitations,
is key to understanding the final results that pop out when the
machine goes ‘Ping!’.
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Appendix. Measurement checklist

For the reduction and correction algorithms, one has to ensure
the following is known: the geometric information:

• The sample-to-detector distance.
• The wavelength and its expected degree of monochro-

maticity. If the photon energy E is supplied in units of
keV, this can be converted to Ångström (1 Å = 10−10 m)
through λ (Å) = 12.398/E (keV) (conversion factor from
the 2002 NIST CODATA database).
• The position of the direct beam on the detector (in pixels).
• The point of normal incidence in pixels for tilted detectors

(i.e. not mounted perpendicular to the direct beam).
• The collimator sizes, types and distances between the

elements (for publication and check for maximum
transversal coherence length).

The detector information:

• The detector name.
• The number of pixels in the horizontal and vertical

directions.
• The size of the individual detector pixels in horizontal and

vertical directions (in m).
• The detector file data type (f.ex. 16-bit unsigned integers).
• The detector file endianness.
• The required image transformation to transform the

detector output image to the laboratory frame of reference.
• The detector rotation offset in case of a detector rotated

with an arbitrary number of degrees.

The correction information:

• The filename of the mask image with the masked pixels.
• The mask acceptance window for valid pixels (analogue

to a bandpass filter with a low-intensity cut-off and a
high-intensity cut-off).
• The flat-field image filename (if applicable).
• The darkcurrent components (time-independent, time-

dependent and flux-dependent).
• Details on the gamma correction, or information on the

region of linearity (and the maximum deviation from this
linearity).
• The detector geometric distortion look-up table (if

applicable).
• The absolute intensity standard sample identifier.
• The absolute intensity calibration factor.
• Details on the polarization of the beam.

Note the ion chamber and pin-diode amplifier settings
(and readings for a ‘normal’ measurement without a sample
in the beam) for troubleshooting ease and transmission
calculation. Also ask for motor movement limits and
positioning accuracy. Lastly, write down anything that appears
to be valuable information during the measurement session
(this naturally includes everything the instrument responsible
tells you).

Finally, check if all of the beamline computers are set to
the same time and date, and that these are correct.

A.1. The user should measure the following

A.1.1. Transmission measurement. For each measurement
(indeed, each datafile), the average transmission factor for the
duration of the measurement has to be calculated (e.g. for
correct background subtraction). The methods for this have
been given before in section 3.4.2. The on-line measurement
techniques allow for constant collection of the incident beam
flux as well as the transmission factor during the measurement
(often with a frequency of several Hertz), which should also
be stored. Deviations in the transmission factor during the
measurement are a good indication of sample instability or
motion.

A.1.2. Background measurement. The background correc-
tions have been discussed in detail in section 3.4.5. Repeat
the background measurement for each change in geometrical
configuration or change of solvent or capillary type and size.

A.1.3. Sample measurement. The actual sample mea-
surement should be measured long enough for collection
of sufficiently accurate intensities, and should be measured
multiple times in sequence to check for sample instability (and
possible dezingering). Multiple samples of the same material
should be measured to determine the statistical uncertainty of
the physical parameters resulting from the eventual pattern
analysis. For dynamic systems this is not always possible,
but repeated runs of the same dynamic system should provide
some insights on the final uncertainties.

A.1.4. Darkcurrent measurement. If the details of the
dark current components are not known (see section 3.3.6),
measure a new darkcurrent image (a measurement with the
beam shutter closed) in case a CCD or CMOS detector is
used, for each measurement duration in your measurement
repertoire. Since the darkcurrent images often have a
time-dependent and a time-independent component, it is
necessary to measure the darkcurrent images for the same time
as the actual sample measurement.

Thus, the user should determine for each sample:

• The sample name (for logging).
• The sample filename.
• The sample measurement duration.
• The sample transmission factor.
• The sample thickness (thickness in the direction and

location of the direct beam).
• The incident flux onto the sample.
• Remarkable aspects regarding the sample.
• The relevant background name (identifier for logging).
• The relevant background filename (all information

collected for the sample (flux, transmission, etc) should
also be collected for the background measurement).
• When using image plates, the times of: the last erasure, the

start of exposure, the end of exposure, the start of read-out
and the end of the read-out procedure.
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[18] Brûlet A, Lairez D, Lapp A and Cotton J P 2007 J. Appl.

Crystallogr. 40 165–77
[19] Campbell M 2011 Nucl. Instrum. Methods A 633 S1–10
[20] canSAS 2013 Collective action for nomadic small angle

scatterers website http://cansas.org/
[21] Carpenter R W, Bentley J and Kenik E A 1978 J. Appl.

Crystallogr. 11 564–8
[22] Cervellino A, Giannini C and Guagliardi A 2006 J. Comput.

Chem. 27 995–1008
[23] Chantler C T 1993 Appl. Opt. 32 2371–97
[24] Chonacky N J and Beeman W W 1969 Acta Crystallogr. A

25 564–8
[25] Chu B and Hsiao B S 2001 Chem. Rev. 101 1727–61
[26] Chu B, Li Y and Gao T 1992 Rev. Sci. Instrum. 63 4128
[27] Chu B and Liu T 2000 J. Nanopart. Res. 2 29–41
[28] Ciccariello S and Riello P 2007 J. Appl. Crystallogr.

40 282–9
[29] Cookson D J 1998 J. Synchrotron Radiat. 5 1375–82
[30] Copley J R D 1988 J. Appl. Crystallogr. 21 639–44
[31] Das N C, Hikosaka M, Okada K, Toda A and Inoue K 2005

J. Chem. Phys. 123 204906
[32] De Kruif C G, Briels W J, May R P and Vrij A 1988

Langmuir 4 668–76
[33] De Moor P P E A, Beelen T P M and Van Santen R A 1999

J. Phys. Chem. B 103 1639–50
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