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Abstract
We investigate the existence of several (anti-)ferromagnetic phases in the diluted ferromagnetic
Kondo-lattice model, i.e. ferromagnetic coupling of local moment and electron spin. To do this
we use a coherent potential approximation (CPA) with a dynamical alloy analogy. For the CPA
we need effective potentials, which we obtain first from a mean-field approximation. To
improve this treatment we use in the next step a more appropriate moment conserving
decoupling approach and compare the two methods. The different magnetic phases are modeled
by defining two magnetic sub-lattices. As a result we present zero-temperature phase diagrams
according to the important model parameters and different dilutions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In solid state physics, magnetism is one of the most discussed
phenomena. Especially for spintronic devices, which use in
addition to the charge the spin of the electrons, it is necessary
to understand the magnetism of highly correlated materials.
One class of materials that could be used for spintronics is
that of the diluted magnetic semiconductors (DMS) [1–4].
These consist of semiconductors as a host material in which
small amounts of magnetically active atoms are deposited.
The ambition is that the resulting material should have the
properties of a semiconductor and be magnetic too. But the
mixture of materials can also destroy one or both qualities.

To describe DMS theoretically several approaches are
used. Much work is carried out based on ab initio
calculations [5–9]. These calculations can give material
specific information and therefore show the chemical origin
of differences between various semiconductors. In addition
the exchange mechanism is usually described by a model
Hamiltonian. It lies in the nature of a model to simplify the
actually appearing physical processes and to concentrate on
the most important mechanism occurring in a certain material.
Thus diverse models are used to describe different DMS. These
include, e.g., the double exchange [6], the superexchange [10]
and/or the Kondo-lattice model (KLM) [11–13].

Since the KLM is widely used for the description of
DMS, we want to discuss its possible magnetic ground states.

In doing this we want to compare the internal energy of
different states. This, of course, implies a predetermination
of those states. Besides the fully ordered ferromagnetic and
the completely disordered paramagnetic states, regarding the
local moments, there can be, e.g., several antiferromagnetic
states, spin-canted ones, spirals, spin-density waves or even
spin-glass phases. All of them have been found to be ground
states in specific models or parameter regions [14–16]. Since
a complete description of those states is not possible in our
model we will focus on five important types of possible ground
states. This should still show some general trends of the phase
diagram of the diluted KLM. Zero-temperature magnetic phase
diagrams have already been calculated for the concentrated
KLM [17–20], but, to our knowledge, not for the diluted one.

This work is organized as follows: first we show which
magnetic phases are investigated in this paper and how they are
described by a definition of magnetic sub-lattices. Then we use
an equation of motion approach to get approximate solutions
of the many-body problem of the Kondo-lattice model. This
gives us effective potentials which we can include in a coherent
potential approximation (CPA). After that we are able to
calculate the internal energy of the single magnetic phases and
present phase diagrams for different concentrations. The origin
of these phases is discussed by means of quasiparticle density
of states. Finally we summarize this work and give a short
outlook to future work.
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Figure 1. The magnetic phases considered in this work.

2. Model and theory

We want to investigate which type of magnetic order is present
in diluted magnetic systems at zero temperature. In our work
the magnetic component is described by a KLM with a positive
coupling J , commonly known as the ferromagnetic Kondo-
lattice model (FKLM) [21, 22], although the notion may be
considered as somewhat misleading. Since the carriers in
this model study are electrons, this positive sign of J is
equivalent to a negative one in the hole picture [23] which is
usually assumed for DMS. The FKLM is characterized by an
interaction between itinerant electrons of spin σ i and localized
moments Si . Its Hamiltonian reads

H = Hs + Hsd = t
∑

〈i j〉σ
c+

iσ c jσ − J
∑

i

xi Si · σ i . (1)

Due to the interaction part Hsd it is energetically favorable
when the electron and local moment spins on the same site
Ri align parallel for positive J . The next-neighbor hopping
t of the itinerant electrons leads to an indirect coupling of the
local moments on different sites. For our purposes it is better to
represent the spin of the electrons by their creators/annihilators
c(+)

iσ via σ i = 1
2

∑
σσ ′ c+

iσ σ̂ σσ ′ciσ ′ , where σ̂ is the vector of the
three Pauli matrices. When we write down the scalar product
Si · σ i explicitly we get

H = t
∑

〈i j〉σ
c+

iσ c jσ − J

2

∑

iσ

xi
(
zσ Sz

i c+
iσ ciσ + Sσ

i c+
i−σ ciσ

)
. (2)

Sz
i is the z-component of the Si and Sσ

i = Sx
i + zσ iSy

i , with
zσ = δσ↑ − δσ↓, are the ladder operators. To take into
account disorder we use a site dependent parameter xi = 0, 1
which turns the interaction on or off. The sum over these
parameters is fixed by the given concentration c = 1

N

∑
i xi

of the magnetic atoms.
To include antiferromagnetic phases we have to divide

the lattice into sub-lattices. In this work we only consider
(anti-)ferromagnetic phases which can be divided into
two magnetic sub-lattices (cf figure 1). Within each
sub-lattice we can define a sub-lattice magnetization,
where the magnetizations of the two sub-lattices for the
antiferromagnetic phases are antiparallel to each other. We
assume a ferromagnetically saturated sub-lattice magnetization
at T = 0. Even though it is known that these Neel states are
not the ground states of the model, due to spin fluctuations,
they are energetically close to the real ground states, especially
for large spins. To take the sub-lattice formulation into account

we change the Hamiltonian (2) to

H =
∑

〈i, j〉σαβ

tαβ

i j c+
iασ c jβσ − J

2

∑

iσα

xiα(zσ Sz
iαc+

iσαciσα

+ Sσ
iαc+

i−σαciσα). (3)

The lattice sites Ri , R j are now within a magnetic sub-lattice
and are shifted by a primitive translation vector rα according
to the specific sub-lattice. Since we still have next-neighbor
hopping in the chemical lattice the hopping within each sub-
lattice is constricted. For example the next-neighbors of the
magnetic and the chemical lattice in the a-type phase are only
the same in, e.g., xy-planes. Thus the intra-lattice hopping
tαα
i j is only two-dimensional. The hopping in the z-direction

leads to a hybridization of the two sub-lattices. Fourier-
transformation of the hoppings yields the dispersion of the free
system and can be written for the a-type AFM as

εαα(k) = ε−α−α(k) = W

6
(cos(akx) + cos(aky)), (4)

εα−α(k) = ε−αα(k) = W

6
cos(akz), (5)

where W = 12t is the free bandwidth of the bulk system and a
is the lattice constant. For the c-type the intra-lattice hopping
is one-dimensional and in the g-type there is no hopping within
the magnetic lattice.

The ferromagnetic phase needs no definition of sub-
lattices, of course. But this could be also done artificially
by choosing one of the lattice decompositions of the
antiferromagnetic phases. The sub-lattice magnetizations are
now parallel (〈Siα〉 = 〈Siα′ 〉) to each other. No matter which
decomposition we choose, we obtain the same results as for
the non-decomposed case. This is a strong confirmation of the
validity of the sub-lattice method.

2.1. Internal energy

The internal energy U of the FKLM at T = 0 is given by
the ground state expectation value of the Hamiltonian (3). A
straightforward calculation using the spectral theorem then
shows that U can be calculated from the retarded local
electronic Green’s function (GF) (Gαβ

i jσ (E) = 〈〈ciσα; c+
jσβ〉〉

E
):

U = 〈H 〉 =
∑

iσα

∫ ∞

−∞
E f−(E)

(
− 1

π
Im Gαα

iiσ (E)

)
dE, (6)

where f−(E) denotes the Fermi function. Until now this is an
exact formula, but since (3) defines a complicated many-body
problem approximations in calculating the electronic-GF have
to be accepted. Therefore we come now to the discussion of
this point.
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2.2. Treatment of the many-body problem

Our starting point is the equation of motion (EOM) of the
electronic-GF:
∑

lα′′
(Eδαα′′

il − tαα′′
il )Gα′′α′

l jσ (E)

= δαα′
i j − xi

J

2

(
zσ I ααα′

ii jσ (E) + Fααα′
ii jσ (E)

)
, (7)

with Ising-GF

I ααα′
ik jσ (E) = 〈〈Sz

iαckσα; c+
jσα′ 〉〉 (8)

and spin-flip-GF (SF-GF)

Fααα′
ik jσ (E) = 〈〈S−σ

iα ck−σα; c+
jσα′ 〉〉. (9)

The main idea for construction of the phase diagram is to
assume certain configurations for the local moment system
and then to compare their respective internal energies. Under
the assumption of saturation the Ising-GF can be decoupled
directly: zσ 〈〈Sz

iαciσα; c+
jσα′ 〉〉 → zσ SGαα′

i jσ (E). In [19] we have
shown that the influence of the SF-GF on the ground state
phase diagram is small in the case of a system without dilution,
at least if we only consider phases which are ferromagnetically
saturated in each sub-lattice. In a first attempt to solve (7) we
thus neglect the SF-GF, arriving at

∑

lα′′

((
E + xi zαzσ

J

2
S

)
δαα′′

il − tαα′′
il

)
Gα′′α′

l jσ (MF)(E) = δαα′
i j .

(10)
We will call this solution the T = 0 mean-field (MF) solution.

To investigate the influences of spin-flip processes we
will also perform a moment conserving decoupling approach
(MCDA) as in [24]. One advantage of this method is that we
are not restricted to ferromagnetic saturation within the sub-
lattices. Thus we can also specify the paramagnetic phase by
setting 〈Sz

i 〉 = 0. We formally define a self-energy in (7) which
reads as
∑

lα′′
(Eδαα′′

il − tαα′′
il )Gα′′α′

l jσ (E) = δαα′
i jσ + 〈〈[ciσα, Hsd]−; c+

jσα′ 〉〉

= δαα′
i jσ + xi

∑

lα′′
Mαα′′

ilσ (E)Gα′′α′
l jσ (E). (11)

The self-energy will play the role of a random potential later
on, but we will first focus on a concentrated lattice (xi = 1∀i )
to derive the formula for this self-energy. We assume Mαα′′

ilσ (E)

to be local which will not give rise to any contradiction in our
treatment [24]. Thus we set Mαα′′

ilσ (E) = Mσα(E)δαα′′
il and

have the simplified EOM of the concentrated lattice
∑

lα′′
((E − Mασ (E))δαα′′

il − tαα′′
il )Gα′′α′

l jσ (E) = δαα′
i j . (12)

When we compare (7) and (11) we find a relation of the self-
energy and the higher Green’s functions

Mασ (E)Gαα′
i jσ (E) = − J

2
(zσ I ααα′

ii jσ (E) + Fααα′
ii jσ (E))

= − J

2

(
zσ

〈
Sz

iα

〉
Gαα′

i jσ (E) + zσ �ααα′
ii jσ (E) + Fααα′

ii jσ (E)
)

, (13)

with the reduced Ising function �ααα′
ii jσ (E) = I ααα′

ii jσ (E) −
〈Sz

iα〉Gαα′
i jσ (E) = 〈〈δSz

i ciσα; c+
jασ ′ 〉〉. Furthermore, we read

off from (11) a formal correlation between self-energy and
commutator

[ciσα, Hsd] −→ Mασ (E)ciσα, (14)

being rigorous, of course, only within the respective Green’s
functions. Now we write down the EOM for the higher GFs
∑

lα′′
(Eδαα′′

kl − tαα′′
kl )Fαα′′α′

il jσ (E) = 〈〈[S−σ
iα , Hsd]−ckα−σ ; c+

jα′σ 〉〉

+ 〈〈S−σ
iα [ckα−σ , Hsd]−; c+

jα′σ 〉〉, (15)
∑

lα′′
(Eδαα′′

kl − tαα′′
kl )�αα′′α′

il jσ (E) = 〈〈[δSz
iα, Hsd]−ckασ ; c+

jα′σ 〉〉

+ 〈〈δSz
iα [ckασ , Hsd]−; c+

jα′σ 〉〉. (16)

We will perform different treatments of the non-local (i 
= k)
and the local (i = k) terms in these equations. Let us
start with the non-local ones. It has been shown in [24]
that the commutators containing a spin operator are connected
to magnon energies. These are typically several orders of
magnitude smaller than the electron energy. Thus we neglect
these commutators. For the other ones we assume that we can
replace them by the formal expression (14).

This procedure is, however, inappropriate for the local
terms due to the intra-atomic interaction between the electron
and the localized spin on the same lattice site. In this case we
consider the commutators explicitly. Equations (15) and (16)
now read
∑

lα′′
((E − M−σα(E))δαα′′

kl − tαα′′
kl )Fαα′′α′

il jσ (E)

= δαα′
ik (−M−σα(E)Fααα′

ii jσ (E)

+ 〈〈[S−σ
iα ci−σα, Hsd]−; c+

jσα′ 〉〉), (17)
∑

lα′′
((E − Mσα(E))δαα′′

kl − tαα′′
kl )�αα′′α′

il jσ (E)

= δαα′
ik (−Mσα(E)�ααα′

ii jσ (E)

+ 〈〈[δSz
iαciσα, Hsd]−; c+

jσα′ 〉〉), (18)

where we avoided double counting of the self-energy for
the local terms by subtracting it on the right-hand side.
Multiplying the according equation by

∑
kα Gα′α

ik±σ (E) leads
with (12) to

Fααα′
ii jσ (E) = Gαα

ii−σ (E)(−M−σα(E)Fααα′
ii jσ (E)

+ 〈〈[S−σ
iα ci−σα, Hsd]−; c+

jσα′ 〉〉), (19)

�ααα′
ii jσ (E) = Gαα

iiσ (E)(−Mσα(E)�ααα′
ii jσ (E)

+ 〈〈[δSz
iαciσα, Hsd]−; c+

jσα′ 〉〉). (20)

The remaining commutators create various Green’s functions.
In addition to the known ones we get four higher GFs

Fαα′(1)
iii jσ (E) = 〈〈S−σ

iα Sz
iαci−σα; c+

jσα′ 〉〉,

Fαα′(2)
iii jσ (E) = 〈〈δ(S−σ

iα Sσ
iα)ciσα; c+

jσα′ 〉〉,

Fαα′(3)
iiii jσ (E) = 〈〈S−σ

iα niσαci−σα; c+
jσα′ 〉〉,

3



J. Phys.: Condens. Matter 23 (2011) 276006 M Stier et al

Fαα′(4)
i i i i jσ (E) = 〈〈Sz

iαni−σαciσα; c+
jσα′ 〉〉.

In ferromagnetic saturation we can express two of them
exactly:

Fαα′(1)
i i i jσ (E) = (

S − 1
2 + 1

2 zσ

)
Fααα′

ii jσ (E), (21)

Fαα′(2)
iii jσ (E) = 0. (22)

This cannot be done for Fαα′(3,4)
iiii jσ (E) but we know that in

the limiting case of an empty conduction band both functions
vanish and for a completely filled band we find

Fαα′(3)

iiii jσ (E) = Fααα′
ii jσ (E), (23)

Fαα′(4)
i i i i jσ (E) = �ααα′

ii jσ (E) + 〈
Sz

i

〉
Gαα′

i jσ (E). (24)

Thus we make the ansatz that these functions can be expressed
for all electron densities n and magnetizations 〈Sz〉 by the
linear combinations

Fαα′(ν)

iii i jσ (E) = α(ν)
ασ Gαα′

i jσ (E) + β(ν)
ασ Fααα′

ii jσ (E), ν = 1, 3,

(25)
Fαα′(μ)

iiii jσ (E) = α(μ)
ασ Gαα′

i jσ (E) + β(μ)
ασ �ααα′

ii jσ (E), μ = 2, 4.

(26)
We fix the coefficients by the requirement that the zeroth
spectral moments of the functions are conserved

M (0)(Fαα′(ν)
i i i i jσ (E))

!= α(ν)
ασ M (0)(Gαα′

i jσ (E))

+ β(ν)
ασ M (0)(Xααα′

i i jσ (E)), ν = 1–4, (27)

with X = F, �. To determine α(ν)
ασ , β(ν)

ασ we need additional
conditions. For the first two functions we get these from the
next moments

M (1)(Fαα′(ν)
i i i i jσ (E))

!= α(ν)
ασ M (1)(Gαα′

i jσ (E))

+ β(ν)
ασ M (1)(Xααα′

i i jσ (E)), ν = 1, 2. (28)

Furthermore we can calculate expectation values via the
spectral theorem from the different GFs, which should also
fulfill (25) and (26). Replacing the GFs by the according
expectation values yields

F3 : 〈
S−σ

iα c+
iασ niασ ciα−σ

〉 = 0 = α(3)
ασ 〈niασ 〉

+ β(3)
ασ

〈
S−σ

iα c+
iασ ciα−σ

〉
, (29)

F4 : 〈
Sz

iαc+
iασ niα−σ ciασ

〉 = α(4)
ασ 〈niασ 〉 + β(4)

ασ

〈
δSz

iαniασ

〉

!= α
(4)
α−σ 〈niα−σ 〉 + β

(4)
α−σ

〈
δSz

iαniα−σ

〉
. (30)

The first expectation value vanishes due to the combination
of the electronic operators and the other is spin invariant.
Equation (30) seems to lead to no solution, due to
underdetermination of the parameters. But (27) already yields
α(4)

ασ = 〈Sz
iαniα−σ 〉, since the zero moment of the spin-flip

function Fααα′
i i jσ (E) disappears. Thus, as the only general choice

for the other parameter, β(4)
ασ = 〈niα−σ 〉 remains. The explicit

terms of the other coefficients can be found in the appendix.
With these conditions we can trace back all appearing GFs to
a set of only three GFs. Now we obtain a linear system of
equations from (19) to (20) as

Âασ

(
Fααα′

i i jσ (E)

�ααα′
i i jσ (E)

)
= − J

2
Gαα′

i jσ (E)

(
AFασ

A�ασ

)
, (31)

with the coefficient matrix

Âασ =(
1 + Gαα

i i−σ (E)(Mα−σ (E) + J
2 CFασ ) J

2 BFασ Gαα
i i−σ (E)

J
2 C�ασ Gαα

i iσ (E) 1 + Gαα
i iσ (E)(Mασ (E) + J

2 B�ασ )

)
.

The coefficients (AFασ , BFασ , . . .) are explained in the
appendix. Within the matrix there are only local terms which
are not site dependent when we assume translational invariance
within the sub-lattice. Therefore we can write the solutions
of (31) as

Fααα′
ii jσ (E) = Fα

σ (E)Gαα′
i jσ (E), (32)

�ααα′
ii jσ (E) = �α

σ (E)Gαα′
i jσ (E). (33)

The only dependence on the lattice indices is in Gαα′
i jσ (E).

Comparing this with (13) yields the self-energy

Mασ (E) = − J

2
(zσ

〈
Sz

iα

〉 + zσ �α
σ (E) + Fα

σ (E)), (34)

which is indeed local. In an ordered system we would put
the self-energy into formula (12) and have a closed set of
equations. For a disordered system we will change this
procedure a bit, as described in section 2.3.

2.3. Inclusion of disorder—CPA

The formulas derived in the previous section still depend on
the concrete placement of the local moments. For a large
macroscopic system the physical properties should be rather
described by averaged quantities as long as the system is far
from critical behavior near phase transitions. Therefore our
goal is to find the configurationally averaged GF: 〈Gαα′

i jσ (E)〉.
The problem is solved if we are able to find the self-energy

eff

ασ (E) of an effective medium with the according symmetry
of the considered type of magnetism. Its general formula is

Geff,αα′
qσ (E) = 〈Gαα′

qσ (E)〉 = ((E − 
eff
ασ )δαα′ − εαα′

(q))−1
αα′ .

(35)
Let us inspect the MF-GF (10) first. The disorder problem
is defined by a random change of the local potential ησ

for magnetic (M) and non-magnetic (NM) sites: ηM
ασ =

−zαzσ
J
2 S; ηNM

ασ = 0; with concentrations c and 1 − c
respectively. This is analogous to a binary alloy (for each
direction of electron spin) with local disorder. We have applied
the CPA [25] for calculation of the effective medium self-
energy. Since we are only interested in the diagonal parts of
the GF Geff,αα

qσ (E) and because of the locality of the CPA self-
energies, we can use a standard derivation of the CPA. One
obtains the following (self-consistent) equation of a local self-
energy approximation for the effective medium:

0 = c
ηM

ασ − 
eff
ασ

1 − (ηM
ασ − 
eff

ασ )Geff,αα
iiσ

+ (1 − c)
ηNM

ασ − 
eff
ασ

1 − (ηNM
ασ − 
eff

ασ )Geff,αα
iiσ

. (36)

Due to (35) the effective self-energies 
eff
ασ (E) of the two sub-

lattices are not independent of each other.
To improve the CPA result we now choose the self-energy

of the MCDA Mασ (E) = ηασ (E) in (34) as an effective

4
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Figure 2. The self-consistency cycle of the combined MCDA/CPA
treatment. The magnetic sub-system (index ‘M’) and the whole
diluted system (index ‘eff’) are not calculated separately, but in a
combined loop.

random potential. This potential is energy dependent, that is
why we call this a dynamical alloy analogy (DAA, [26, 27]).
But we have to keep in mind that the self-energy was derived
for a concentrated system. In a diluted system the magnetic
sub-system hybridizes with the whole system.

Let us assume that we have found a solution for
the self-energy 
eff

σ (E) of the diluted system. Now the
Green’s functions of the sub-systems can be derived via the
projection [28]

Gν,αα
iiσ (E) = Geff,αα

iiσ (E)

1 − (ην
ασ (E) − 
eff

ασ (E))Geff,αα
iiσ (E)

,

ν = M, NM. (37)

We choose as an approximation that the GF of the
magnetic sub-system GMαα′

i jσ (E) can be treated as an effective
concentrated system which has the same EOM as in a real
concentrated system. Thus the formal structure remains the
same and we just have to replace G±α±α

iiσ (E) in (31) by
GM±σ±σ

ii (E). The self-energy and the magnetic sub-system’s
higher Green’s functions (�Mααα′

ii jσ (E), FMααα′
ii jσ (E)) are now

functions of the projected Green’s functions GM±α±α
iiσ (E). To

take into account the hybridization effects with the complete
system we do not put the self-energy Mασ (E) directly into
formula (11) to get GMαα

i jσ (E), as we would do in a concentrated
lattice. Instead, we use it to get the effective self-energy

eff

ασ (E) defined in equation (36). With 
eff
ασ (E) we calculate

Geffαα
iiσ (E) and the projected Green’s function (37) and the

whole set of equations is closed. This self-consistency cycle
is depicted in figure 2.

3. Results and discussion

3.1. Mean-field results without dilution

The internal energy of the FKLM at T = 0 is given as an
integral (6) over the product of the (sub-lattice) quasiparticle
density of states (QDOS) times the energy up to the Fermi
energy. To understand the resulting phase diagrams it is
therefore useful to have a closer look at the QDOS first. In

Figure 3. The sub-lattice quasiparticle density of states (QDOS) of
up and down electrons obtained from the MF-GF (10) for two values
of local coupling J shown for different magnetic configurations.
Parameters: local magnetic moment S = 3

2 and free electron
bandwidth W = 1.0 eV.

figure 3 the sub-lattice MF-QDOS is shown for the different
magnetic phases investigated. The underlying full lattice is
of simple-cubic-type with nearest-neighbor hopping t chosen
such that the bandwidth W is equal to W = 1 eV in the case
of free electrons (J = 0 eV). The local magnetic moment is
equal to S = 3

2 . We have plotted the up and down electron
spectra separately for two different values of J = 0.1/1.0 eV.
The exchange splitting �ex = J S of the up and down bands
is clearly visible. The decisive difference between the phases
for nonzero values of J is the bandwidth reduction from
ferromagnetic over the a-, c- to g-AFM phases. The reason
for this behavior becomes clear by looking at the magnetic
lattices shown in figure 1. In the ferromagnetic case an
(up-)electron can move freely in all three directions of space
without paying any additional potential energy. In the a-
type antiferromagnetic phase the electron can still move freely
within a plane but when moving in the direction perpendicular
to the plane it needs to overcome an energy barrier �ex. Hence
the QDOS for large values of J resembles the form of 2D
tight-binding dispersion. The bandwidth is reduced due to
the confinement of the electrons. In the c-AFM phase the
electron can only move freely along one direction and the
QDOS becomes effectively one-dimensional. Finally in the g-
type phase the electron in the large J limit is quasi-localized
and the bandwidth becomes very small. This bandwidth effect
is the main reason for the phase diagram obtained as shown in
figure 4.

For larger J (J > 0) a typical sequence appears: for
low band fillings n the system is always ferromagnetic and,
with increasing n, it becomes a-type then c-type and finally g-
type antiferromagnetic. This behavior is easily understood by
looking at the formula for the internal energy (6) and the MF-
QDOS in figure 3. Because of the bandwidth effect discussed
already, the band edge of the ferromagnetic state is always
lowest in energy and will therefore give the lowest internal
energy for small band occupation. But since the upper edges
of the low energy spin bands decrease in the order FM, a-,

5
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Figure 4. Phase diagram obtained from the MF-GF (10) without
dilution regarding the coupling J and electron density n. Parameters:
local magnetic moment S = 3

2 and free electron bandwidth
W = 1.0 eV.

c-, g-AFM, the antiferromagnetic phases eventually become
lower in energy for increasing band filling. Note that for
n = 1 the lower spin sub-band is completely filled. Therefore
the bandwidth effect is the main reason for the observed
order of phases with increasing n. A very interesting feature
can be found in the region J = 0.2–0.3. In this region
the ferromagnetic phase is directly followed by the c-AFM
phase for increasing n although the a-AFM phase has a larger
bandwidth than the c-AFM phase. This can be explained by
the two-peak structure of the c-AFM-QDOS. Due to the first
peak at low energies these energies are much more weighted
than in the a-AFM case and the c-AFM phase will become
lower in energy than the a-AFM phase. Since the reduction
of bandwidth of the antiferromagnetic phases compared to the
ferromagnetic phase is more pronounced for larger values of J
the ferromagnetic region is growing in this direction.

The paramagnetic phase does not appear for any finite J .
Due to the down-shift of the up-spectrum of the ferromagnetic
sub-lattice its internal energy will always be lower. This will
change when we include correlation effects within our MCDA
treatment of the FKLM.

3.2. MCDA results without dilution

All the effects that have been discussed for the mean-field
results are also present in the MCDA. This means that the
differences of the bandwidths and the peak structures of the
single phases remain the dominant origin of differences in the
internal energy. But mainly due to the spin-flip GF, which
vanishes for the mean-field approximation, the QDOS changes.
Thus the phase diagram should be changed too. Figure 5 shows
the QDOS in the ferromagnetic phase of a concentrated lattice.
The main change compared to the MF-QDOS is the appearance
of spin-down states at the energies of the spin-up band. These
states can be connected to magnon emission processes. It turns
out that the spectral weight of this part of the spin-down QDOS
is heavily affected by the spin quantum number of the local
moments. The smaller the spin is the stronger the influences
of the scattering states are. For very large spins the mean-field

Figure 5. QDOS of the MCDA-GF in the concentrated system for
various spins S (J S = 1 eV) in the ferromagnetic phase. The smaller
the spin the larger the number of spin scattering states becomes in the
spin-down QDOS at E ≈ − J

2 S. The upper sub-band at
E ≈ J

2 (S + 1) moves to lower energy for increasing spin and
constant J S. For S → ∞ the scattering states vanish and the
mean-field QDOS is reproduced. Parameters: W = 1 eV, n = 0.05.

Figure 6. Phase diagram obtained from the MCDA-GF (10) without
dilution. Parameters: local magnetic moment S = 3

2 and free
electron bandwidth W = 1.0 eV.

picture is reproduced (classical limit). But as can be seen in
figure 6 the phase diagram changes for spin S = 3

2 , especially
at stronger couplings J . Actually, we get a large region of
paramagnetic phase, which was never present in the mean-
field diagrams. This is plausible because in the paramagnetic
regime the spin-flip processes should be important, which are
not neglected by the MCDA. Thus the energy of this phase is
much lower than for the mean-field approximation and can be
of the same order as in the (A)FM phases. This broadening
of the PM phase with increasing quantum character was also
found in [29].

At low couplings the MF and MCDA phase diagrams are
similar again, also for S = 3

2 . This can be easily understood
if we arrange the MCDA self-energy (34) in powers of J ,
yielding

Mσ (E) = − J

2
zσ

〈
Sz

i

〉 + J 2

4
M ′

σ (E). (38)
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Figure 7. MF-QDOS of the ferromagnetic (left) and a-type antiferromagnetic (right) configurations for various concentrations c of local
moments. Parameters: J = 1.0 eV, S = 3

2 , W = 1.0 eV.

We see that the self-energy splits into an MF and a ‘many-
body’ part M ′

σ (E). Since the MF term varies linearly with J it
becomes dominant at small couplings.

3.3. Results with dilution

After having made clear the differences and similarities of the
MF and MCDA in an undiluted lattice we want to discuss the
effects of dilution. These are in principle the same for both
methods. In figure 7 we show the MF-QDOS for the FM
and a-AFM configurations at various concentrations c of the
local moment system. With increasing dilution the spectral
weight of the magnetic sub-bands decreases (proportional to
c) and an uncorrelated band appears around the band center
of gravity T0 = 0 eV. The shape of the magnetic sub-bands
will still resemble the form of the undiluted case (for not too
small c) whereas the non-correlated band which appears is
more or less the same for all magnetic configurations and only
depends on the dispersion of the underlying chemical lattice.
For large exchange splitting J the magnetic sub-bands are
well separated from the non-magnetic band and we can define
their effective filling neff = n

c . If the magnetic sub-system
were independent of the total system the phase diagrams for
all concentrations c would be the same according to neff.
But due to hybridization of the magnetic sub-system with
the total system the antiferromagnetic phases are remarkably
suppressed for neff < 1 (figure 9). This is best recognizable for
g-type AFM. For low concentrations (here c = 0.4) this phase
is almost vanishing for n

c < 1 although it was present in the
undiluted system for n � 0.9.

For fillings larger than n = c the non-magnetic band starts
to be filled and the phase will not change any more. Thus for
n > c only the g-AFM phase exists due to a completely filled
lower correlated band corresponding to an effective half-filling
at the correlated spectrum. From figures 4 and 6 we know
that g-AFM is just the existent phase for an undiluted lattice
at n = 1.

As seen in the case of an undiluted lattice the differences
of the MF approximation and the MCDA are largest for strong
couplings. That is also true in the diluted systems. But again,
as for c = 1, this is more prominent for low spins. Actually
there are almost no differences in the phase diagram of the
MCDA with S = 7

2 compared to the MF picture but for S = 3
2

a large paramagnetic phase appears (cf figure 9 again).

Figure 8. QDOS of the MCDA-GF Geff,αα
iiσ (E) (bold black line), and

the magnetic and non-magnetic sub-systems’ GFs G M,αα
iiσ (E) (red

line) and G N M,αα
iiσ (E) (green dashed line) in a diluted system

(ferromagnetic phase). For better comparison the sub-systems’ GFs
are multiplied by c or 1 − c, respectively. Parameters: c = 0.4,
J = 0.5 eV, S = 3

2 , W = 1 eV, n = 0.05.

The picture will change for small J and small
concentrations c. In this parameter regime the non-magnetic
band becomes broad and the exchange splitting is so small that
the magnetic sub-bands are lying partly or fully within the non-
magnetic band. This can be easily seen in figure 8 with the
help of the projected GFs in figure 5. In this case the effective
filling of the magnetic sub-bands is not neff = n/c as in the
large J limit but less since also states of the non-magnetic band
are filled. Therefore the sequence of phases with increasing n
becomes more and more like the undiluted case at lower J .
This is consistent because in the limit of J → 0 there is no
difference between a diluted and a concentrated lattice, because
both sub-systems have a vanishing potential (ηM(E) → 0 =
ηNM) and cannot be distinguished from each other. For very
low couplings the same sequence of phases is reproduced (FM:
0 � n � 0.1, a: 0.1 � n � 0.35, c: 0.35 � n � 0.75,
g: 0.75 � n � 1) for all concentrations. Since the MF and
MCDA results are the same for low coupling due to (38), this
also holds for both methods.

It is worth making some comments about the connection
of a system’s T = 0 phase diagram and its finite temperature
behavior. At large couplings J the energy differences between
the magnetic phases are usually large (except at the borders

7
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Figure 9. Phase diagrams with dilution for two different concentrations. Left column: c = 0.4; right column: c = 0.8. The white lines show
the band filling n = c. The two phase diagrams in the top line are calculated with the mean-field approximation. The others are calculated
with the MCDA for spin S = 7

2 and S = 3
2 , respectively. Differences between the MF and MCDA results appear at large couplings J and

become smaller for large spins. Parameters: free electron bandwidth W = 1.0 eV.

between two phases). This implies that the respective phase is
stable at moderate finite temperatures too. On the other hand,
the energy differences decrease when the coupling becomes
smaller. Thus even when an ordered phase appears in the phase
diagram its critical temperature (TC, TN) becomes very small,
so that the paramagnetic phase arises at very low temperatures.
In the extreme limit J = 0 all phases have the same energy
and are indistinguishable. The same is true for the limit of
extreme dilution c → 0. Even though the phase diagram would
consist almost only of the ferromagnetic phase for n < c,
which maybe contradicts the intuition, the Curie temperature
would be very low for all couplings J , possibly even TC = 0+.

4. Summary and outlook

We have compared the internal energies of several ordered
magnetic phases and the paramagnetic phase in a diluted
ferromagnetic Kondo-lattice model. This allows us to make
conclusions about the existence of the various magnetic phases
at T = 0 as a function of the coupling J , the band filling

n and the concentration of the magnetic atoms c. To obtain
the internal energy we applied two approximations to treat
the ferromagnetic Kondo-lattice model. The expressions
for the Green’s function self-energy of the (concentrated)
FKLM defined effective potentials and therewith a dynamical
alloy analogy which we included into a coherent potential
approximation. We used this to handle the problem of the
diluted disordered system. As a first approximation for the
FKLM we used a relatively simple mean-field decoupling.
But already this simple ansatz gave insight into the main
mechanisms of stabilizing a definite phase at a given parameter
set. A more accurate moment conserving decoupling
approach leads to the statement that the mean-field results are
appropriate at low couplings or large spin quantum numbers
S. For low spins the system has a more pronounced quantum
character and we have distinct deviations from the mean-field
picture. Both methods made it clear that for very low couplings
J and arbitrary concentrations c all magnetic phases appear at
the same band fillings as in an undiluted system.

It is surprising that the simple mean-field ansatz leads,
under certain conditions, to relatively good results at T = 0.

8
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This should change when we go to finite temperatures. The
paramagnetic phase is treated completely incorrectly in the MF
approximation, due to the importance of fluctuations at 〈Sz〉 
=
S. Thus it is not sufficient to use it for, e.g., calculating Curie
temperatures. To do this one has to use more accurate many-
body methods. Expansion of this theory for finite temperatures
is very important to make predictions about possible candidates
for dilute magnetic semiconductors at room temperature. To do
this, the introduced pure KLM is surely not enough to describe
DMS properly. For example, the magnetic and non-magnetic
sites consist of different atoms and therefore atomic levels.
This results in additional changes of the according density of
states and this will be investigated in a forthcoming work.

Appendix. Coefficients and expectation values of the
MCDA

The moments of the various Green’s functions X A
i jσ =

〈〈Aiσ ; c+
jσ 〉〉, where Aiσ is an arbitrary operator combination,

are defined by

M (n)
i jσ (X A

i jσ )

=
〈[

[· · · [Aiσ , H ]− · · · , H ]−︸ ︷︷ ︸
(n−p)−fold

, [H, . . . [H, c+
jσ ]− · · ·]−︸ ︷︷ ︸

(p)−fold

]

+

〉
.

Explicit calculation of the moments yields the coefficients of
the MCDA as

α(1)
σ = 0,

β(1)
σ = {3zσ

〈
Sσ̄

i Sσ
i

〉 + 2
〈
Sz

i

〉 + 〈
Sσ

i Sσ̄
i Sz

i

〉 − 2zσ S(S + 1)

× (1 − 〈ni σ̄ 〉) + 4�σ̄ − 3zσμσ̄ − ησ }
× {〈Sσ̄

i Sσ
i

〉 − γσ + 2zσ �σ̄ }−1,

α(2)
σ = 0, β(2)

σ =
〈
Sσ̄

i Sσ
i Sz

i

〉 − 〈
Sσ̄

i Sσ
i

〉〈
Sz

i

〉 + 2ησ
〈
(Sz

i )
2
〉 − 〈

Sz
i

〉2 − γσ

,

α(3)
σ = −γσ , β(3)

σ = 〈niσ 〉, α(4)
σ = �σ̄ ,

β(4)
σ = 〈ni−σ 〉,

where we suppressed the index α at every site index i for
readability. We have abbreviated

�σ = 〈
Sz

i niσ
〉
, γσ = 〈

S−σ
i c+

iσ ci−σ

〉
,

ησ = α(1)
σ 〈niσ 〉 + β(1)

σ γσ ,

μσ = (
α(2)

σ + 〈
S−σ

i Sσ
i

〉) 〈niσ 〉 + β(2)
σ

(
�σ − 〈

Sz
i niσ

〉)
,

νσ = α(3)
σ 〈niσ 〉 + β(3)

σ γσ ,

ϑσ = α(4)
σ 〈niσ 〉 + β(4)

σ

(
�σ − 〈

Sz
i

〉〈niσ 〉) .

The prefactors appearing in the equations of motion are

A�σ = zσ

〈
(δSz

i )
2
〉 + zσ α3σ , B�σ = zσ

〈
Sz

i

〉 − 1,

C�σ = −zσ − 〈
Sz

i

〉+β1σ +zσ β3σ , AFσ = α3σ +2zσα4σ ,

BFσ = 2zσ β4σ , CFσ = −zσ β1σ + β3σ .

The spin expectation values are trivial for ferromagnetic
saturation and for paramagnetism we get them from the
solution by Callen [30]. This yields

saturation:
〈
(Sz

i )
n
〉 = Sn,

〈
S−σ

i Sσ
i

〉 = S − zσ S,
〈
S−σ

i Sσ
i Sz

i

〉 = (S − zσ S)S;
paramagnetism:

〈
Sz

i

〉 = 〈
(Sz

i )
3
〉 = 0,

〈
(Sz

i )
2
〉 = 1

3 S(S + 1),
〈
S−σ

i Sσ
i

〉 = 2
3 S(S + 1),

〈
S−σ

i Sσ
i Sz

i

〉 = −zσ

〈
(Sz

i )
2
〉
.

The expectation values of the magnetic sub-system can be
calculated via the spectral theorem with the according Fourier-
transformed Green’s functions

〈niασ 〉 = − 1

Nπ

∑

k

∫
dE f−(E, μ) Im GM

kασ (E),

〈
Sz

i niασ

〉 = 〈
Sz

i

〉〈niσ 〉− 1

N2π

∑

kq

∫
dE f−(E, μ) Im �M

kqασ (E),

〈
S−σ

i c+
iασ ciα−σ

〉 = − 1

N2π

∑

kq

∫
dE f−(E, μ) Im FM

kqασ (E).

Note that the chemical potential μ within the Fermi functions
f−(E, μ) is derived from the whole diluted system via the
condition

n = − 1

Nπ

∑

kσ

∫
dE f−(E, μ) Im Geffαα

kσ (E).

This means that only the electron number of the total system
is conserved, while the number of electrons in the magnetic
sub-system can change.
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