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Abstract
The occurrence of charge-density waves in three selected layered transition-metal
dichalcogenides—1T-TaS2, 2H-TaSe2 and 1T-TiSe2—is discussed from an experimentalist’s
point of view with a particular focus on the implications of recent angle-resolved photoelectron
spectroscopy results. The basic models behind charge-density-wave formation in
low-dimensional solids are recapitulated, the experimental and theoretical results for the three
selected compounds are reviewed, and their band structures and spectral weight distributions in
the commensurate charge-density-wave phases are calculated using an empirical tight-binding
model. It is explored whether the origin of charge-density waves in the layered transition-metal
dichalcogenides can be understood in a unified way on the basis of a few measured and
calculated parameters characterizing the interacting electron–lattice system. It is found that the
predictions of the standard mean-field model agree only semi-quantitatively with the
experimental data and that there is not one generally dominant factor driving
charge-density-wave formation in this family of layer compounds. The need for further
experimental and theoretical scrutiny is emphasized.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Charge-density waves (CDWs) in low-dimensional solids
are a rather old [1–8] but still vital and alluring [9–17]
research topic. It is now some 35 years since CDWs in the
transition-metal dichalcogenides were discovered and since
this class of layered crystals consisting of three-atom-thick
chalcogen–transition metal–chalcogen sandwiches initiated
the popularization of the concept of a CDW [18]. Yet, although
much has been learnt about the structural and electronic
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properties of ‘the layer compounds’ and about the nature
of their various CDW phases [18–24], we are still far from
understanding how and why the CDWs in these quasi-two-
dimensional systems are formed. Some important aspects
of the CDW phase transition in these materials are captured
qualitatively by models coming under different names: Peierls
instability, giant Kohn anomaly, Fermi surface nesting, band
Jahn–Teller effect or excitonic insulator. But a coherent
and realistic microscopic theory has not yet emerged (see,
however, [23]) meaning that truly quantitative predictions of
CDW properties are practically impossible. This is all the more
frustrating given that the ‘standard model’ of CDW formation
(one-dimensional weak-coupling mean-field theory) provides
a good quantitative explanation for the occurrence of CDWs in
quasi-one-dimensional solids [25] and also seems to work well
for other quasi-two-dimensional systems such as the layered
rare earth tritellurides [26, 27].

To make further progress at this point, we believe
that the current situation regarding CDWs in transition-
metal dichalcogenides, which encompasses a large body of
experimental and theoretical results from the pre-cuprate era
as well as recent high-resolution angle-resolved photoelectron
spectroscopy (ARPES) results, must be looked at in greater
detail and taken into account more seriously before one fills
the gaps in understanding by suggesting novel, exotic CDW
mechanisms. In this spirit, we will strictly concentrate here
on the possible origin of three distinctive CDWs in three
prominent members of the transition-metal dichalcogenide
family, i.e. 1T-TaS2, 2H-TaSe2 and 1T-TiSe2. Phenomena
that go beyond the primary formation of the CDW, such
as the dynamics of CDWs [28] or the competition between
CDWs and superconductivity [29], will not be discussed.
Also, the many other CDW materials with one-dimensional
(1D) [25], two-dimensional (2D) [30] and three-dimensional
(3D) [31, 32] band structures will not be dealt with.

For the three selected transition-metal compounds, we
will specifically focus on the interpretation of the most recent,
very detailed ARPES results in terms of an empirical tight-
binding model and on the resulting implications for the
microscopic mechanism underlying CDW formation. The
working hypothesis will be that the origin of all three CDWs
can be understood at least semi-quantitatively within a mean-
field model, on the basis of a few measured and calculated
parameters such as the transition temperature, the wavevector
and amplitude of the CDW, the non-interacting electronic
susceptibility, bare phonon frequencies, an electron–phonon
coupling constant or the total band energy lowering in the
CDW phase. The approach is that of an experimentalist
and, if not providing a detailed microscopic explanation,
it is at least expected to reveal the weak points in our
understanding of CDW formation in the layered transition-
metal dichalcogenides.

The outline of the present work is as follows. In section 2
we provide the theoretical background by summarizing the
basic ideas and concepts behind CDW formation in low-
dimensional systems. This is done with a narrow focus on
the models that are commonly used to explain the origin of
the CDWs in the layered transition-metal dichalcogenides.

In section 3 we briefly review the extensive experimental
and theoretical results obtained for the three selected CDW
compounds, before in section 4 we seek to explain the
results of recent ARPES measurements by calculating the
band structures and spectral weight distributions in the CDW
phases using an empirical tight-binding model. Finally, in
section 5, we weave the strands together and attempt—on the
basis of a few relevant parameters extracted from experiment
and theory—to answer the fundamental question at the center
of this work: why do CDWs occur in the layered transition-
metal dichalcogenides?

2. Theoretical aspects of CDW formation

Consider a 1D metal made of a linear chain of atoms with
a regular spacing a and suppose that the electron density is
cosinusoidally modulated:

ρ(r) = ρ0(r)[1 + ρ1 cos(q0r + φ)], (1)

where ρ0(r) describes the unperturbed electron density, and
ρ1, q0 and φ are the amplitude, wavevector and phase of the
electron density modulation, respectively. The last term in
the square bracket is called the CDW. This standing wave has
a wavelength λ0 = 2π/|q0| and it causes each ion in the
chain to see a different potential so that the ions move to new
equilibrium positions. The resulting periodic lattice distortion
(PLD) has the form

un = u0 sin(n|q0|a + φ), (2)

where the integer n defines the position of the ions and the
amplitude u0 is generally small compared to the lattice constant
a. Now suppose that first the ions are periodically displaced
according to equation (2). Then, the conduction electrons
will try to screen the new potential and an electron density
modulation of the type given in equation (1) will be created.
Thus, a CDW and a PLD always come together [6, 13] (see
figure 1(a)) and we will speak of a CDW/PLD throughout the
paper.

A number of questions arise from this simple considera-
tion. (i) Although a CDW and a PLD occur simultaneously, one
may ask the (philosophical) chicken and egg question: which
one is the driving force? In other words, is the CDW/PLD
transition primarily an instability of the electron system or of
the lattice? (ii) The formation of a CDW/PLD clearly costs
Coulomb and elastic energy. But what are the stabilizing
factors? What is the microscopic origin of a CDW/PLD? (iii) A
CDW/PLD will certainly modify the electron and phonon
dispersions. So what are the signatures of the CDW/PLD
phase in both the electron and phonon spectra? (iv) For CDWs
in one dimension and in the weak-coupling limit (u0/a �
1) a theoretical framework is available. But can the 1D
models simply be generalized to 2D? And what happens, if
the coupling strength increases? In this section some answers
shall be given to these questions.

2.1. Peierls instability

The Peierls instability of quasi-1D metals towards CDW/PLD
formation is a consequence of strong electron–phonon
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Figure 1. Peierls instability of a 1D metal with a half-filled band. (a) Schematic view of a CDW/PLD showing the modulations of the
conduction electron density (solid red line) and ion positions (filled red circles). The normal state is characterized by a constant
charge-density (dashed black line) and an undistorted chain (open black circles). (b) Electronic band dispersion and density of states in the
metallic state above the transition temperature T0 (dashed black lines) and in the CDW state at T = 0 (solid red lines). The thickness of the
red lines in the band structure plot is proportional to the spectral weight carried by the electron states in the CDW phase. (c) Acoustic phonon
dispersion well above T0 (dashed black line) and at T0 (solid red line).

interaction. The principal idea behind the Peierls model is
this [1–3, 6, 25, 33]: a CDW/PLD of the type given by
equations (1) and (2) sets up a potential which opens an
energy gap at the Fermi surface (see figure 1(b)), thereby
lowering the energy of occupied electron states and raising
the energy of empty states, and since the resulting net one-
electron band energy gain overcompensates the Coulomb and
elastic energy cost, the CDW/PLD is self-sustaining. Note
that we use the term ‘Peierls instability’ here to describe the
instability of a coupled electron–lattice system, an instability
which is, in essence, a structural phase transition driven by
strong electron–phonon coupling. Thus, in contrast to other
definitions [13], in this work a Peierls instability is not seen as
a purely electronic phenomenon in which the lattice distortion
is only an accidental by-product (see also section 2.4).

The Peierls transition to a CDW/PLD ground state can
be described quantitatively by a mean-field theory of a 1D
electron–lattice system in the weak-coupling limit (see, for
example, [6, 19, 25, 34]). The simplest approach further
implies the independent electron, harmonic and adiabatic
approximations. The coupled electron–lattice system is then
modeled by a Fröhlich Hamiltonian of the form

HPI =
∑

k

εka+
k ak +

∑

q

h̄ωqb+
q bq

+ 1√
N

∑

k,q

gqa+
k+qak(b

+
−q + bq),

(3)

where εk refers to the energy of electron state k, a+
k and

ak are the creation and annihilation operators for state k,

ωq is the frequency of the phonon normal mode q, b+
q and

bq are the creation and annihilation operators for phonon q,
gq is an electron–phonon coupling constant (assumed to be
independent of k) and N is the number of lattice sites per unit
length.

In this model, a static displacement uq of phonon mode q
sets up a potential

vq = gquq

√
2Mωq

h̄
, (4)

where M is the ionic mass. The associated lattice strain energy
is given by

δElattice = 1
2 Mω2

qu2
q (5)

and the total band energy change of the electron system due to
the potential vq is (within second-order perturbation theory)

δEband = −|vq|2χ0(q), (6)

where χ0(q) is the non-interacting electronic susceptibility
defined as

χ0(q) = 1

L

∑

k

fk+q − fk

εk − εk+q
> 0. (7)

In this definition, fk represents the Fermi function f (εk) and
the matrix element that couples the states k and k + q is, as
is usually done, neglected; L is the length of the atomic chain.
From equation (6) one sees that χ0(q) is a direct measure of
the distortion-induced band energy gain.
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The new CDW/PLD ground state will be stable, if
δEband + δElattice < 0 for a certain phonon mode q0. Using
equations (4)–(6), we obtain a simple instability condition for
the normal state, based on microscopic parameters:

4g2
q

h̄ωq
>

1

χ0(q)
. (8)

Apparently, for a CDW/PLD to occur, a large electron–phonon
coupling constant gq and a large electronic susceptibility χ0(q)

are required at the wavevector q = q0. By including the
effects of Coulomb and exchange interactions, Chan and Heine
derived a similar criterion for PLD/CDW formation [6]:

4g2
q

h̄ωq
− 2Uq + Vq � 1

χ0(q)
(9)

with the necessary hierarchy of terms:

4g2
q

h̄ωq
> 2Uq > Vq > 0. (10)

Here Uq stands for the Coulomb interaction and Vq is the
screened exchange interaction. (For 4g2

q/h̄ωq < 2Uq,
a spin-density wave (SDW) will set in [6].) A severe
simplification implied in condition (9) is that not only gq

but also Uq and Vq are assumed to be independent of k.
Nevertheless, the criterion (9) reveals the important factors and
it also confirms intuition: CDW/PLD formation is generally
encouraged by strong electron–phonon and electron–electron
exchange interaction (large gq and Vq), by a weak Coulomb
interaction and a small lattice strain energy (small Uq and
ωq), and by a large non-interacting susceptibility (large χ0(q)).
Beside its intuitive appeal, the instability condition (9) is also
sufficiently practicable and quantitative to make contact with
experimental data.

Since the CDW/PLD ground state generally occurs in
systems with strong electron–phonon interactions, it can be
expected that both the electron and the phonon dispersions
are significantly modified upon CDW/PLD formation. In the
following, we consider the archetypal situation of a 1D solid
with a single half-filled band. We assume a tight-binding band
dispersion

εk = −EF cos(ka) (11)

with Fermi energy EF and Fermi vector |kF| = π/2a [34, 35].
Electron–electron interactions are again neglected (Uq = Vq =
0). For this band, when EF/kBT is large, the non-interacting
susceptibility at q = 2kF diverges with falling temperature T
as

χ0(2kF, T ) = 1

2
N(0) ln

(
2.28EF

kBT

)
, (12)

where N(0) is the density of electron states at the Fermi
energy EF (in the normal phase, per atom and including both
spin directions). The sharp temperature-dependent peaking
of χ0(q, T ) causes a strong renormalization of the phonon
frequencies in a narrow wavevector range around q0 = 2kF.
This is generally referred to as a giant Kohn anomaly:

ω̃2
q = ω2

q

(
1 − 4g2

q

h̄ωq
χ0(q)

)
, (13)

where ω̃q and ωq denote the renormalized and normal-state
phonon frequency, respectively [6]. For a non-zero electron–
phonon coupling constant gq0 , we have

ω̃2
q0

= 0 (14)

at a finite temperature T0. This complete softening of phonon
mode q0 at T0 (see figure 1(c)) signals a phase transition to
a state with a frozen-in lattice distortion, i.e. a CDW/PLD
with a wavelength λ0 = 2π/|q0| = π/|kF|. Since kF

is determined by the electron filling of the band structure
in k space, a CDW/PLD superstructure in general will be
incommensurate with the underlying crystal lattice, as opposed
to the simple commensurate scenario we discuss here. Note
that equations (13) and (14) lead to the simple instability
criterion (8).

With equations (12)–(14), the (mean-field) transition
temperature in the tight-binding approximation becomes

kBT0 = 2.28EF exp

(
− 1

λ

)
(15)

with the dimensionless electron–phonon coupling constant

λ = 2g2
q0

N(0)

h̄ωq0

. (16)

As for the electron bands, an important point to note is
that the Brillouin zone edges of the CDW/PLD superstructure
characterized by q0 coincide exactly with the Fermi points
±kF. Thus, since the new Brillouin zone edges entail energy
discontinuities, the normal-state energy band εk splits into two
branches:

E1,2(k) = εk + εk+q0

2
±

√(
εk − εk+q0

2

)2

+ 
2, (17)

separated by an energy gap 2
 at q0/2 = kF. The lower branch
is completely occupied, while the upper branch is completely
empty. The density of states N(E) diverges at E = ±


and is zero in between (see figure 1(b)), i.e. a uniform and
complete energy gap opens up at EF. In the model developed
so far, the energy gap 2
 is related to the displacement
amplitude uq0 , the electron–phonon coupling parameter gq0

and the unrenormalized phonon frequency ωq0 by [25]


 = uq0 gq0

√
2Mωq0

h̄
. (18)

If the modified band dispersion is to be measured by
ARPES, a difficulty arises from the fact that the electron
states carry a k-dependent spectral weight. The spectral
weight distribution, which for a slowly varying ARPES
matrix element is approximately proportional to the measured
ARPES intensity distribution, is generally given by the spectral
function A(k, E). For the modified band dispersions (17), one
obtains

A(k, E) = δ(E − E1(k))

1 + 
2

(E1(k)−εk+q0 )2

+ δ(E − E2(k))

1 + 
2

(E2(k)−εk+q0 )2

, (19)
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where δ(E) denotes the Dirac delta function. Figure 1(b)
shows that the spectral weight of the reconstructed subbands
is mostly concentrated near the original band; only near kF,
where the energy gap has opened up, are some back-bending
effects observable. Thus, in contrast to the subband dispersions
E1,2(k), the spectral function A(k, E) does not exhibit the
novel periodicity of the CDW/PLD phase.

For T = 0 and 
/EF < 1, it can be shown that the change
in the sum of the occupied one-electron energies satisfies

δEband ∝ 
2

EF
ln

(



EF

)
. (20)

Minimization of the total energy change, δEband + δElattice,
then gives a zero-temperature energy gap (for the tight-binding
band):


(0) = 4EF exp

(
− 1

λ

)
, (21)

where λ � 1 [34]. Finally, with the help of equation (15),
we obtain the well-known Bardeen–Cooper–Schrieffer (BCS)
relation between the zero-temperature energy gap and the
(mean-field) transition temperature:

2
(0) = 3.52kBT0. (22)

Although the picture presented through the above
equations is that of a full microscopic theory, it has to be
pointed out that this theory has many weaknesses connected
with the various approximations made. For example, the
mean-field solution of the 1D model neglects the effects of
fluctuations and predicts long-range order at a finite transition
temperature, which can in fact only come about when the
system is quasi-1D, i.e. when there is some finite coupling
between neighboring chains [25]. Also, within the independent
electron approximation, it turns out that a Peierls instability
will always occur at a low enough temperature, while, if
electron–electron interactions are included, the 1D metal may
indeed be stable [36]. In the next two sections, we briefly
summarize what happens when the assumptions of weak
coupling and one dimensionality are relaxed.

2.2. Weak coupling versus strong coupling

When the electron–phonon coupling strength is increased,
the physics of CDW/PLD formation does not change
fundamentally, but most of the formulae given above cannot
be applied anymore. Compared to a weak-coupling CDW, a
strong-coupling CDW is characterized by a larger distortion
amplitude, a larger energy gap and a smaller coherence length
as, for example, given by the inverse width of the Kohn
anomaly in the ω(q) diagram. The dividing line between the
two is roughly set by the ratio 
/h̄ωD ≈ 1 (with the electronic
energy gap 
 and the Debye phonon frequency ωD) [30, 37].

In both cases, the origin of the energy gain is electronic.
However, for a small energy gap (
/EF � 1), the band
energy gain originates mostly near kF and is of order 
2 ln 


(equation (20)), whereas for a large gap (
/EF � 1), the
energy gain is spread over the entire Brillouin zone and
proportional to 
 [38]. Hence, the relative importance of

the Fermi surface for CDW/PLD formation is reduced as the
coupling strength is increased.

The thermodynamic behavior near the transition tempera-
ture T0 is also markedly different [38, 39]. In a weak-coupling
CDW, the thermal disordering is dominated by electronic
entropy, arising from electronic excitations across the gap, and
above T0 the CDW/PLD vanishes completely. In a strong-
coupling CDW, on the other hand, the transition is driven by
the entropy of the lattice and only the long-range coherence of
the CDW/PLD is lost at T0. Above T0, fluctuating short-range
distortions remain and it is expected that these fluctuations
smear, but do not destroy, the energy gap and cause strong
carrier scattering [39]. The undistorted state will finally be
restored at a temperature well above T0.

In McMillan’s (2D) microscopic model of strong-
coupling/short-coherence-length CDW/PLDs [39], the (normal
metal-to-incommensurate CDW) transition temperature is
given by

kBT0 = 0.296C
(πξ0u0)

2

2�
, (23)

where ξ0 is the coherence length, u0 the distortion amplitude,
� the area of the normal-state unit cell and C (in eV Å

−2
)

a measure for the electron–lattice coupling. This equation
is to be compared to equation (15) for the weak-coupling
CDW/PLD transition temperature (in 1D). Quite generally, it
can be expected that strong coupling will lead to significant
deviations from the BCS equation (22), i.e. 2
(0) >

3.52kBT0.
It has been suggested that in the extreme limits of

weak and strong coupling two qualitatively different pictures
apply [38, 39]. In the long-coherence-length picture, the
CDW/PLD transition can be understood in terms of the Peierls
instability. As shown above, this instability is intimately
connected with the Fermi surface and thus deeply rooted
in k space, where long-range order and incommensurability
are easily explained. In the short-coherence-length picture,
on the other hand, a local-chemical-bonding picture is often
more appropriate [24, 39–41]. Due to the much larger
atomic displacements, nonlinear terms in the electron–lattice
interaction are important. The atoms then show a tendency to
form pairs with shortened bonds as well as clusters and the
CDW/PLDs tend to lock into the underlying crystal lattice.
It should be pointed out that the two seemingly different
pictures are just two sides of the same coin, because one
can pass continuously from one limit to the other [38]. The
complementarity is also reflected in the common analogy
between the Peierls instability in low-dimensional solids and
the Jahn–Teller effect in molecules [33].

A theory for the intermediate-coupling regime is presently
not available [42], but it can be expected that looking at both
the electronic structure in k space and the local chemical
bonding in real space may help to understand intermediately
coupled CDWs. Table 1 summarizes the different properties of
weak-coupling and strong-coupling CDWs.

2.3. One dimension versus two dimensions

Dimensionality has a profound effect on two important factors
in the standard theory of CDW/PLD formation: on the peaking

5
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Table 1. Qualitative comparison of weak-coupling and strong-coupling CDWs.

Weak-coupling CDW Strong-coupling CDW

PLD/CDW amplitude Small Large
Energy gap Small (
/EF � 1) Large (
/EF � 1)
Coherence length Large (ξ/a � 1) Small (ξ/a � 1)
Electronic energy gain Arising mostly near kF (∝
2 ln 
) Spread over Brillouin zone (∝
)
CDW periodicity w.r.t. original lattice Incommensurate (λ0 = π/kF) Tends to be commensurate
Thermal disordering Due to electronic entropy Due to lattice entropy
Electron–hole pairing above T0 No Yes, but pairs are incoherent
Qualitative picture Fermi surface instability Local chemical bonding

of the non-interacting susceptibility χ0(q) and on the flatness
of the Fermi surface εk = EF.

In one dimension, it is the logarithmic divergence of
χ0(q0) with falling temperature (equation (12)) that drives
the CDW/PLD transition. It causes the phonon mode q0 to
soften completely and it ensures a large band structure energy
gain to be made. The wavevector of the singularity becomes
the wavevector of the CDW/PLD superstructure. However,
as pointed out recently [13], the logarithmic divergence of
the non-interacting susceptibility is not particularly robust
against temperature, lifetime and momentum broadening
effects. Note that momentum broadening naturally arises in
quasi-1D systems, in which interchain interactions lead to a
buckling of the Fermi surface. Consider then the enhancement
χ0(q0)/χ0(0), which is infinite for the ideal 1D case at T = 0.
For realistic parameters (EF = 0.3 eV, |kF| = 0.5 Å

−1
),

the infinite enhancement is easily reduced to a factor of only
about three for, respectively, a temperature of 200 K, an
energy broadening of 5 meV or a momentum broadening of
0.01 Å

−1
[13]. Thus, in realistic situations a sufficiently large

electron–phonon coupling gq0 is absolutely necessary for a
CDW/PLD transition to occur (see equation (8)).

What is the role of the Fermi surface with respect to
the CDW/PLD transition in 1D? Looking at definition (7), a
large χ0(q) requires a large numerator fk+q − fk, a small
denominator εk − εk+q and many such q-coupled states, i.e.
a high density of states. The largest contribution to χ0(q) is
expected to arise near the Fermi surface. In the weak-coupling
limit, indeed, this is the case. But even then, electronic states
away from kF (in the entire Brillouin zone) are not negligible
as the factor ln(
/EF) in equation (20) is known to originate
particularly from such states [13, 37]. When the coupling
strength is increased, the electronic energy gain cannot be
easily localized in k space anymore and the role played by the
Fermi surface effectively tends to zero.

For a 2D metal, the situation becomes even worse because
k-space geometry is generally not favorable. In 3D k space,
a 1D metal has a planar Fermi surface which can exactly
coincide with the planar energy discontinuities created by the
CDW/PLD, thus resulting in a uniform and complete energy
gap at the Fermi level (N(0) = 0). For a 2D metal, on the
other hand, the Fermi surface is generally not planar so that
the new Brillouin zone edges will only partly coincide with
the Fermi surface. The energy gap is then also only partial
(N(0) > 0). The best case scenario occurs when the Fermi
surface is effectively 1D, i.e. when it has large flat parallel

sections. The resulting possibility to displace one section of
the Fermi surface by a single wavevector q and to superimpose
it exactly onto another section is the well-known concept of
Fermi surface nesting, which, however, may only be used for a
simple qualitative analysis of the electronic response in higher
dimensions [13].

The effect of dimensionality on the form of the non-
interacting electronic susceptibility is dramatic. Upon the
transition from perfect (D = 1) to weak (D > 1) Fermi surface
nesting, the logarithmic divergence evolves into a smooth peak
whose height and position critically depend on the size and
curvature of the nested Fermi surface segments [43]. We note
that, apart from Fermi surface nesting, significant contributions
to χ0(q) can also arise in two dimensions from the nesting
of saddle points in the band structure, if the saddle points
are very close to EF [44]. In general, however, layered
CDW materials are notoriously known for showing only a
weak peaking of χ0(q) in a rather broad wavevector range
around the experimentally observed q0 [13, 23, 45–48]. The
Kohn anomalies are therefore smaller and broader than in
1D materials and, consequently, the electron–phonon coupling
required for the occurrence of a CDW/PLD is larger [25, 49].
Also, in 2D systems the temperature dependence of χ0(q) is
generally very weak [23, 46].

In two dimensions, yet another problem arises. If the
Fermi surface is anisotropic, the k dependence of the electron–
phonon matrix element cannot be neglected anymore and
the simple instability criteria (8) and (9) cease to be valid.
The expression for the electronic susceptibility has to be
generalized to

χ(q) = 1

L

∑

k

|g′
k,k+q|2

fk+q − fk

εk − εk+q
, (24)

where g′
k,k+q denotes the k-dependent electron–phonon matrix

element. As a rule of thumb, g′
k,k+q is large when k and

k + q are states with large and opposite band velocities [50].
In layered CDW systems, the electron–phonon matrix element
depends rather strongly on k [23, 48, 51], but in most cases
it does not become dominant in χ(q): the peaking of χ(q) is
more pronounced than the peaking of χ0(q); still, it is not sharp
enough to pick out the correct q0 [23, 48, 52].

In a nutshell, when going from one dimension to
two dimensions, the role of the electronic susceptibility in
CDW/PLD formation appears to be largely diminished, and the
same holds for the role of the Fermi surface. Our qualitative
comparison of 1D and 2D CDW systems is summarized in
table 2.
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Figure 2. Excitonic insulator instability of a semiconductor with a small indirect bandgap. (a) Electronic band dispersion in the normal phase
(dashed black lines) and in the excitonic insulator phase (solid red lines), after the bandgap EG has become smaller than the binding energy of
the exciton state EB. The thickness of the red lines is proportional to the spectral weight carried by the electron states in the excitonic insulator
phase. (b) Exciton and phonon dispersions in the normal phase (dashed black lines) and in the excitonic insulator phase (solid red lines). In
the depicted situation, the soft (spin singlet) exciton mode interacts strongly with a phonon mode.

Table 2. Qualitative comparison of ideal 1D and 2D metals with
respect to CDW/PLD formation.

1D 2D

Fermi surface:
Geometry (in 3D) Planar Cylindrical
Nesting Perfect Weak

Electronic susceptibility:
q dependence (T = 0) Log. divergence Weak peaking
T dependence (q = q0) Log. divergence Weak peaking

Kohn anomaly Large, sharp Small, broad

gq required for CDW Small Large

CDW energy gap Complete Partial

2.4. Excitonic insulator instability

Up to this point, we have discussed a situation with a
single metallic band and a CDW/PLD transition driven by an
electron–phonon interaction. Now, we consider a two-band
model with a small indirect bandgap/overlap and a ‘pure’ CDW
transition that is driven by an electron–electron interaction—
the so-called excitonic insulator instability [4, 5].

Let us assume a valence band with maximum at k = 0 and
a conduction band with minimum at k = q0:

εa
k = −1

2
EG − h̄2

2ma
k2, εb

k = 1

2
EG + h̄2

2mb
(k − q0)

2,

(25)
where EG is the energy gap, and ma and mb are effective
masses, and let us consider qualitatively what may happen
at the semiconductor (EG > 0)-to-semimetal (EG < 0)
transition, when the Coulomb interaction is taken into account
(see figure 2). First, we start on the semiconducting side with
an energy gap EG > EB > 0, where EB is the binding energy
of the lowest-lying excitons, and reduce EG by some external
parameter. During this process, EB is expected to remain
finite such that eventually a point can be reached at which the
exciton excitation energy EG − EB goes to zero. Then, an
electronic instability occurs due to the spontaneous formation

of excitons. Similarly, if we start with a semimetal with a small
band overlap |EG|, the excitation energy of a plasmon can go to
zero when the band overlap becomes smaller than some critical
energy |E1| (E1 < 0). This instability can be connected to
screening effects. If the number of electrons and holes in the
semimetal becomes sufficiently small, the Coulomb attraction
between them will be insufficiently screened so that bound
states are formed, turning the semimetal into an insulator.
Taken together, the normal insulating and semimetallic ground
states are unstable in the range E1 < EG < EB [4, 5].

Besides the complete softening of an exciton or plasmon
mode, the excitonic insulator state is signaled by the formation
of an electron density wave as well as by changes to the band
structure, and possibly by a lattice distortion. Depending
on the total spin S of the soft mode, the superstructure in
the electron density can be an antiferromagnetic SDW, for
S = 1, or a CDW, for S = 0. In both cases, the density
oscillation will have the wavelength λ0 = 2π/|q0|. In the
case of the SDW, the soft electronic mode does not interact
with the phonon modes of the system so that the lattice period
will not be modulated. For the CDW, on the other hand,
strong mixing between the soft electronic mode and some
phonon mode (both having S = 0) will generally occur (see
figure 2(b)) and the CDW will be accompanied by a PLD
with the same periodicity. In a strict sense, this CDW/PLD
is in contrast to the one resulting from the Peierls instability,
which is an instability of the combined electron–lattice system
driven by strong electron–phonon coupling. The excitonic
insulator instability is primarily an electronic instability, the
driving force is the electron–electron interaction (electron–hole
attraction) and the lattice distortion is therefore only a by-
product resulting from a finite electron–phonon coupling. It
should be pointed out, however, that although the driving force
may be different the outcome of Peierls and excitonic insulator
instabilities is qualitatively the same: a novel ground state with
broken translational symmetry exhibiting a CDW, a PLD and a
gap in the one-electron spectrum. Moreover, the two scenarios
are mathematically indistinguishable [53] (see table 3 for a
qualitative comparison).
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Table 3. Qualitative comparison of two basic CDW mechanisms:
Peierls instability versus excitonic insulator instability.

Peierls instability Excitonic insulator

Type of instability Electron + lattice Primarily electronic
Archetypal situation 1 band, odd valence 2 bands, even valence
Dominant interaction Electron–phonon Electron–hole
Type of density wave CDW/PLD CDW (SDW)
Soft collective mode Phonon Exciton or plasmon
Lattice distortion Large Small (none)

The modification of the electronic band structure in the
excitonic insulator phase can be modeled by the simple
effective Hamiltonian (cf equation (3)):

HEI =
∑

k

εa
k a+

k ak +
∑

k

εb
kb+

k bk +
∑

k


k
(
b+

k ak + a+
k bq

)
.

(26)
Via the last term, states in the valence and conduction band—
separated in wavevector by q0—are connected. If we set

 = 
k = const., εk = εa

k and εk+q0 = εb
k+q0

, we can reuse
equations (17) and (19) for the reconstructed band structure
and the spectral function, respectively. Figure 2(a) illustrates
the effects. The valence and conduction band parabolae are
mapped onto each other, the band edges become repelled and
some spectral weight is transferred from the original bands
to the reconstructed ones. The nature of the resulting state
depends on the sign of the gap EG and on whether the two
bands εa

k and εb
k have the same or different anisotropies (in

the kx and ky direction). When EG is positive, the resulting
band scheme will always be that of an insulator. If, on the
other hand, EG is originally negative, an insulating ground
state occurs only when the band anisotropies are the same. For
different band anisotropies, the modified bands will overlap
and the new ground state will be semimetallic [4].

2.5. Application to real materials

Before we turn from the theoretical background to the review
of the properties of the selected CDW/PLD materials, we may
ask whether the presented models can indeed be applied to real
materials.

As for the Peierls instability, as detailed in section 2.1,
the model with its formulae certainly helps to identify and
understand, at least semi-quantitatively, CDW/PLD transitions
in real materials, in particular in quasi-1D solids [25]. It
can also be seen as a reasonable starting point for more
sophisticated microscopic theories. The theory of the
Peierls instability is, however, based on weak coupling and
special (1D) features of the near-EF electronic structure
and is therefore expected to become inappropriate when
the electron–phonon coupling and energy gapping are large
and Fermi surface geometry is not 1D-like. Nevertheless,
when realistic calculations are not available, the Peierls
model provides a theoretical framework within which semi-
quantitative predictions can be compared with experimental
data. In section 5, we shall take this approach for the selected
layered CDW/PLD systems.

Concerning the model of the ‘pure’ excitonic insulator
instability, its relevance for real materials is less clear. In

real materials, electron–phonon coupling and electron–hole
attraction are always simultaneously present such that the
classification of a system as either a Peierls insulator or an
excitonic insulator is generally ambiguous. (Note that in the
Chan–Heine condition (9), which will frequently be used in
our analysis of the CDW/PLDs in the layered compounds, the
presence of the two interactions is indicated by the parameters
gq and Vq.) It is nevertheless surprising that, while the
existence of Peierls insulators is undoubted, there are only a
few materials for which experimental evidence for an excitonic
insulator state has been reported. Two important examples are
the rare earth compound TmSe0.45Te0.55 [54] and the layered
transition-metal compound 1T-TiSe2 [11]. For the latter
material, whose electronic structure is so suggestive of the
excitonic insulator instability, we will specifically investigate
in section 4 whether evidence can be found for a strong
excitonic contribution to the observed electronic structure
changes.

3. CDW/PLDs in the layer compounds 1T-TaS2,
2H-TaSe2 and 1T-TiSe2

For our study of CDW/PLD formation in the family of
layered transition-metal dichalcogenides, we select here 1T-
TaS2, 2H-TaSe2 and 1T-TiSe2 from the nine family members
that are known to undergo a transition to a CDW/PLD
state (only pure compounds and 1T, 2H and 4Hb polytypes
counted [18]). These three compounds are perhaps the most
extensively studied ones and they are especially characterized
by high transition temperatures, well above 77 K, that
lead to significant and reproducible effects upon CDW/PLD
formation. Besides having large amplitudes, the CDW/PLDs
in 1T-TaS2, 2H-TaSe2 and 1T-TiSe2 are also remarkably
robust against imperfection as they survive transition-metal
or chalcogen substitution up to the 15% level [18, 55, 56],
intercalation of metal atoms up to the 5% level [9, 57]
and alternating octahedral (1T) and trigonal prismatic (2H)
coordination as in the 4Hb Ta compounds [18, 58–60]. One
may therefore expect that these CDW/PLDs can be more easily
linked to a specific mechanism. On the other hand, strong
effects naturally imply that one leaves the solid framework of
weak-coupling theory. The basic undistorted crystal structures
of the 1T and 2H polytypes are illustrated in figure 3.

3.1. Summary of observed CDW/PLD phases

We begin this brief review with 1T-TaS2, the compound
with the richest phase diagram of all transition-metal
dichalcogenides. If we start at roughly 560 K and lower
the temperature, a sequence of CDW/PLD phases with some
kind of ordering close to a

√
13 × √

13 superstructure will
occur [18, 61]. The CDW/PLD is incommensurate between
543 and 352 K, nearly commensurate from 352 to 183 K
(from 221 to 355 K upon heating), and finally commensurate
below 183 K [18, 59, 61]. The incommensurate, nearly
commensurate and commensurate phases are also called
1T1, 1T2 and 1T3, respectively. On the way from the
incommensurate to the commensurate phase, the rotation
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Figure 3. Schematic crystal structure of the 1T (left) and the 2H
(right) polytype of layered transition-metal dichalcogenides. In the
1T structure, the transition-metal atoms are octahedrally coordinated
by chalcogen atoms and the thickness of the repeat unit in the c
direction is one sandwich. In the 2H structure, the coordination is
trigonal prismatic and the unit cell is two sandwiches thick.

angle of the superlattice with respect to the undisturbed
lattice changes from 0◦ to 13.9◦ [61]. In the nearly
commensurate phase, the rotation angle is about 12◦ ±
1◦. In this phase, commensurate domains are present,
arranged in a hexagonal ‘super-superlattice’ and separated by
discommensurate areas [63]. In the commensurate phase, the
Ta atoms are grouped into 13-atom clusters with a ‘Star-of-
David’ arrangement, as shown in figure 4 (left). The Ta
atom displacements are very large, up to 0.24 Å, and mostly
in-plane. The displacements of the S atoms are smaller by
about a factor of two and mostly out-of-plane [62]. As to a
possible out-of-plane periodicity of the CDW/PLD, it can be
noted that the stacking sequence of the Ta layers has a period
of three in the incommensurate and nearly commensurate
phases [61], but that it is not clear whether the stacking
sequence is disordered [64–66] or has a period of 13 [63] in
the commensurate phase.

A distinctive feature of the (first-order) nearly commen-
surate–commensurate phase transition in 1T-TaS2 is that
electron correlation effects are involved. In the presence
of the commensurate CDW/PLD, the electronic states in the
partially filled Ta 5d band are regrouped such that a Mott–
Hubbard transition can occur, to a state with overlapping
Hubbard subbands and thus a pseudogap at the Fermi
level [67]. The few remaining states at EF are then sensitive
to Anderson localization, which is finally responsible for the
observed semiconducting behavior of commensurate phase 1T-
TaS2 [68]. A CDW phase with semiconducting properties is
the exception in the family of transition-metal dichalcogenides.
All other CDW phases are metallic or even superconducting at
low temperatures.

Compared to 1T-TaS2, the phase diagram of 2H-TaSe2 is
less complex. Upon cooling, 2H-TaSe2 undergoes a second-
order transition at 122 K to an incommensurate phase with a

modulation close to a 3 × 3 reconstruction, which is followed
by a first-order lock-in transition at 90 K to the commensurate
3 × 3 state [69]. Upon warming, a ‘striped’ incommensurate
phase with broken hexagonal symmetry has also been found
between 93 and 112 K [70]. In the commensurate phase,
the Ta atoms form seven-atom clusters, similar to the inner
seven atoms of the ‘Stars of David’ in 1T-TaS2 [62] (figure 4
(middle)). At a temperature of 5 K, the in-plane Ta atom
displacements are about 0.05 Å, more than five times larger
than the in-plane Se atom displacements [69]. As in 1T-TaS2,
the movements of the chalcogen atoms in the perpendicular
direction, into the van der Waals gaps between the Se–Ta–Se
sandwiches, are slightly more pronounced.

Compared to the two Ta compounds, the CDW/PLD
transition in 1T-TiSe2 is markedly different: a commensurate
superlattice forms without the occurrence of an incommensu-
rate phase, the transition involves a wavevector corresponding
to a high-symmetry point of the Brillouin zone and the
CDW/PLD undoubtedly shows 3D long-range ordering. At
202 K, 1T-TiSe2 undergoes a second-order phase transition
to a commensurate 2 × 2 × 2 CDW/PLD [71]. The atomic
displacement pattern within an Se–Ti–Se sandwich is shown
in figure 4 (right). At low temperature (77 K), the metal atom
displacements are again quite large, about 0.085 Å, and the
ratio of Ti to Se displacements is 3:1 [71].

All three compounds develop a triple-q CDW, i.e. the
charge-density modulation is given by

ρ(r) = ρ0(r)

[
1 +

2∑

i=0

ρi cos(qi r + φi )

]
, (27)

where ρ0(r) describes the unperturbed electron density, and
ρi , qi and φi are the amplitudes, wavevectors and phases
of the three superimposed electron density modulations
(cf equation (1)). In the commensurate CDW phases, the
CDW wavevectors can be expressed as linear combinations
of the hexagonal reciprocal lattice vectors a∗

i (i = 0, 1, 2):
q0 = 1

13 (3a∗
0 + a∗

1) or q′
0 = 1

13 (−3a∗
0 + 4a∗

1) for 1T-TaS2

(in-plane components only), q0 = 1
3 a∗

0 for 2H-TaSe2 and
q0 = 1

2 (a
∗
0 + a∗

2) for 1T-TiSe2. The wavevectors q1 and q2

are in each case obtained by rotating q0 around the kz axis by
±120◦. Figure 4 shows the projected real-space unit cells and
Brillouin zones for the three materials.

In the following, we will only be concerned with the
microscopic origin of the transition from a normal undistorted
phase to a (commensurate) CDW/PLD phase and not with
the various transitions between incommensurate, nearly
commensurate and commensurate CDW/PLD phases. The
latter have been successfully modeled by phenomenological
Landau theory [72, 73].

3.2. Characteristics of the CDW/PLD states

Beginning in the mid-1970s [18], a broad variety of experimen-
tal and theoretical studies have been performed on 1T-TaS2,
2H-TaSe2 and 1T-TiSe2. The experimental techniques used
include x-ray, neutron and electron scattering to determine
structural changes and angle-resolved photoemission, scanning
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Figure 4. Real-space unit cells (top) and Brillouin zones (bottom) for the commensurate
√

13 × √
13 (left), 3 × 3 (middle) and 2 × 2 (right)

superlattices within a single sandwich layer of 1T-TaS2, 2H-TaSe2 and 1T-TiSe2, respectively. In the top row, the arrows indicate in-plane
displacements of the atoms from their original positions (arrow lengths are not to scale). For 1T-TaS2 and 2H-TaSe2 only the Ta atoms are
shown; there are inequivalent ‘a’, ‘b’ and ‘c’ Ta atomic sites in the distortion patterns. In the bottom row, the red arrows indicate the in-plane
wavevectors of the various CDWs and the gray contours illustrate the topology of the equi-energy contours near the Fermi energy for the
transition-metal d-derived states in the normal phase.

Figure 5. Experimentally determined energy gap sizes (open
symbols) versus CDW/PLD transition temperatures for 2H-TaSe2,
1T-TiSe2 and 1T-TaS2. For comparison, the prediction of
weak-coupling theory (solid line) and a heuristic criterion for the
applicability of the strong-coupling limit (dashed line) are also
indicated.

tunneling and optical spectroscopy as well as specific heat
and transport measurements to characterize the electronic
properties and the changes in the electronic spectrum. On
the theoretical side, density-functional theory within the local
density approximation (LDA) has provided quite accurate
results on the electronic structure near the Fermi level, at least
for the unreconstructed phases. Table 4 summarizes selected
experimental and theoretical results. From these, a number of
conclusions can be drawn.

(i) First of all, there is strong evidence for the occurrence of
a CDW/PLD transition in all three compounds because
in each case the presence of the three most important
signatures—a periodic lattice distortion and an energy
gap below a certain transition temperature and a Kohn
anomaly above that temperature—is consistent with the
experimental data.

(ii) For all three systems, the electron–phonon coupling is
strong, as can be concluded from several experimental
results. First, the amplitudes of the PLDs are large; for
the maximum displacement of the transition-metal atoms
relative to the lattice constant one finds umax/a = 1.5–
7%. Second, the depression of the phonon frequency
at the CDW/PLD wavevector due to the Kohn anomaly
appears to be significant: 1 − ωq0/ωqmax ≈ 0.2–0.7,
where ωqmax is the maximum phonon frequency in the
branch that shows the softening. And, third, although
there is some uncertainty about the precise values, the
average experimental energy gaps in the electronic spectra
are large, both with respect to the Fermi energy and
the transition temperature: 〈2
(0)〉/EF ≈ 0.15–0.5 and
〈2
(0)〉/kBT0 = 5.56 ± 1.20 � 3.52 (see figure 5).
(The average experimental energy gaps 〈2
(0)〉 are 243±
113 meV (1T-TaS2), 88 ± 53 meV (2H-TaSe2) and 95 ±
25 meV (1T-TiSe2).) Large energy gapping is also
indicated by a significant reduction of the density of states
at the Fermi level: N(0)∗/N(0) < 0.5, where N(0)∗
denotes the low-temperature value derived from specific
heat measurements and N(0) comes from band structure
calculations performed for the undistorted phases. For the
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Table 4. Selected experimental and theoretical parameters for the
layered CDW compounds 1T-TaS2, 2H-TaSe2 and 1T-TiSe2.

1T-TaS2 2H-TaSe2 1T-TiSe2

Transition temperatures
TICDW (K) 543a 122b —
TCCDW (K) 183–221a 90b 202c

Lattice distortion

Superstructure
√

13 × √
13

d
3 × 3b 2 × 2 × 2c

Displacement umax/a 7%e 1.5%f 2.4%c

Energy gap
2
(0) (meV) 100–400g 24–160h 60–120i

Kohn anomalyj

h̄ω̃q0 (meV) 4.8k 7.0b 5.4l

1 − ω̃q0/ω̃qmax 73%k 22%b 42%l

|q0 − qmax| (Å
−1

) 0.32k 0.26b 0.44l

LDA band structure
EF (eV) ∼1.3m ∼0.6n ∼0.2n

N(0) (states/eV u.c.) 1.4–1.7o 5.2o 0.9–1.5p

Specific heat
N(0)∗ (states/eV u.c.) 0.2–0.6(1.8)q 1.9–2.2r 0.08s

D (K) 249q 201r 251s

Electrical resistivity
ρ (m� cm)t ∼0.2u ∼0.1v ∼1w

ρ⊥/ρ‖ ∼500x ∼25v ∼2.5w

Lattice constantsy

a (Å) 3.365 3.435 3.536
c (Å) 5.883 2 × 6.359 6.004

a Thermal and transport measurements [59].
b Neutron scattering [69]. c Neutron scattering [71].
d Electron diffraction [18]. e X-ray diffraction [62].
f Neutron scattering [69, 74].
g ARPES, scanning tunneling spectroscopy, optical conductivity and
tight-binding simulations [75–79]. The value range does not
necessarily reflect the size of the CDW gap because below ≈180 K
there is also a Mott–Hubbard-type gap.
h ARPES, scanning tunneling spectroscopy and optical
spectroscopy [80–85].
i ARPES [11, 86–89]. j Near room temperature.
k X-ray thermal diffuse scattering at 360 K [90].
l X-ray thermal diffuse scattering at 295 K [91].
m Reference [92]. n For a semimetallic normal phase [93].
o Reference [94] and references therein.
p Reference [95] and references therein.
q References [18, 96]. r References [18, 97].
s Reference [98]. t Above TCDW. u At 550 K [12].
v At 300 K [99]. w At 300 K [71]. x Reference [100].
y Average values from references compiled in [101].

strong-coupling limit to apply, it has been suggested [39]
that 2
(0)/kBT0 > 7. As can be seen in figure 5, the
measured gap sizes place the three materials somewhere
in the intermediate to strong-coupling regime.

(iii) A strong interaction between electrons and phonons is
also suggested by the relatively high electrical resistivity
above the transition temperature. For all three compounds,
ρ � 0.1 m� cm, which is roughly 50 times larger
than the resistivity of Cu at 373 K [102]. Such high
carrier scattering rates above T0 have been interpreted
as being caused by fluctuations of a strong-coupling
CDW/PLD [103].

(iv) Using the inverse width of the Kohn anomaly 1/|
q| as a
measure for the coherence length, we obtain π/|
q|λ0 ≈
1 for all three systems, where λ0 is the wavelength of
the observed CDW/PLD. This implies that the coherence
lengths are as short as they can physically reasonably
be, which again suggests that the short-coherence-length
(strong-coupling) limit applies.

(v) It is not surprising that all three compounds can be
regarded as quasi-2D (2 < D < 3), when comparing
resistivity measurements parallel and perpendicular to the
layers. However, the anisotropy ratio covers two orders of
magnitude, ρ‖/ρ⊥ ≈ 2.5–500, which implies qualitative
differences between the compounds. 1T-TaS2 should be
regarded as a 2D system, while 1T-TiSe2 is almost 3D,
and 2H-TaSe2 is somewhere in between.

(vi) Finally, an interesting observation is that the maximum
atomic displacement appears to scale linearly with the
transition temperature: umax/a ≈ 1.27×10−4T0 (K), with
T0 referring to the transition between the normal phase
and the first CDW/PLD phase reached upon cooling (an
incommensurate CDW phase for 1T-TaS2 and 2H-TaSe2

and a commensurate CDW phase for 1T-TiSe2). It is
not clear whether this is accidental or implies a common
underlying mechanism. However, if we combine the linear
transition temperature dependences of the energy gap

(0) and of the maximum atomic displacement umax, we
obtain a ‘universal’ electron–phonon coupling parameter

(0)/umax = (0.55 ± 0.13) eV Å

−1
.

Summing up, the key experimental observations—an
electronic energy gap and a periodic lattice distortion at
low temperatures as well as a Kohn anomaly at high
temperatures—suggest a Peierls-like CDW/PLD instability in
the three layer compounds 1T-TaS2, 2H-TaSe2 and 1T-TiSe2.
Yet, we foresee that the simple 1D weak-coupling mean-
field theory will probably not describe the observed transitions
adequately, because the materials are quasi-2D and in the
intermediate to strong-coupling regime.

As pointed out in section 2.2, strong coupling implies
that models based on special features of the Fermi surface
alone will not work when trying to explain the microscopic
origin of CDW/PLDs. Instead, a detailed look at the entire
band structure is necessary. In addition, there is some
uncertainty related to the sizes of the measured energy gaps,
not only because different methods measure different gaps in
the electronic spectrum, but also because it is not evident where
exactly in k space the energy gap(s) should open up. In that
respect, it is also not fully transparent what a spectroscopy such
as ARPES is actually seeing in the CDW/PLD phases. For
these reasons, it seems necessary to investigate in detail the
band structures and spectral weight distributions of the three
selected materials in their reconstructed phases.

4. Band structures and spectral weight distributions
of reconstructed 1T-TaS2, 2H-TaSe2 and 1T-TiSe2

In this section, our goal will be twofold: (i) to better understand
the ARPES results obtained from 1T-TaS2, 2H-TaSe2 and
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1T-TiSe2 in the commensurate CDW/PLD phases and (ii) to
find some clues to the possible CDW mechanism(s) in the
electronic structure near the Fermi energy EF. We will not
perform (intransparent) density-functional theory calculations.
Instead, our approach is to use an empirical tight-binding
model that is as simple as possible but captures the essential
aspects. We start with a brief review of the available ARPES
results on the three selected compounds.

4.1. Review of ARPES results

In the last couple of years, numerous ARPES studies have
been performed on 1T-TaS2 [68, 77, 79, 92, 104–112],
2H-TaSe2 [81, 82, 84, 85, 113, 114] and 1T-TiSe2

[11, 86–89, 115, 116]. Here, we will concentrate on the
CDW/PLD-induced changes to the single-particle energies and
the accompanying redistribution of spectral weight. Possible
many-body effects on the ARPES lineshapes will not be
considered.

For each compound, we show in figure 6 characteristic
electronic structure changes—as seen by ARPES—that occur
near the Fermi level upon entering the commensurate
CDW/PLD phase. The corresponding ARPES measurements
were conducted at the Electronic Structure Factory endstation
at beamline 7.0.1 of the Advanced Light Source in Berkeley,
with an overall energy resolution of ∼50 meV and with the
samples heated and cooled to above and below the known
CDW transition temperatures (sample temperatures and photon
energies used are indicated in figure 6). From these ARPES
results and the previous studies, we abstract the schematic
view of the material-specific electronic structure changes
shown in figure 7. In this figure the black lines reflect the
respective band structures or Fermi surfaces in the normal
and CDW phases, whereas the thick gray lines accentuate
those electronic states that carry a large ARPES spectral
weight in the CDW phases. We emphasize that our ARPES
results (figure 6) are in good overall agreement with the most
recently reported results [11, 85, 110]. Minor discrepancies
are presumably due to matrix element effects connected with
different experimental geometries and photon energies used.

Figure 7(a) reproduces the results of an early tight-binding
calculation for 1T-TaS2 [75], on which much of our current
understanding of the band structure in the commensurate√

13×√
13 CDW/PLD phase is based. In undistorted 1T-TaS2,

a single Ta 5d band disperses downwards from the Brillouin
zone center (� point) toward the zone boundary (M point) and
then back upwards along the zone face (M–K direction). It
crosses the Fermi level twice to give an elliptical Fermi surface
pocket centered on M (see figure 11(b)). In the

√
13 × √

13
reconstructed phase, a dramatic rearrangement is predicted
to occur. The occupied part of the Ta 5d band is split into
submanifolds separated by gaps and the Fermi surface becomes
‘messy’, being determined by the bottom of a spaghetti-like set
of bands (see figure 7(a) (right)).

The results of ARPES measurements on 1T-TaS2 are
in principle consistent with this picture. The existence
of the submanifolds has been confirmed [75, 79, 104] and
some of the fine structure within the submanifolds, including

Figure 6. Experimental electronic structures of (a) 1T-TaS2,
(b) 2H-TaSe2 and (c) 1T-TiSe2, as seen by ARPES in the normal
phases (left) and in the commensurate CDW phases (right). The
corresponding temperature and photon energies are indicated.
ARPES intensity maps are shown in inverse grayscale (black
corresponding to high intensity). In (b) the Brillouin zones for the
1 × 1 (solid lines) and 3 × 3 (dotted lines) superlattices of 2H-TaSe2

are indicated.

subband dispersions, has been resolved [77, 109–111]. This
is illustrated in figure 7(a) by the thick gray lines. It should
be pointed out, however, that relating ARPES data on 1T-
TaS2 to CDW effects is not unambiguous. First, there are no
ARPES results available for the undistorted phase, which exists
only in a small temperature interval above ∼543 K (ARPES
data for the highest sample temperature so far are shown in
figure 6(a)). Yet, this is not too problematic. Since spectral
weight distributions reflect the original band dispersion as long
as the superlattice crystal potential is small (see section 2.1),

12



J. Phys.: Condens. Matter 23 (2011) 213001 Topical Review

Figure 7. Schematic electronic structures of (a) 1T-TaS2,
(b) 2H-TaSe2 and (c) 1T-TiSe2, taken from experimental and
theoretical band structure results in the normal phases (left) and in
the commensurate CDW phases (right). Band structure features that
carry significant spectral weight in the CDW phases are highlighted
by thick gray lines. The inset in (c) shows the bulk Brillouin zone of
the layered compounds.

the undistorted band dispersion can practically be extracted
from room temperature ARPES data, when the system is in
the nearly commensurate CDW phase. In fact, even deep in
the commensurate CDW phase, the spectral weight is mostly
concentrated along the original band and the reconstructed
band structure is only faintly visible [109–111] (see also
figure 6(a)). Second, the transition to the commensurate phase
is accompanied by a Mott–Hubbard-type metal–insulator
transition, which creates a ∼0.4 eV gap at EF and leads to
the appearance of a rather sharp Hubbard subband around
� at ∼0.2 eV below EF [68, 104, 110] (thick gray line in

figure 7(a)). Hence, strong electron–phonon coupling and
electronic correlations are simultaneously present in 1T-TaS2

and this, together with the ‘band spaghetti’, leads to broad
ARPES lineshapes and the absence of sharp Fermi level
crossings [105, 106, 110, 111] (figure 6(a)). The experimental
Fermi surface maps are diffuse; if unnormalized, they show a
high-intensity feature centered on � and almost no intensity
near the zone boundaries [108, 111]. The conclusion then
is that there is considerable uncertainty in the band diagram
depicted in figure 7(a) and in its relation to the measured
spectral weight distributions. ARPES cannot resolve all the
predicted fine details and the tight-binding model itself may not
be fully appropriate, not least because it neglects the spin–orbit
interaction, which is expected to be important in the valence
band structure of Ta compounds.

For 2H-TaSe2, the situation is different. The most recent
ARPES data are extremely sharp and, therefore, allow for
a quantitative analysis by fitting the data to tight-binding
formulae [84, 85, 113, 114]. Here, we concentrate on the
CDW-induced changes to the Fermi surface. Figure 7(b)
compares the Fermi surface topologies in the normal and
commensurate CDW states, as determined with high accuracy
in [85, 113, 114]. In the normal phase (above 122 K), the Fermi
surface of 2H-TaSe2 consists of two hole-like circular pockets
around � and around K and one electron-like ‘dogbone’
centered on M. Note that this topology was not clear until
recently [84] and that it implies the existence of two saddle
points in the band structure along the �–K direction, one above
and the other below EF. As a precursor of the CDW (at a
temperature of ∼180 K), ARPES finds small pseudogaps on
the K pocket and possibly also on parts of the M dogbone [85].
Upon entering the incommensurate CDW phase (between
90 and 122 K) these pseudogaps become larger, until they
finally evolve into real bandgaps in the commensurate 3 × 3
CDW phase (below 90 K) [85]. As a result, the K Fermi
surface pocket is completely destroyed and the M dogbone is
broken up at the zone face, while the � pocket remains fully
intact [84, 85]. The reconstructed Fermi surface appears to
consist of circular pockets centered on the � points of the new
Brillouin zones and rounded triangles around the new K points
(see figures 6(b) (right) and 7(b) (right)). The spectral weight,
however, is concentrated on the normal-state � pocket and
on those parts of the other normal-state Fermi surface sheets
that contribute to the reconstructed Fermi surface pockets [85].
In short, ARPES presents a comparatively lucid picture of
the CDW-induced changes to the Fermi surface of 2H-TaSe2

and the results suggest that the selective, k-dependent energy
gapping should be given closer scrutiny.

In the case of 1T-TiSe2, the relevant electronic states are
the Se 4p states forming the valence band maximum in the zone
center (at the � point) and the Ti 3d states of the conduction
band minimum at the edge of the 3D Brillouin zone (at the
L point, see the inset in figure 7(c)). In the commensurate
2 × 2 × 2 CDW phase (below 202 K), the � and L symmetry
points of the normal reciprocal lattice become equivalent �

points of the smaller Brillouin zones so that the Se 4p and Ti 3d
bands can interact directly, if they are close enough in energy.
Although a consensus on the magnitude and sign of the p–d gap
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in the normal phase has not yet been reached, the most recent
ARPES results have yielded sufficiently small gap values
between −20 meV (band overlap) and +150 meV (bandgap)
for the p–d interaction to play an important role in the band
energy lowering in the CDW phase [11, 86, 87, 89, 116].
Figure 7(c) reproduces the quantitative ARPES results of [87].
(Note that there are only two Se 4p bands depicted at �, while
there should be three. The third band has probably escaped
detection because of the use of an inappropriate photon energy
in the experiment.) Upon the transition from the normal state
to the commensurate CDW state, 1T-TiSe2 transforms from a
semiconductor with a small indirect gap of ∼50 meV between
� and L to another semiconductor with a larger indirect gap
of ∼100 meV at a slightly different location in k space. In
other ARPES studies, similar p-band shifts to lower energies
are reported [11, 86, 87, 89] (see also figure 6(c)). Besides this
opening of a p–d gap, the strong p–d band interaction manifests
itself in the flattening of the top of the Se 4p valence bands,
the suppression of spectral weight near the top of these bands,
the buckling of the bottom of the Ti 3d conduction band and
the appearance of remarkably intense folded Se 4p bands at
L (see figures 6(c) and 7(c)). The further supposed splitting
of the threefold-degenerate conduction band in the unoccupied
region [87] is not observable by ARPES. Summing up, there
is clear evidence from ARPES that p–d band interaction is an
important ingredient for the CDW phase transition in 1T-TiSe2.
Thus, if the nature of the interaction could be further clarified,
this would certainly contribute to a better understanding of the
transition.

It should be pointed out that in all three compounds
precursors to the effects observed in the commensurate
CDW/PLD phases—such as a pseudogap, diffuse shadow band
intensity or suppression of spectral weight—already occur well
above the transition temperatures to these phases. In addition to
the experimental signatures of the CDW/PLD states discussed
in section 3.2, this is further evidence for the strong-coupling
nature of the CDW/PLDs in these materials.

How do the ARPES results on the three selected layered
CDW/PLD systems comply with the simple 1D weak-coupling
mean-field picture described in section 2.1? Where do
the CDW/PLD-induced energy gaps actually open up? As
anticipated in sections 2.2 and 2.3, strong coupling and
two-dimensionality blur the image of a Fermi surface-driven
instability; the CDW gap in the electronic spectrum does not
necessarily open up at EF. It does so in 2H-TaSe2, in which
the K Fermi surface pocket is completely (and the M pocket
partially) removed. But in 1T-TaS2 and in 1T-TiSe2 the CDW
gaps are not directly connected with Fermi level crossings of
the undistorted bands. Instead, gaps open up between subband
manifolds at somewhat higher binding energies. The CDW
gapping occurs in 1T-TaS2between subgroups of occupied Ta
5d bands and in 1T-TiSe2 between the bottom of the (nominally
unoccupied) Ti 3d conduction band and the top of the (fully
occupied) Se 4p valence band.

To what extent is the novel periodicity of the CDW/PLD
phase reflected in the band dispersions? We have noted
above that reconstructed or ‘shadow’ bands carry significant
spectral weight only in the proximity of original bands so

that spectroscopy cannot detect the whole folded-out band
structure, except for faint shadows in the regions away from the
original bands. Although this picture is in principle confirmed
by the ARPES results on the layered compounds, the relative
strength and clarity of the shadow band effects is surprising. In
1T-TaS2, the compound with the largest lattice distortion, the
fine structure in the reconstructed band structure is only faintly
visible, while in 2H-TaSe2 and even more so in 1T-TiSe2 clear
signatures of isolated reconstructed bands can be identified—
in 2H-TaSe2 in the Fermi surface map and in 1T-TiSe2 in the
band map around the L point.

Our goal will now be to understand these band
structure effects on the basis of an empirical tight-binding
model. An important motivation is the following: if the
model can reproduce the experimentally observed spectral
weight distributions, it may provide access to the complete
reconstructed band structure and not just the parts with a high
spectral weight that are detectable by ARPES. Based on such
a foundation, the discussion of the possible CDW mechanisms
is expected to become richer.

4.2. Empirical tight-binding model

Our approach to simulating the electronic structure effects
upon CDW/PLD formation is based on the simplest model that
incorporates the essential physics, namely the Slater–Koster
tight-binding model. The tight-binding scheme we use follows
the one outlined in [75, 117–119].

The first step is a fit of the Slater–Koster parameters,
using a minimal basis set, to a first-principles band structure
calculation [93, 117, 120]. For 1T-TaS2 and 2H-TaSe2, we use
only Ta 5d orbitals, and for 1T-TiSe2 the basis consists of the
three Ti 3d t2g and the six Se 4p orbitals. In the case of 1T-TaS2,
the Hamiltonian includes only nearest-neighbor intralayer d–d
interactions, but for 2H-TaSe2 these are augmented by nearest-
neighbor and second-neighbor d–d interlayer interactions. For
1T-TiSe2, on the other hand, only nearest-neighbor p–p, p–d
and d–d intralayer and interlayer interactions are considered. In
the case of the two Ta compounds, spin–orbit coupling is added
by inclusion of the intra-atomic matrices M and N of Abate
and Asdente [121] and by use of the Herman–Skillman value of
the spin–orbit parameter (ξ = 0.313 eV) [122]. In this way, we
end up with reduced Hamiltonians of dimension 10 (1T-TaS2),
20 (2H-TaSe2) and 9 (1T-TiSe2). The fitted tight-binding band
structures are shown in figures 8(a), 9(a) and 10(a). For the two
‘three-dimensional’ compounds 2H-TaSe2 and 1T-TiSe2, we
restrict our analysis to the ALH and �MK planes in reciprocal
space, respectively.

The second step in our scheme is the simulation
of the effects of the reconstruction. This is done as
previously described [75, 118, 119]. The Hamiltonians of the
unreconstructed phases are opened out into the larger unit cells
depicted in figure 4, giving new Hamiltonians with dimension
130 (1T-TaS2), 180 (2H-TaSe2) and 36 (1T-TiSe2). To simulate
the reconstruction, the Slater–Koster hopping d–d, p–d and p–
p integrals are scaled as r−5, r−4 and r−3, respectively, where
r is the interatomic distance [123]. Some bonds within the
distortion patterns are thereby strengthened and other bonds
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Figure 8. Evolution of the band structure of 1T-TaS2 from the unreconstructed to the
√

13 × √
13 reconstructed phase. (a) Unreconstructed

band structure. (b) Unreconstructed band structure plus umklapp bands generated by translation through the reciprocal lattice vectors of the
reconstructed Brillouin zone. (c) Reconstructed band structure with inclusion of the bond strengthenings within the distortion pattern (for the
observed Ta atom displacement of 0.07a). In (c) and (d) the symbol size is proportional to the spectral weight carried by the states.
(d) Density of states in the unreconstructed (thick solid line) and reconstructed (filled gray curve) case. The red arrows mark pronounced gaps
in the spectral weight distribution and density-of-states curve.

Figure 9. Evolution of the band structure of 2H-TaSe2 from the unreconstructed to the 3 × 3 reconstructed phase. (a) Unreconstructed band
structure. (b) Unreconstructed band structure plus umklapp bands generated by translation through the reciprocal lattice vectors of the
reconstructed Brillouin zone. (c) Reconstructed band structure with inclusion of the bond strengthenings within the distortion pattern (for the
observed Ta atom displacement of 0.015a). In (c) and (d) the symbol size is proportional to the spectral weight carried by the states.
(d) Density of states in the unreconstructed (thick solid line) and reconstructed (filled gray curve) case. The red arrows mark pronounced gaps
in the spectral weight distribution and density-of-states curve.

Figure 10. Evolution of the band structure of 1T-TiSe2 from the unreconstructed to the 2 × 2 reconstructed phase. (a) Unreconstructed band
structure. ((b)–(d)) Reconstructed band structure with inclusion of the bond strengthenings within the lattice distortion pattern: (b) zero
distortion amplitude, (c) the observed distortion amplitude (corresponding to a Ti atom displacement of 0.024a) and (d) twice the observed
distortion amplitude. In (b)–(d) the symbol size is proportional to the spectral weight carried by the states. The red arrows highlight the
opening of the Se 4p–Ti 3d bandgap.

are weakened. Since the bond-length changes are known from
experiment, there remain no further disposable parameters in
the model. To keep the analysis as simple as possible, we
ignore any slight non-radial atomic movements [62] in the

formation of the lattice distortion patterns and, for 1T-TiSe2,
we neglect the reconstruction in the z direction.

The third step is to calculate the distribution of spectral
weight over the reconstructed band structure. To this end, we
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Figure 11. Simulated spectral weight distributions of 1T-TaS2

(a) Band map along �–M–K in the commensurate
√

13 × √
13 CDW

state. The solid line refers to the undistorted band dispersion.
(b) Fermi surface map in the normal state (left) and in the
commensurate

√
13 × √

13 CDW state (right). The Brillouin zones
of the normal and reconstructed phases are indicated. The red arrows
mark possible nesting vectors.

have extended the ‘spectral function’ approach for the simple
two-band case, as described in section 2.1, to the case with
multiple reconstructed bands (see also [79, 124, 125]). If we
denote the original ‘main’ bands by Eλ(k), the reconstructed
bands by E ′

j(k) and the corresponding eigenstates by |λk〉 and
| jk〉 (with band indices λ and j ), the total spectral weight
carried by the reconstructed eigenstate | jk〉 (having energy
E ′

j(k)) is given by
∑

λ |〈 jk|λk〉|2, i.e. by the projection of
the reconstructed eigenvector onto the original eigenvectors.
Thus, the spectral weight distribution function, depending on
wavevector k and energy ω, becomes

A(k, ω) =
∑

λ, j

|〈 jk|λk〉|2δ(ω − E ′
j(k)). (28)

Figures 8, 9 and 10 illustrate our tight-binding approach
by showing the progressive effects of the CDW/PLD
reconstruction on the band structures of 1T-TaS2, 2H-TaSe2

and 1T-TiSe2 near the Fermi level. First, the original bands
(figures 8(a), 9(a) and 10(a)) are opened out into the larger unit
cells creating a ‘spaghetti’ of umklapp bands (figures 8(b), 9(b)
and 10(b)). These ‘shadow’ bands are simply obtained by
translation through the reciprocal lattice vectors of the smaller
Brillouin zones (see figure 4). Then, the bond strengthenings
and weakenings are introduced (figures 8(c), 9(c) and 10(c)),
which leads to considerable changes: band degeneracies are
lifted, bands are shifted, energy gaps are created and spectral
weight is redistributed. Let us now discuss these effects for
each compound in more detail.

4.3. Tight-binding results√
13 × √

13 modulation in 1T-TaS2. In 1T-TaS2, the PLD
amplitude is the largest and therefore the band structure
changes are the most pronounced (the maximum Ta atom
displacement is ∼0.07a). The reconstructed band structure
collapses into submanifolds separated by distinct energy
gaps [75, 118] (see figures 8(c) and 8(d)). There are two low-
lying three-band submanifolds, each containing six electrons.
The ‘thirteenth’ electron (there are 13 Ta 5d1 atoms in the
reconstructed unit cell) resides in a distinct band at the Fermi
level. Since this band has a small width (∼80 meV), it
is susceptible to a Mott–Hubbard transition, as proposed
originally by Fazekas and Tosatti [67] and later confirmed by
ARPES [68]. We have shown previously that reconstruction
and spin–orbit interaction are both essential for the isolated
band to occur [118]. This band represents the important
difference compared to the earlier tight-binding results [75]
plotted in figure 7(a). The new results suggest that the Mott–
Hubbard-type transition which is connected with the nearly
commensurate-CDW–commensurate-CDW transition in 1T-
TaS2 appears as a consequence of the favorable electronic
structure of the commensurate-CDW phase. Since the
observed Mott–Hubbard gap is relatively small [68], its
contribution to the stabilization of the commensurate-CDW
phase is presumably negligible.

As expected, the calculated spectral weight is concentrated
along the original main band (figure 8(c)). To facilitate a
better comparison with ARPES results, we show simulated
spectral weight distributions in figure 11. These are obtained
by replacing the delta function in equation (28) with a
Lorentzian of 100 meV full width at half-maximum. Both
the A(k‖, E) band map along �–M–K (figure 11(a)) as well
as the A(k‖, EF) Fermi surface map (figure 11(b)) are in good
qualitative agreement with the results of ARPES measurements
(see [108–111]). Unfortunately, ARPES cannot resolve the
predicted fine details because of lifetime and resolution effects,
although recently shadow band dispersions exhibiting the
CDW periodicity have been detected [110, 111]. Two features
reproduced by the simulation are remarkable: the large spectral
weight gap along the M–K direction (figures 8(c) and 11(a))
and the related strong spectral weight suppression in the Fermi
surface map near the Brillouin zone boundary (figure 11(b)).
The tight-binding simulation shows that both effects are natural
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Figure 12. Simulated Fermi surface maps of 2H-TaSe2 in the normal
state (left) and in the commensurate 3 × 3 CDW state (right). The
Brillouin zones of the normal and reconstructed states are indicated.
The small Brillouin zone highlighted in red emphasizes the near
match with the normal-state Fermi surface pocket centered on the
K(H) point.

consequences of the lattice distortion in the CDW phase;
electron localization or photoemission matrix element effects
are not required for their explanation [107].

It should be pointed out that the large spectral weight gap
along M–K is not the CDW gap, although it occurs in a region
of k space where large parallel parts of the elliptical Fermi
contours are spanned by the observed CDW wavevector and
therefore significant Fermi surface nesting may be expected
(see red arrows in figure 11(b)). The ‘true CDW gaps’ are
rather the gaps between the subband manifolds. We emphasize
that it is the energy lowering of the two low-lying three-band
submanifolds that stabilizes the commensurate CDW/PLD, and
not the lowering of states at EF. In fact, in the tight-binding
calculation the density of states at EF even increases in the
CDW phase, due to the emergence of the distinct and narrow
band straddling the Fermi level (figure 8(d)). By summing over
all occupied states, we find a relatively large total electronic
energy gain of 160 meV per Ta atom for the experimentally
observed PLD amplitude.

3 × 3 modulation in 2H-TaSe2. In 2H-TaSe2, the
maximum displacement of the Ta atoms in the CDW phase
(∼0.015a) is about a factor of five smaller than in 1T-
TaS2. Consequently, the electronic structure changes are
less dramatic. The reconstructed band structure does not
collapse into submanifolds (figure 9) and the reconstructed
Fermi surface (in the repeated zone scheme) retains much
more resemblance to the original Fermi surface (figure 12).
Nevertheless, the PLD-induced changes are significant. The
Fermi surface pocket around K(H) is destroyed (red arrows
in figure 9(c)), the M(L) dogbone is broken up (figure 12)
and the new Fermi surface consists of (doubly degenerate)
pockets centered on the new �(A) points and of small rounded
triangles around the new K(H) points (figure 12). Note that the

calculated spectral weight distribution at EF shown in figure 12
agrees remarkably well with the ARPES results (figures 6(b)
and 7(b)).

It is tempting to associate the occurrence of the 3 × 3
CDW/PLD in 2H-TaSe2 with the near coincidence of the K(H)
Fermi surface pocket with the edges of the new Brillouin zone
(see the red hexagon in figure 12). This scenario would be
in direct analogy with the Peierls instability in one dimension,
where, however, the coincidence between Fermi surface and
new Bragg planes is exact (see section 2.1). Since gaps are
created in the band structure near the new Bragg planes, the
K(H) pocket will readily disappear when the 3 × 3 PLD sets
in. The opening of the pseudogap in the density of states near
EF (marked by a red arrow in figure 9(d)) is the consequence.
Yet, one cannot claim that the CDW/PLD instability is purely
Fermi-surface-driven, because the occupied states well below
EF contribute significantly to the total electronic energy gain
(see figure 9(d)). For the experimentally observed PLD
amplitude, the calculated band structure energy lowering is
20 meV per Ta atom, in good agreement with the value of
26 meV per Ta atom reported in [126].

2 × 2 modulation in 1T-TiSe2. In 1T-TiSe2, the maximum
displacement of the transition metal is ∼0.024a, about 1.5
times larger than in 2H-TaSe2 and about a factor of three
smaller than in 1T-TaS2. The relevant electron states (of Se 4p
and Ti 3d character) are confined to small volumes in k space
in the center and on the face of the Brillouin zone. The CDW
superlattice unit cell is the smallest for the three compounds so
that the number of umklapp bands is the lowest. Nevertheless,
the band structure changes due to the PLD are not less intricate.

For undistorted 1T-TiSe2, we assume the band line up
depicted in figure 10(a). There are three hole-like Se 4p bands
around �—two degenerate Se 4px,y bands comprising the
valence band maximum and one Se 4pz band at lower energy—
and one electron-like Ti 3d band around M(L). Note that spin–
orbit coupling and band dispersion in the layer-perpendicular
direction are neglected in the calculation. The indirect Se 4p–
Ti 3d bandgap is set to zero, as a compromise between the
latest ARPES results [11, 86–89, 115, 116]. In the folded-out
band structure, the Ti 3d band becomes threefold-degenerate,
as there are three independent M(L) points in the first Brillouin
zone. Remarkably, this degeneracy and also the Se 4px,y

degeneracy at � are lifted in the reconstructed band structure
already for zero distortion amplitude (figure 10(b)). There are
now three separate Se 4p bands and three separate Ti 3d bands
at the equivalent � and M(L) points, but the p–d gap remains
zero. It even stays zero when the PLD amplitude is increased
to the experimentally observed value (figure 10(b)), the major
effect being that the relative band edge positions within the
Se 4p and Ti 3d manifolds are changed. For twice the observed
distortion amplitude, however, a p–d gap of ∼100 meV opens
up, as indicated by the red arrows in figure 10(d). This
gap value is in good agreement with ARPES measurements
(figure 7(c)).

Upon increasing the maximum Ti atom displacement from
zero to 0.048a, spectral weight is continuously transferred
from the Se 4p to the Ti 3d states at � and vice versa at
M(L) (figures 10(b)–(d)). For better comparison with ARPES
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Figure 13. Simulated spectral weight distributions of 1T-TiSe2 for
the commensurate 2 × 2 CDW state: (a) around the � point and
(b) around the M(L) point. On the left, the Ti atom displacement
relative to the in-plane lattice parameter is zero; on the right, it is
4.8% (i.e. twice the experimentally observed value). The spectral
weight functions are multiplied by a Fermi–Dirac cutoff. Se 4p bands
are denoted by solid lines and Ti 3d bands by dashed lines. In the
bottom panels, the total spectral weight carried by each band
manifold is shown.

results, figure 13 shows calculated spectral weight distributions
for the interesting regions around the � and the M(L) point.
The qualitative agreement between the measured and simulated
band maps is good (see figure 7(c)). Among the key features
that are reproduced by the tight-binding model are—near �

(figure 13(a))—the flattening of the Se 4p valence bands,
the loss of spectral weight near the valence band maximum,
the appearance of Ti 3d spectral weight near EF and—near
M(L) (figure 13(b))—the occurrence of intense folded valence
bands and an EF intensity maximum away from the symmetry
point [11]. A striking result is the strong spectral weight
transfer at the high-symmetry points (see the bottom panels of
figures 13(a) and (b)). For a Ti atom distortion only twice as
large as the observed one, the total spectral weight carried by
the shadow bands at � and at M(L) is larger than that of the
original bands. This is in contrast to [11], where it has been
argued that the atomic displacements in the CDW phase of 1T-
TiSe2 are far too small to produce significant spectral weight
transfer to the shadow bands.

What are the implications of these results on the CDW
mechanism in 1T-TiSe2? In principle, the tight-binding model
confirms the scenario proposed in [87] (figure 7(c)). The PLD
causes a splitting of the degenerate Ti 3d conduction band and
Ti 3d–Se 4p band repulsion leads to a lowering of the top
of the valence band and thereby of the total band energy. A
novel feature revealed in the present study is the PLD-induced
splitting of the top two Se 4p bands. Note that in ARPES
studies this splitting has commonly been attributed to spin–
orbit interaction alone [127]. Since CDW fluctuations are
known to affect the normal-phase band structure of 1T-TiSe2

as seen by ARPES, it seems not unreasonable that there is a
significant CDW-induced contribution to the observed p-band
splitting even at room temperature.

As to the origin of the CDW/PLD in 1T-TiSe2, two issues
are the most pressing. First, as the k-space volume involved
in the transition appears to be small, one may ask whether
the observed changes in the electron energies near EF are
sufficient to drive the transition. By summing over all occupied
states in the energy range from −0.6 eV to EF = 0, we
obtain a band energy gain of ∼20 meV per Ti atom. This
value agrees fairly well with the 27 meV per Ti atom reported
in [23] and it is comparable to the value obtained for 2H-
TaSe2, the compound with somewhat similar PLD amplitude
and transition temperature. So, stabilization of the CDW/PLD
by the one-electron total energy change appears to be possible.
The second question is whether the PLD is solely responsible
for the observed changes (‘pure’ Peierls instability) or whether
there is a significant excitonic contribution (combined Peierls–
excitonic insulator instability [128–130]). Our tight-binding
results suggest the latter. The most significant ARPES result
for reconstructed 1T-TiSe2 is the opening of the relatively large
p–d gap and this is not reproduced by the present model until
the Ti atom displacement reaches twice the experimentally
observed value.

To sum up, the magnitude, k dependence and origin of
the CDW gap in the layered transition-metal dichalcogenides
were at the focus of many ARPES studies in the past. For the
three selected compounds 1T-TaS2, 2H-TaSe2 and 1T-TiSe2,
quantitative results, when available, have been summarized
in figure 7. We find it remarkable that the key features of
these results can be reproduced by empirical tight-binding
calculations. Considering the simplicity of the model, the
similarity between simulated spectral weight distributions and
measured ARPES intensity maps is striking. The tight-binding
results corroborate that CDW gapping in the three compounds
is large, not restricted to a small interval around the Fermi
energy and strongly k-dependent. There is not one uniform gap
opening up at the Fermi energy; rather subbands are shifted
over extended parts of the Brillouin zone. The results also
demonstrate that the observed band structure changes lower the
total energy of the electron system significantly and that they
are a natural consequence of the observed atomic distortion
patterns. The concept of Fermi surface nesting was not relevant
in the analysis, although some connection between the band
structure near the Fermi level and the observed CDW/PLD
wavevectors can be drawn for all three compounds.
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5. Why do CDW/PLDs occur in the layer
compounds?

One can try to understand the occurrence of CDW/PLDs in
the layered transition-metal dichalcogenides, in general, on
different levels of sophistication. In the simplest approach,
the observed CDW/PLD wavevectors may be rationalized
from the k-space geometry of the electronic structure in a
narrow energy window around EF or the CDW/PLD formation
may be qualitatively explained by analyzing the observed
lattice distortion patterns. On a higher level, the question of
whether a CDW/PLD should occur at all may be answered
by considering the balance between band structure energy
gain and elastic energy cost within simplified zero-temperature
models. But finally, for a prediction of the CDW/PLD
transition temperatures, a full microscopic theory at finite
temperatures is necessary. Here, we will proceed along this
line, from the simple to the more sophisticated explanations.

We emphasize that there need not be one underlying
CDW mechanism for the compounds we have concentrated
on; the formation of the different CDW/PLD superstructures
may easily be caused by different driving forces, particularly
because the electronic structures and resulting transport
properties of the three selected materials are so different. Yet,
a unifying explanation would be nice and, eventually, all three
CDW systems belong to the same family of compounds and
electron–phonon coupling is strong in all of them. As has
been pointed out previously [131, 132], the general occurrence
of CDW/PLDs in these materials makes it seem reasonable
that the phenomenon is based on general features rather than
specific and subtle properties of the band structure.

Our working hypothesis will thus be that the physical
picture provided by the Peierls model, as detailed in section 2,
is in principle correct for 1T-TaS2, 2H-TaSe2 and 1T-TiSe2

and that the occurrence of the CDW/PLDs can be understood
on the basis of a few measured and calculated parameters,
such as T0, q0, u0, χ0(q0) and 2g2

q0
/h̄ωq0 . Naturally, this

semi-quantitative approach is still overly simplistic, but it
may be instructive anyway, given that the involved concepts
and arguments are so commonly applied. It is an approach
reflecting an experimentalist’s view and the hope is that a
hierarchy of factors determining CDW/PLD formation in the
layered compounds can be established.

5.1. Qualitative explanations

Qualitative explanations of CDW/PLD formation are typi-
cally based on two extreme limits of the same physical
phenomenon [38, 39] (see section 2.2). When the CDW/PLD
amplitude is small, a metallic bonding picture applies; the
coherence length is long, the energy gap small, the CDW/PLD
often incommensurate and the transition is driven by an
instability of the Fermi surface. At the other extreme, when
the CDW/PLD amplitude is large, an ionic–covalent bonding
picture is more appropriate; the coherence length is short, the
energy gap large, the CDW/PLD tends to be commensurate
and the driving force of the transition is a tendency to form
shortened bonds between neighboring atoms such that the sum
of the energies of shortened and lengthened bonds is lower than

the energies of the normal bonds. The tight-binding results
presented in the previous section can essentially be understood
in the spirit of such a local-chemical-bonding picture.

1T-TaS2 is an example for how one passes from one
extreme to the other by lowering the temperature. For the
incommensurate CDW/PLD in the hole-doped compound 1T-
Ta1−x Tix S2 (0 � x � 1), electron diffraction has revealed
a direct relationship between the size of the Fermi surface
and the CDW/PLD wavevector q0, |q0| ∝ √

1 − x [56]. As
such a correlation is expected for a nesting vector across the
M centered elliptical Fermi surface pocket (see figure 11)
shrinking as a function of hole doping x , the experimental
finding strongly supports the idea of Fermi surface nesting as
the driving force of the normal-to-incommensurate CDW/PLD
phase transition. On the other hand, x-ray photoelectron
spectroscopy [133] and scanning tunneling microscopy [134]
measurements as well as model calculations [75] suggest that
1T-TaS2 in the commensurate phase can be regarded as a
mixed valence compound since there are inequivalent Ta sites
differing by up to 0.4e− per atom. This indicates a dominant
role of the local bonding properties in the transition. In terms of
local bonding energies, the transition is understood as follows:
13 Ta atoms form a star-shaped cluster (figure 4) in such a way
that the occupied Ta 5d t2g levels split into three submanifolds
with collectively lower energy [24, 67, 75, 118] (figure 8).

For 2H-TaSe2, similar explanations can be given. ARPES
measurements [84, 85, 113] suggest that the observed
CDW/PLD wavevector is consistent with partial nesting of
the K(H) Fermi surface pocket with the M(L) dogbone and
with the �(A) pocket (see figure 12). Moreover, figure 12
illustrates that the Fermi surface around the K(H) point is very
near to the faces of the novel Brillouin zone produced by the
PLD. This is in close analogy to the archetypal 1D scenario
of perfect nesting, in which a Peierls instability is bound to
occur (see figure 1). Since Brillouin zone faces are planes of
energy discontinuity, one expects large energy gapping on the
K(H) pocket and this is indeed what is observed [84, 85]. On
the other hand, the occurrence of the 3 × 3 CDW/PLD may
also be explained by looking at the lattice distortion pattern
in the Ta plane [24] (figure 4). There, nine-atom clusters are
formed, leading in the electronic structure to a splitting of the
Ta 5dx2−y2,xy manifold into two submanifolds. The lower one
is associated with shortened and the upper one with lengthened
metal–metal bonds. Since the Fermi level falls in the
(pseudo-)gap between the two corresponding density-of-states
peaks (see figure 9), the distorted structure is energetically
more favorable.

In 1T-TiSe2, the situation is different. The Se 4p and
Ti 3d Fermi surface pockets (if they exist at all) are small
and exhibit different sizes and anisotropies so that Fermi
surface nesting can be ruled out. Nevertheless, the band
structure topology is suggestive of the observed CDW/PLD
wavevector, since q0 connects the Se 4p valence band
maximum at � with the Ti 3d conduction band minimum
at L. The resulting direct p–d interaction is a key element
in the CDW/PLD transition. Because the band edges are
close in energy, p–d hybridization occurs and the occupied
p states are pushed to lower energies, thereby stabilizing the
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CDW/PLD state. The often discussed question is whether
the p–d interaction is phononic [23, 24, 47, 135, 136] or
electronic (excitonic) [11, 137–140] in origin. When the
coupling occurs via phonons, the transition is seen as a
(Peierls-like) Jahn–Teller band instability and the one-electron
total energy change connected with the PLD is the driving
force. In terms of chemical bonding, the Se 4p band energy
lowering can then be linked to the Ti–Se bond shortening
in the observed distortion pattern [24] (figure 4). If, on the
other hand, the p holes and d electrons are coupled via direct
Coulomb interaction, one has the excitonic insulator scenario
described in section 2.4 and the exchange–correlation energy
change associated with the CDW is an important factor. The
instability is then primarily electronic, even though it will be
accompanied by a PLD due to finite electron–phonon coupling.
Both models can qualitatively explain the CDW/PLD phase
transition in 1T-TiSe2. In view of the strong electron–
phonon coupling in this material, however, the Jahn–Teller
band instability seems more natural, although our tight-binding
calculations have indicated that the experimentally observed
lattice distortion amplitude is not sufficient to produce the
p–d gap seen by ARPES. This leaves room for a significant
excitonic contribution [128–130].

In summary, the ideas presented here may have some
merit in qualitatively explaining why the observed CDW/PLD
phases may occur in the three selected compounds. It
is clear, however, that their success originates in knowing
beforehand what is going to be explained. The concepts of
Fermi surface nesting and local chemical bonding have very
limited predictive power regarding the CDW/PLD wavevectors
and they definitely cannot predict whether the CDW/PLD
phase transitions should occur at all. Also, in a general
situation, it does not seem reasonable to separate Fermi
surface and local bond contributions [131] or, with regard
to 1T-TiSe2, one-electron and exchange–correlation energy
contributions [38]. Consequently, we now move on to less
specific, more quantitative microscopic models.

5.2. Existence of a CDW/PLD at T = 0

If a CDW/PLD is to occur at all, there must be a total
energy gain resulting from distorting the lattice at T = 0:
The electronic energy gain δEelectrons < 0 arising from the
band structure and exchange–correlation energy change has to
overcome the lattice energy cost δElattice > 0, i.e. δEtotal =
δEelectrons + δElattice < 0. Whether the energy balance is
indeed negative can, for example, be tested by using the Chan–
Heine criterion, equation (9), or by comparing the calculated
one-electron band energy change with a phenomenological
lattice energy term. Here we will do both. The first approach
has the advantage that it includes all relevant factors; but the
electronic energy change is derived from perturbation theory
and k dependence is neglected. In the second approach, on the
other hand, the band structure energy change is more realistic;
but the effects of electron–electron interactions are neglected.

In order to check the Chan–Heine condition (9), we have
to estimate the involved microscopic quantities for the three
selected materials: 1T-TaS2, 2H-TaSe2 and 1T-TiSe2. The

Table 5. Microscopic parameters for the layered CDW compounds
1T-TaS2, 2H-TaSe2 and 1T-TiSe2, as determined from theory and
experiment: the non-interacting electronic susceptibility as
determined from band structure, electron–phonon coupling
parameters as derived from the superconducting transition
temperature TSC and band versus lattice energy terms from simple
models.

1T-TaS2 2H-TaSe2 1T-TiSe2

Electronic susceptibility
χ0(q0)/χ0(0) − 1 58%a 35%b <3%c

1/χ0(q0) (eV/state)d 0.7–0.9 ∼0.6 1.3–2.2

Electron–phonon coupling
TSC (K) 5e 0.15f 4.15g

λMcMillan
h 0.85 0.49 0.80

4g2
q0

/h̄ωq0 (eV/state)i 1.0–1.2j 1.3–1.5k 1.6l

Band versus lattice energy
−
Eband (meV)i 160m 20–26n 20–27o

−
Eband/〈u〉2 (eV Å
−2

)p 3.4q 11.3–15.3 3.7–5.0
1
2 Mω2

q0
(eV Å

−2
)r 10.0 6.5 2.7

a Reference [45]. b Reference [114]. c Reference [47].
d Per transition-metal atom; using χ0(0) = 1

2 N(0) with N(0)

values from table 4.
e For p > 3 GPa [12]. f Reference [18]. g For Cu0.08TiSe2 [9].
h Using McMillan’s formula, equation (29) [141], with μ∗ = 0.2.
i Per transition-metal atom.
j Using N(0) from LDA, table 4.
k Using N(0)∗ from specific heat, table 4.
l Using N(0)∗ = 1.8 states/eV u.c. from specific heat [9].
m This work. n This work and [126]. o This work and [23].
p Per transition-metal atom; 〈u〉2 is the average squared
displacement of the transition-metal atoms in the CDW/PLD
state. q See also [142].
r Using the mass of the transition-metal atom for M and the
Debye frequency for ωq0 .

results, from this work and compiled from the literature,
are summarized in table 5. The values for the electronic
susceptibility χ0(q0) are derived from calculated or measured
band structures and the electron–phonon coupling term
2g2

q0
/h̄ωq0 is deduced from the measured superconducting

transition temperature TSC. This approach follows [49].
Note that 1T-TaS2 and 1T-TiSe2 are not superconducting
under ‘ambient’ conditions, but that superconductivity can be
induced by hydrostatic pressure in 1T-TaS2 [12] and by Cu
intercalation in 1T-TiSe2 [9]—in both cases via suppression
of the CDW/PLD phase. We assume here that the novel
superconducting states are somewhat characteristic of the
pristine, undistorted compounds.

The possibility to estimate the electron–phonon coupling
term 2g2

q/h̄ωq from TSC arises because this term appears
in the formula for the electron–phonon coupling parameter
λ for both the Peierls instability (equation (16)) and BCS
superconductivity [141]. In the case of a CDW/PLD, however,
the term is taken at the specific wavevector q = q0, while
for superconductivity it is an average over all wavevectors.
We assume that the difference is not substantial. For all
three compounds, the measured superconducting transition
temperatures are listed in table 5 together with the electron–
phonon coupling parameters λMcMillan obtained from the
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formula [141]

λMcMillan = 1.04 + μ∗ ln
(

D
1.45T0

)

(1 − 0.62μ∗) ln
(

D
1.45T0

) − 1.04
. (29)

To determine λMcMillan, we assume a Coulomb pseudopotential
μ∗ = 0.2 and use the Debye temperatures D listed in
table 4. From λMcMillan, in turn, 4g2

q0
/h̄ωq0 is estimated via

equation (16) using appropriate values of the density of states
at the Fermi level, N(0). These are determined from calculated
band structures or specific heat measurements and in each case
reflect the nature of the state that becomes superconducting
(with either an existing or a suppressed CDW).

The remaining terms in condition (9) are the Coulomb
repulsion Uq0 and the exchange energy Vq0 . These two
parameters are not well known, but estimates of Uq0 ≈ 0.4 eV
and Vq0 ≈ 0.4 eV are consistent with relation (10) and seem
reasonable for all three compounds [49].

When all estimated values are finally plugged into
relation (9), it turns out that the criterion for CDW/PLD
formation is not easily fulfilled for all three systems. Judging
from the differences between the left- and right-hand sides of
condition (9), the tendency towards CDW/PLD formation is
strongest in 2H-TaSe2, intermediate in 1T-TaS2 and weakest in
1T-TiSe2 (see table 5). On the other hand, the term 4g2

q0
/h̄ωq0 ,

which is large when the electron–phonon coupling is strong
and the lattice easily deformable, is the largest for 1T-TiSe2. It
seems rather important to achieve a small value of 1/χ0(q0).
Since the nesting enhancement of χ0(q) at q0 is generally
weak, a high density of states at the Fermi level, N(0), is
required. For N(0), the order from high to low is again
2H-TaSe2–1T-TaS2–1T-TiSe2 (see table 4). Note, however,
that the experimentally observed transition temperatures and
CDW/PLD amplitudes suggest the distinct order (from high to
low): 1T-TaS2–1T-TiSe2–2H-TaSe2.

In section 4, we have calculated the band structures and
spectral weight distributions for the commensurate CDW/PLD
phases of 1T-TaS2, 2H-TaSe2 and 1T-TiSe2, using a simple
tight-binding scheme. Since the calculated effects are largely
consistent with ARPES results, we dare to assume here that the
tight-binding band energy changes, δEband, resulting from the
PLDs are somehow realistic. The δEband values obtained for
the experimentally observed distortion amplitudes are listed in
table 5, together with published values, if available. When the
results are normalized to the average squared transition-metal
atom displacement in the distortion pattern, it is found that the
electron–lattice coupling (band energy lowering in eV Å

−2
) is

particularly large in 2H-TaSe2 and by a factor of 3–4 smaller
in 1T-TiSe2 and 1T-TaS2.

The counteracting increase in the elastic energy can be
modeled by equation (5). If we insert the mass of the
transition-metal atom for M and the Debye frequency for the
unrenormalized phonon frequency ωq0 , we can estimate the
force constant Mω2

q0
. The corresponding values are also given

in table 5. Since the Debye frequency will be larger than the
frequency of the relevant phonon mode, the estimated force
constants should be regarded as upper limits.

Comparing the electronic and lattice energy terms, we
find that at T = 0 a harmonic CDW/PLD instability should

definitely occur for 2H-TaSe2 and 1T-TiSe2, but not for 1T-
TaS2, the material with the highest transition temperature and
the largest CDW/PLD amplitude. We can also estimate the
force constants from equation (18). Using the ‘universal’ value

(0)/umax = 0.55 ± 0.13 eV Å

−1
and the 4g2

q0
/h̄ωq0 terms

from table 5, we obtain values for 1
2 Mω2

q0
that are smaller than

2 eV Å
−2

for all three compounds. In this case, harmonic
CDW/PLD instability is also attained for 1T-TaS2. But the
trend is still inconsistent with the experimental data.

We emphasize that not much confidence should be given
to the numbers presented in this section. All estimates are
based on crude models and strong approximations and the
error bars of some of the involved microscopic parameters are
rather large. The goal was to establish trends and identify
generally important factors. Unfortunately, the actual order
of CDW/PLD strength, as given by the observed transition
temperatures or CDW/PLD amplitudes, is reflected neither
by the Chan–Heine condition nor by the comparison of band
energy and lattice energy changes. The compound with the
lowest T0, 2H-TaSe2, appears to exhibit the strongest tendency
towards CDW/PLD formation. The major lessons, then, are
that the occurrence of CDW/PLDs in the layered compounds
depends on a delicate balance of several factors, that there
is not one generally dominant factor (such as 4g2

q0
/h̄ωq0 or

χ0(q0)) and that the simple criteria used here do not account
for what is experimentally observed.

5.3. Transition temperatures

One may speculate that the Chan–Heine condition (9) fails to
provide a coherent picture for the three selected compounds
because it is derived in the weak-coupling limit, while, as we
have shown in section 3.2, the materials are actually in the
intermediate to strong-coupling regime. Here, we will briefly
investigate whether the strong-coupling model developed by
McMillan for 2H-TaSe2 [39] is in better agreement with the
available experimental results.

We focus on a comparison of the transition temperatures
predicted by equations (22) and (23), both temperatures being
calculated from parameters listed in tables 4 and 5. To simplify
the calculation of the strong-coupling T0 via equation (23),
we assume the shortest possible coherence length, πξ0 =
λ0, and that the electron–lattice coupling parameter C is
given by |δEband| = Cu2

0 ln |EF/
|2 [39]. In figure 14, the
predicted and measured T0 are plotted against the relative
lattice distortion u0/a. Note, again, that there is a conspicuous
linear relationship between the experimentally determined T0

and u0.
It has been argued that the conventional weak-coupling

theory leads to severe inconsistencies in describing the
experimental data for the layered compounds [39]. However,
figure 14 shows that this statement is exaggerated. Despite
the extremely short coherence lengths, the weak-coupling
transition temperature, 2
(0)/3.52, is only by a factor of ∼1.6
larger than the experimental values. The reformulated model,
in which the strong-coupling limit is assumed, does not, on
the whole, provide better agreement. Both models predict the
correct order of magnitude of the transition temperature. The
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Figure 14. Measured (open circles) and predicted (open triangles)
CDW/PLD transition temperatures for 2H-TaSe2, 1T-TiSe2 and
1T-TaS2, plotted against the observed relative lattice distortion (u0:
maximum transition-metal atom displacement, a: lattice constant).
The dashed lines are guides to the eye in the spirit of the
weak-coupling (T0 ∝ u0) and strong-coupling (T0 ∝ u2

0) theory.

observed quantitative discrepancies may be due to the mean-
field approximation [39].

In conclusion, although the wavevectors of the observed
CDW/PLD distortions in 1T-TaS2, 2H-TaSe2 and 1T-TiSe2

may somehow fit to the geometry of the electronic structure
near EF and although a local-chemical-bonding picture may
provide some clues as to why Ta clusters are formed
in 1T-TaS2 and 2H-TaSe2 and why the TiSe6 octahedra
distort in a particular way in 1T-TiSe2, these approaches
promote qualitative understanding only. Unfortunately, if
we want to explain the observed CDW/PLDs in a unified
and more quantitative way, we have to rely on simple
microscopic theories because realistic total energy calculations
are not yet available. For the individual materials, the
simple microscopic models and instability criteria are in
semi-quantitative agreement with the available experimental
data. But the generic trends are not correctly predicted
and a coherent explanation in terms of a few k-independent
parameters has not emerged. Apparently, the CDW/PLDs in
the layered compounds are governed by a delicate balance
of several factors and, in view of the strongly anisotropic
electronic structures, the k dependence of these factors cannot
be neglected. Further theoretical scrutiny is clearly needed for
a quantitative understanding of CDW/PLD formation in the
layered transition-metal dichalcogenides.

6. Summary and conclusions

Our goal has been to understand the formation of CDW/PLDs
in the layered transition-metal dichalcogenides quantitatively
and comprehensively. We first recapitulated the 1D
weak-coupling mean-field theory on which much of our
understanding is based and, with particular relevance for the
layer compounds, restated that our understanding is poor for
2D, anisotropic systems in the strong-coupling regime. In our
analysis of real CDW/PLD materials, we then focused on the
three prominent layer compounds: 1T-TaS2, 2H-TaSe2 and 1T-
TiSe2. We briefly reviewed the large body of experimental and

theoretical work on these materials, concentrating on the key
signatures of a CDW/PLD: the lattice distortion, the energy
gap and the Kohn anomaly. An important conclusion was
that the CDW/PLDs observed in the layer compounds are
genuinely intermediate coupling to strong coupling in nature.
To resolve uncertainties regarding the magnitude and location
of the CDW energy gap, we turned to ARPES, which has
recently provided an accurate and virtually complete picture
of the band structures near the Fermi level, both in the normal
phases and in the CDW/PLD phases. We demonstrated that
a simple empirical tight-binding model captures the essential
aspects of the ARPES spectral weight redistribution and of the
underlying band structure changes and we corroborated that,
contrary to the simple Peierls model, the electron band energy
lowering that stabilizes the CDW/PLD does not result from the
opening of a uniform gap at the Fermi vector, but from subband
splittings and shifts over extended parts of the Brillouin zone.
Finally, we set out to explain CDW/PLD formation in the three
selected layer compounds in a unified way on the basis of
the simple (knowingly deficient) weak-coupling and strong-
coupling mean-field models. Not unexpectedly, the agreement
with the experimental data was, at best, semi-quantitative. It
turned out that simple considerations based on the geometries
of Fermi surfaces or local chemical bonds may serve as
qualitative explanations only. Moreover, a generally dominant
factor driving CDW/PLD formation could not be identified,
although strong electron–phonon coupling and an appropriate
density of states near the Fermi level are certainly important.
The major conclusion, then, is that the simple, commonly
applied theoretical framework, which specifically assumes
k-independent interactions, fails to describe the situation
adequately.

At this point, a significant advance in our understanding
of CDW/PLD formation in quasi-2D seems to require greater
theoretical and experimental scrutiny. Theory should deliver
accurate band structure calculations, providing 3D Fermi
surfaces and the k-dependent electron–phonon coupling. Also,
an accurate treatment of electron–electron and electron–hole
interactions is needed. On the other hand, experiment,
ARPES in particular, is expected to provide the reality check:
accurate and complete band structure data from which accurate
experimental maps of the electronic susceptibility can be
obtained [85]. It is also foreseen that femtosecond time-
resolved ARPES will help to disentangle the relative roles of
the various involved interactions in the time domain [14]. In
our view, there is reason to believe that it is only difficult
and not impossible to understand CDW/PLD formation in
the layered transition-metal dichalcogenides quantitatively and
comprehensively.
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[17] Eichberger M, Schäfer H, Krumova M, Beyer M, Demsar J,

Berger H, Moriena G, Sciaini G and Miller R J D 2010
Nature 468 799

[18] Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys.
24 117
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