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Abstract
The energetic properties of the divacancy defect in fcc nickel are studied by ab initio
calculations based on density functional theory. The formation and binding enthalpies of the
divacancy in the first (1nn), second (2nn) and third (3nn) nearest-neighbor configurations are
presented. Results show that the 1nn divacancy configuration is the most stable with a
formation enthalpy H f

2v of 2.71 eV and a small binding energy H b
2v of 0.03 eV. In the 2nn

configuration, the monovacancy–monovacancy interaction is repulsive, and it vanishes in the
3nn configuration. The migration process of the divacancy in its stable configuration is studied.
We find that the divacancy migrates in the (111) plane by successive rotational steps of 60◦. The
corresponding migration enthalpy H m

2v is predicted to be 0.59 eV, about half of that found for
the monovacancy. For a better comparison of our results with high temperature experimental
data, we have analyzed the effects of thermal expansion. Our results show that the inclusion of
thermal expansion allows us to reproduce satisfactorily the experimental predictions.

1. Introduction

In metals, the configuration and concentration of various
defects play important roles in many phenomena, such
as solid phase transformation, dislocation sliding, impurity
atom diffusion and crack formation [1]. Divacancies are
considered to be formed by an attractive interaction between
two monovacancies, and are thought to contribute at high
temperature to the self-diffusion process in many fcc materials.
Several experimental studies show an upward curvature in
the Arrhenius plot of the atomic self-diffusion of face-
centered cubic metals [2, 3]. Three causes may explain
this behavior [2, 4, 5]: firstly an intrinsic temperature
dependence of the enthalpy and entropy changes associated
to the formation and migration of monovacancies [6–8],
secondly a contribution of multiple monovacancy jumps [9],
and finally the contribution of divacancies to the self-diffusion
process [10]. Experimentally, the last reason is supported
by the relatively high concentration of divacancies, C2v,
in nickel at the melting temperature, compared to that of

monovacancies, C1v (C2v/C1v of the order of 20%) [2, 11].
In a previous theoretical work [12] we showed that the
activation energy, activation entropy and pre-exponential factor
associated with the monovacancies are independent of the
thermal expansion of the lattice, i.e. of the temperature, and
therefore we concluded that the deviation from the Arrhenius
plot of the self-diffusion coefficient in nickel in the range of
high temperature is mainly due to the formation and diffusion
of divacancies. Many experimental data on the formation H f

2v,
migration H m

2v, binding H b
2v, and activation Q2v enthalpies of

divacancies in nickel are available [11, 13, 14]. Unfortunately
they are obtained from various experimental techniques and
thus in a large range of temperatures. Starting from the
experimental data on self-diffusion by Hoffman et al [15]
and by taking into account the presence of divacancies as
well as the temperature dependence of energies and entropies
related to the formation and migration of monovacancies,
Seeger and Schumacher [13] deduced that H f

2v = 2.42 eV,
H m

2v = 0.82 eV, and H b
2v = 0.28 eV. Maier et al [11]

combined their self-diffusion measurements with those of
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Table 1. Some experimental and theoretical values of the divacancy formation H f
2v, migration H m

2v, and binding H b
2v enthalpies in nickel. All

values are in eV.

Experiment Theoretical

H f
2v 2.41, 2.59 [18]a, 2.92–3.10 [17]b, 2.42 [13]c,

2.46 [19]c,
2.13, 2.20 [30]d,2.66 [23]e, 2.93 [20]e, 2.99 [31]d, 2.734 [21]e,
2.86 [27]d, 2.50–2.75 [29]d, 2.98 [22]e, 2.73 [25]d, 2.68 [28]d

H b
2v 0.4 ± 0.2 [17]b, 0.51 [18]a, 0.33, 0.44 [19]c, 0.28 [13]c 0.066 ± 0.014 [21]e, 0.12 [28]d, 0.268 [24]d, 0.21–0.34 [29]d,

0.40 [27]d, 0.09 [30]d, 0.44 [26]d, 0.23 [22]e, 0.04 [33]f 0.004 [23]e,
0.25 [25]d 0.067 [32]g, 0.19 [20]e, [21]d

H m
2v 0.99, 1.16 [18]a, 0.83, 1.12 [19]c, 0.82 ± 0.03 [13]c,

0.72 ± 0.07 [16]a
0.19 [31]d, 0.66 [27]d, 0.33, 0.63 [30]d, 0.674 [22]e, 0.90 [25]d,
1.17 [26]d, 0.96, 0.47 [20]e, 0.47 [23]e

Q2v 3.58([18] and [19])a,c, 4.15 ± 0.69 [2]c, 3.45 [14]c

3.61–3.85 [11]c, 3.24 [13]c
3.13 [23]e, 2.46, 2.83 [30]d, 3.40 [20]e, 3.63 [25]d, 3.52 [27]d,
3.53 [26]d, 3.65 [22]e

a Electrical resistivity. b Positron annihilation. c Analysis of experimental data.
d Semi-empirical. e Molecular dynamics. f DFT–GGA. g DFT–LDA.

Bakker [14] in order to cover a large temperature region
(542–1400 ◦C). They deduced a value of Q2v = 3.7 eV.
By an electrical resistivity measurement method, Mughrabi
and Seeger [16] found H m

2v = 0.72 ± 0.07 eV, and
H b

2v = 0.23 eV. With positron annihilation techniques, Nanao
et al [17] deduced a formation enthalpy of 3.10 ± 0.2 eV and a
binding energy of 0.4±0.2 eV. Finally, Neumann and Tölle [2]
found an activation energy of 4.15 ± 0.69 eV by using self-
diffusion data from Bakker [14] and Maier et al [11]. All
experimental data are given in table 1.

To our knowledge, most theoretical determinations of
the formation and migration enthalpies of a divacancy in
nickel are obtained from calculations based on various semi-
empirical methods such as molecular statics and dynamics
calculations [20–23], the lattice statics model [24], or
embedded atoms methods (EAM and MEAM) [25–31]. They
lead to values ranging from 2.50 to 2.98 eV for H f

2v, 0.19
to 1.17 eV for H m

2v, and 0.004 to 0.44 eV for H b
2v. Only

two studies carried out in the framework of density functional
theory (DFT) are found. The first one was performed by
Klemradt et al [32] by using the DFT method in the local
density approximation (LDA). The second one is that of Zhang
and Lu [33] who used the projected augmentation wave (PAW)
method in the generalized gradient approximation (GGA). The
divacancy binding enthalpy was estimated to 0.067 eV in the
first work and 0.04 eV in the second one. However, H f

2v and
H m

2v were not reported in either work. All theoretical results are
also given in table 1 showing that first principles calculations
on the divacancy in fcc nickel are still lacking.

In this paper, we examine some energetic properties of
the divacancy, i.e. its formation and binding enthalpies in
three different configurations. The migration and activation
energies of the divacancy in its stable configuration are also
determined. Furthermore, in order to compare our results with
experimental data, the effects of the dilatation and thus of the
thermal expansion of the lattice are examined. This approach
has been used successfully in a previous work [12] to calculate
the bulk properties and monovacancy energies in nickel.

2. Method of calculation

The present calculations are carried out within the DFT
formalism and the pseudo-potential approximation. They

are performed by means of the Vienna ab initio simulation
program (VASP) developed at the Institut für Materialphysik
of the Universität Wien [34, 35]. The spin-polarized
self-consistent Kohn–Sham equations are solved within the
projected-augmented wave (PAW) method [36, 37]. This leads
to a powerful efficiency concerning the computation time. The
Perdew–Wang 91 functional (PW91) [38] is used to describe
the exchange–correlation effects. It has been shown that
this functional describes efficiently various structural, elastic,
and magnetic properties of the bulk nickel within a relative
deviation less than 4% [12]. Concerning the computational
parameters, the plane-wave energy cut-off is fixed to 14.7 Ryd
(400 eV) for all calculations independently of the size of the
unit cell. On the other side, 4×4×4 and 6×6×6 Monkhorst–
Pack [39] meshes are used to sample the Brillouin zone in the
reciprocal space, depending on the size of the studied unit cell.
To determine the formation and migration enthalpies of the
divacancy, two sizes of fcc primitive cells were tested i.e. 32
and 108 lattice sites per unit cell, in order to minimize the
nearest-neighbor vacancy interactions. We consider that the
size dependence has converged when both H f

2v and H m
2v do

not vary by more than 0.01 eV. In each case we take into
account the lattice relaxation for both formation and migration
enthalpy calculations. The relaxation is introduced by using a
conjugate-gradient algorithm for the formation and migration
enthalpies. All ions were allowed to relax in the first case.
In the second case, all the ions were allowed to relax except
for the migrating nickel atom which was restrained to remain
on the (111) symmetry axis where the saddle point is located.
The thermal expansion contribution to H f

2v, H m
2v and thus to

Q2v is estimated by studying their dependence with respect
to the lattice parameter a. H f

2v, H m
2v and Q2v were calculated

for six values of the lattice parameter a. At constant pressure
P , the vacancy formation enthalpy can be approximated well
by the formation energy owing to the supercell used in the
calculations. The formation enthalpy of the divacancy is given
by

H f
2v = E tot

2v (N − 2) − N − 2

N
E tot(N) (1)

where E tot
2v (N−2) is the total energy of the supercell containing

N − 2 atoms and two monovacancies, and E tot(N) is the total
energy of the supercell containing N atoms in the perfect bulk
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Figure 1. Configurations of divacancies in fcc structure. The open
and full circles represent the vacancies and nickel atoms,
respectively. Divacancies are formed between a monovacancy (V)
and a first neighbor (1nn), second neighbor (2nn), or third neighbor
(3nn) vacancy.

configuration. The binding energy of the divacancy Eb
2v is

defined by
H b

2v = 2H f
1v − H f

2v (2)

where H f
1v is the formation enthalpy of the monovacancy. With

this convention, H b
2v is positive when the vacancy–vacancy

interaction is exothermic.
The migration enthalpy of the divacancy can be expressed

as
H m

2v = E sad
2v (N − 2) − E tot

2v (N − 2) (3)

where E sad
2v (N − 2) is the total energy of the supercell with

N − 2 nickel atoms, one of them being located at the saddle
point. Finally, the activation energy Q2v is given by

Q2v = H f
2v + H m

2v. (4)

3. Results and discussion

3.1. Energetics of the divacancy at 0 K

3.1.1. Formation and binding energies. The results obtained
at 0 K (with an optimized lattice parameter of a0 = 3.52 Å)
for the formation and binding enthalpies of the first, second
and third nearest-neighbor configurations (see figure 1) with
32- and 108-site supercells are listed in table 2. The most
stable configuration corresponds to the first nearest neighbor
(1nn) with a small binding energy H b

2v = 0.026 eV. For the
second 2nn and third 3nn nearest-neighbor configurations, the
calculated binding energies are −0.1 eV (repulsive), and nearly
0 eV, respectively, showing that in this latter case there is no
more interaction between vacancies. The repulsive character
of the second nearest-neighbor conformation was previously
obtained theoretically by Ackland et al [40]. The effect due
to the lattice relaxation on the formation enthalpy is small,
of the order of 0.12–0.15 eV in all cases; this is of the same
order as that obtained by Simak and Andersson [41] for a 1nn
divacancy in copper (0.18 eV). The lattice relaxation effects are

Figure 2. Schematic illustrating the relaxation in the neighborhood
of a divacancy. Before (full circles) and after relaxation (open
circles).

Table 2. Formation H f
2v and binding H b

2v energies (in eV) of the
divacancy in the first neighbor (1nn), second neighbor (2nn) or third
neighbor (3nn) for 32-site and 108-site supercells. Non-relaxed
(Non-rel.) and relaxed (Rel.) values are presented.

Formation enthalpy Binding energy

Size Configuration Non-rel. Rel. Non-rel. Rel.

32 1nn 2.87 2.70 −0.01 −0.05
108 1nn 2.86 2.71 0.01 0.02

2nn 2.96 2.83 −0.11 −0.09
3nn 2.86 2.74 0.01 0.00

Monovacancy [12]

108 1.43 1.37

principally due to the nearest-neighbor atoms surrounding the
divacancy. The displacement of atoms around the divacancy in
the 1nn configuration is schematically shown in figure 2. The
relaxed atoms tend to contract towards the barycenter of the
divacancy. This relaxation is of the order of 1.7%, 1.4%, and
0.9% of the optimized lattice parameter for the first, second
and third neighbor conformations, respectively. The divacancy
binding energies are not affected by the relaxation effects due
to the compensation between those of the divacancy (0.15 eV)
and the monovacancy (see equation (2) and table 2).

3.1.2. Migration and activation energies of a divacancy. In
the fcc structure the divacancy migrates by successive rotation
steps of 60◦ in the (111) plane. It was assumed in earlier
works [23, 25] that the saddle point S(111) is located in the
(111) plane at the barycenter of the equilateral triangle formed
by the two monovacancies and the lattice site of the migrating
atom, as shown in figure 3. Three of the nearest neighbors
are located at a distance of

√
2

2 a and one at 1√
3
a. As pointed

out by Neumann and Tuijn [42], this saddle point entails less
symmetry than the saddle point SNe which has four equivalent
first nearest neighbors located at a distance of

√
27
8 a (see

figure 3). In that case, the saddle point does not belong to
the (111) plane anymore. Our calculations agree with this last
location (see table 3). Results for both S(111) and SNe positions

3
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Figure 3. In plane (S(111)) and out of plane (SNe) saddle points of the
divacancy migration in the (111) plane. Nickel atoms are represented
by full circles. Ni atoms, in gray, are the four nearest neighbors of
the SNe migrating atom.

Table 3. Migration H m
2v and activation Q2v energies (in eV) of the

divacancy in the first neighbor 1nn configuration for 32-site and
108-site supercells. Non-relaxed (Non-rel.) and relaxed (Rel.) values
are presented.

Migration enthalpy Activation energy

Saddle point Size Non-rel. Rel. Non-rel. Rel.

S(111) 32 1.10 0.89 3.97 3.59
108 1.08 0.87 3.94 3.58

SNe 32 0.83 0.58 3.70 3.28
108 0.81 0.59 3.67 3.30

Monovacancy [12]
108 1.57 1.28 2.99 2.65

are given in table 3, showing that SNe corresponds to the
true transition state. For the two supercell sizes, we obtained
after relaxation migration enthalpies of 0.58 eV and 0.59 eV,
respectively. The contribution of relaxation effects to the
divacancy migration enthalpy (0.2 eV) is only slightly lower
than that of the monovacancy migration enthalpy (0.3 eV) [12].
In fact, the nearest neighbors of the SNe saddle point are located
at 2.29 Å while those of the monovacancy are situated at
2.16 Å, involving a larger repulsive interaction between the
migrating atom and its nearest neighbors.

3.2. Thermal expansion effects

It has been shown in earlier works [12, 43] that the theoretical
description of the formation energy of a monovacancy
depends strongly on the approximation used for the exchange–
correlation energy. One possibility to choose between these
various approaches is to compare their ability to describe some
well known properties of the bulk nickel. We summarize in
table 4 some theoretical determinations of the lattice parameter,
bulk modulus and cohesion energy for Ni, together with the
corresponding formation energy of a monovacancy. Some
of the data have been obtained by Delczeg et al who used
an exact muffin-tin orbitals method [43]. The PAW–LSDA
and PAW–GGA density functional approximation results are

Table 4. Equilibrium lattice parameter a0, bulk modulus B,
cohesion energy Ecoh and monovacancy formation energy H v

f for
nine exchange–correlation approximations.

Method a0 B Ecoh E f
1v

PBEa — 198 — 1.46
PBEb 6.66 — 4.67 1.40
LDAa — 243 — 1.67
PBEsola — 223 — 1.67
AMO5a — 222 — 1.75
LAGa — 214 — 1.49
PAW–LSDAc 6.47 281 5.92 1.72
PAW–GGAc 6.66 195 4.64 1.43
US–GGAb 6.76 — 4.96 1.38
US–LDAb 5.90 — 6.10 1.71

Exp. 6.65 179–186 4.44 1.79 ± 0.05

a Reference [43]. b This work. c Reference [12].

from [12]. Finally, we have added results (US–LDA and
US–GGA) obtained with the ultra-soft potential of Troullier
and Martins [44] at the LDA and GGA levels. The results
summarized in table 4 show that the best descriptions of
bulk properties are obtained with PAW–GGA and PBE density
functional approximations. The US–GGA gives slightly less
accurate results. The corresponding calculated monovacancy
formation energies lead nearly to the same result (of the
order of 1.40–1.45 eV) far away from the recommended
experimental data (1.79 eV). As the latter have been obtained
at high temperature near the melting point, we have attributed
the discrepancy between theory and experiment to thermal
expansion effects.

Experimentally, the contribution of divacancies to the self-
diffusion process in nickel is observed at temperatures near the
melting point [2, 10, 11, 45]. Indeed, at high temperature,
the contribution of divacancies to the diffusion process is
significant, due to an increase of their concentration by an
increase of the vacancy–vacancy binding energy and to their
small migration enthalpy (0.59 eV at 0 K) compared to the
monovacancies (1.28 eV at 0 K) allowing a larger mobility.

By involving simultaneously monovacancies and divacan-
cies, the diffusion coefficient is described by

D = D1v + D2v = D0
1v exp

(
− Q1v

kBT

)
+ D0

2v exp

(
− Q2v

kBT

)
.

(5)
Q1v and Q2v are defined in equation (4), D0

1v and D0
2v are the

frequency factors, kB is the Boltzmann constant and T is the
temperature in kelvin. Generally, a temperature dependence of
energies Q1v(T ) and Q2v(T ) and entropies must be taken into
account. From equation (4), the contribution of H f

2v leads to
an increase of Q2v(T ); indeed, an increase of the temperature
induces an increase of the divacancy formation entropy Sf

2v and
thus an increase of H f

2v, as can be seen from the following
thermodynamic equation:

(∂ H f
2v/∂T )p = T (∂Sf

2v/∂T )p. (6)

On the other hand, the divacancy migration enthalpy H m
2v

decreases with the lattice thermal expansion, due to a
weakening of the nickel–nickel repulsion at the transition

4
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Table 5. Thermal expansion effects on the divacancy formation,
migration and activation energies (in eV). Results obtained with a
108-site unit cell size.

�a/a0

(%)
T
(K) H f

2v H m
2v Q2v H b

2v

0 0 2.71 0.59 3.30 0.02
0.114 293 2.74 0.58 3.32 0.03
2.37 1600 3.25 0.52 3.77 0.07
2.67 1728 3.30 0.51 3.81 0.08

Exp. 3.10 ± 0.20a 0.72 ± 0.07b 4.15 ± 0.69c 0.23b

a Reference [17]. b Reference [16]. c Reference [2].

state. One way to introduce the electronic contribution to
the temperature dependence is to consider that, as done in
the ground electronic state, the electrons are moving in an
effective potential created by the ions of the lattice located
in a mean position corresponding to the lattice parameter
at a given temperature. This is the well known Born–
Oppenheimer approximation used in the ground state, where
the vibration contribution is neglected. We can thus introduce
temperature by using the thermal expansion data introduced by
Suh et al [46] and collected by Lu et al [47] to determinate
the coefficient of thermal expansion of nickel as a function
of the temperature. This method has been used successfully
to study the effect of thermal expansion on the energetic
properties of a monovacancy in nickel [12] or on the atomic
oxygen diffusion in nickel [48]. H f

2v, H m
2v, H b

2v, and Q2v

have been calculated for several values of the relative linear
expansion δa/a0; results as well as their interpolations are
represented in figure 4. The interpolated curves show that
the formation enthalpy H f

2v is increasing with δa/a0, while
the migration enthalpy H m

2v is decreasing, as explained above.
This leads finally to an increase of the self-diffusion energy.
From our interpolated curves, we determined the various
energies for δa/a0 values associated to specific temperatures:
absolute temperature (0 K), room temperature (293 K), average
temperature for which the curvature of the Arrhenius plot
has been observed (1600 K), and melting point temperature
(1728 K). The results are summarized in table 5. They
show that Q2v depends significantly on the thermal expansion,
contrary to Q1v [12]. This is also true experimentally. In
fact, The divacancy contribution in nickel is markedly smaller
than in other metals and thus the error limits of vacancy
parameters become considerable [2], the uncertainty on Q2v

reaching ±0.69 eV. Nevertheless, only our upper values of
Q2v corresponding to larger thermal expansions belong to the
experimental gap.

4. Conclusion

We briefly summarize our results. Vacancy–vacancy
interaction in nickel is very weak when a divacancy is formed;
it may even be slightly repulsive in the second nearest-neighbor
configuration. The migration energy of the divacancy is nearly
two times smaller than for the monovacancy allowing a much
larger mobility. Though the displacement during diffusion
arises by steps belonging to a (111) plane, transition states
correspond to an out of plane saddle point. The introduction of

Figure 4. Relative linear expansion (δa/a0) dependence of formation
H f

2v (�), migration H m
2v ( ) and Q2v (�) enthalpies.

the electronic contribution to the dilatation of the lattice, i.e. to
the thermal expansion, allows us to obtain formation and self-
diffusion energy values in better agreement with experimental
results. This is also the case for the determination of the
vacancy–vacancy binding energy.
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