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Abstract. Dispersion relations for bulk and surface magnetic polaritons in semi-infinite 
layered structures composed of two different magnetic materials are analysed theoretically. 
The considerations are restricted to the case of in-plane magnetisation and to wave propa- 
gation in the Voigt geometry. Some exemplary wave spectra are presented for structures 
composed of magnetic and non-magnetic materials as well as for structures where both 
constituents are magnetic. 

1. Introduction 

Magnetic layered structures are a subject of growing interest. Recently, for example, 
interesting magnetic phase transitions (Camley and Tilley 1988) and electronic transport 
properties (Baibich et a1 1988) have been found in artificially layered systems with an 
effective antiferromagnetic coupling between ferromagnetic layers. Excitation spectra 
of magnetic superlattices also provide an attractive subject for theoretical and exper- 
imental investigations. Such spectra have been analysed in many special cases including 
exchange (Albuquerque et a1 1986, Dobrzynski et a1 1986, Hinchey and Mills 1986, 
Vayhinger and Kronmuller 1986, McKnight and Vittoria 1987, BarnaS 1988a, Hil- 
lebrands 1988, Morkowski and Szajek 1988, Mathon 1989), magnetostatic (Camley et 
a1 1983, Kueny et a1 1984, Hillebrands et a1 1986, Camley and Cottam 1987, Rupp et a1 
1987, BarnaS 1988b, Villeret eta1 1989) and retarded (BarnaS 1987, Raj andTilley 1987, 
1989, Zhu and Cao 1987, Zhou and Gong 1989, How and Vittoria 1989) limits. 

In a previous paper (BarnaS 1988a) some general dispersion equations for bulk 
and surface excitations have been derived for semi-infinite superlattices with arbitrary 
number of different magnetic layers in an elementary unit. These equations have sub- 
sequently been applied to magnetostatic modes (BarnaS 1988b). Here, we apply them 
to retarded waves propagating in the Voigt geometry. 

As is well known, the retardation corrections to the spectrum of magnetic excitations 
are significant in the long-wavelength limit, where the ‘pure’ magnetic excitations of the 
system (magnons) interact with ‘pure’ electromagnetic waves (photons). The resulting 
magnon-photon mixed states are called magnetic polaritons or simply magnetic retarded 
waves. The retarded waves supported by a single layer magnetised in the film plane have 
been studied theoretically by Karsono and Tilley (1978), Marchand and Caille (1980), 
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Lima and Oliveira (1983) and others. If the magnetic films form an infinite or semi- 
infinite periodic structure, the wave spectrum has new interesting features which are 
characteristic for artificially layered systems. 

Bulk magnetic polaritons in magnetic/non-magnetic (M/N) layered structures were 
discussed by the present author (BarnaS 1987). Retarded waves in magnetic/magnetic 
(M/M) infinite superlattices were analysed by Raj and Tilley (1987), who developed 
also the effective-medium theory for such systems. Here we extend the considerations 
to surface modes propagating in semi-infinite M/M superlattices. 

General dispersion equations for bulk and surface retarded modes in semi-infinite 
superlattices are given in section 2. The explicit form of these equations for M/M 
superlattices are derived in section 3. Numerical results for wave spectra in M/N and 
M/M structures are presented and discussed in section 4 and section 5 ,  respectively. 

2. General dispersion equations 

Let us first discuss some general dispersion equations for bulk and surface retarded 
modes propagating in the Voigt geometry. As derived in the previous paper (BarnaS 
1988a) the bulk waves are described by the equation 

where q is the wavevector component along the superlattice direction (-n/l G q < n/ 
1) and 1 is the superlattice parameter (thickness of the elementary unit). T I 1  and T22 are 
the diagonal elements of the appropriate 2 x 2 ‘transfer matrix’ T which depends on the 
frequency w and the in-plane wavevector kl,. This dependence is not written explicitly in 
equation (1) and, for simplicity, will also be dropped in the following. 

Frequencies of surface waves propagating in a semi-infinite structure are determined 
by the equation 

where D1 and D 2  result from the appropriate boundary conditions and depend on w and 
kil, in general, whereas T12 and T21 are the off-diagonal elements of the ‘transfer matrix’. 
The corresponding decay parameter a, in the free half-space is given by 

(3) 

(4) 

2 2 112 a< = ( k i  - w / c  ) 

exp(-BL> = T11 + Tl*D*/Dl 

* 

In the occupied half-space the decay parameter /3 can be determined from the equation 

for T,2 # 0. If TI ,  = 0 then exp(-BI) = TI1 for D 2  = 0 and exp(-Pl) = T22 for D l  = 0. 
Only those solutions of equation (2) for which 

R e B > O  ( 5 a )  

a< > o  ( 5 b )  

and 

correspond to surface waves. For real w the parameter a, can be either real (and positive 
by definition) or pure imaginary. The conditions ( 5 b )  correspond then to real and 
positive a<. 
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In a general case there are three possible solutions for /3: 
(i) /3 real; 
(ii) p imaginary; 
(iii) /3 complex. 

The third possibility was omitted previously (BarnaS 1988a). However, it may occur for 
complex 'transfer matrix' T. If the matrix T is real, as in the case of magnetostatic modes 
in the Voigt configuration (BarnaS 1988b), only the first two possibilities can occur. 

Equations (1)-(5) determine bulk and surface modes in semi-infinite structures. 
Dynamical properties of a system are contained in the appropriate 'transfer matrix' T 
which is characteristic of a particular case. 

3. Explicit dispersion equations for bulk and surface polaritons in magnetic /magnetic 
superlattices 

Consider a semi-infinite layered structure composed of two different magnetic materials 
(ferromagnetic or antiferromagnetic). Suppose that the films are magnetised in the film 
plane and parallel to the z axis of the coordinate system, along which a static magnetic 
field H o  is applied. The axis x of this system is assumed to be normal to the films. 

We shall consider only transverse electric (TE) modes with an electric field parallel 
to the axis z .  The second polarisation (transverse magnetic modes with a magnetic field 
along the z axis) is a trivial case since there is no linear coupling of the corresponding 
electromagnetic field with the magnetic structure of the system and the appropriate 
modes are 'pure' photons. For simplicity we neglect also dielectric properties of both 
materials. 

Employing now the recurrence formulae derived previously (BarnaS 1988a) one 
finds the following expressions for the matrix T in the Voigt geometry (k,, = key with ey 
being the unit vector along the y axis): 

T11(22) = exp(*a( ')d,)  [cosh(d2)d2)  & sinh(d2)d2)  

T12(21) = ?{ [exp( 3 a( ' )dl)  sinh( a(*)d2)]/2,u y ) p y )  a(') d2)}  [2p$)pf)k2 

where the lower sign refers to the indices in parentheses, and ay(') and y(')  (the index i 
distinguishes the two different materials; i = 1,2)  are defined as follows: 

x ( 2 p p $ ) k 2  + 8 u ( l )  L P v  (1) Y ( 2 )  + P L P V  ( 2 )  ( 2 )  Y (1))/2p':)p~)a(1)a(2)] 

'' 2p':)P;)a(1)k + P y y l )  - (y(2)/y(l))( q + y ( l )  + ,uuj;"~)2] 

@('I = (k2 - ( (+?) ,p . t j ) ) l :2  

y'" = (k2 - (o ' / c ' ) y ' ; ' ) .  

(6a) 

(6b) 

(7) 

(8) 
In the above equations, ,uy) and p p  (i = 1, 2) are the diagonal and off-diagonal com- 
ponents of the linear dynamic magnetic permeability tensor: 

(9a) 

(9b) 

(10) 

p j  = p$g = p!) 

pfj = -p$  = ipp 

P.t j)  + I )  I - PP2/PY). 
and p.tj) is the magnetic permeability in the Voigt configuration: 

Equations (6a) and (6b) do not apply at frequencies at which y(l) = 0, a(1) = 0 or 
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= 0. These special cases have to be treated separately. One can show, however, that 

Dispersion equation (1) for the bulk polaritons can be written explicitly as 
the boundary conditions cannot be fulfilled at these frequencies. 

cos($) = c o s h ( d ) d , )  cosh(d2)d2)  + s inh(d ' )d , )  s inh(d2)d2)  

where I = dl  + d 2  with d, ( i  = 1,2)  being the thicknesses of the elementary layers. 
If the semi-infinite superlattice occupies the half-space x > 0 and the first layer 

corresponds to the material index i = 1, then the surface magnetic polaritons are 
described by equation (2) with 

and with the 'transfer matrix' given by equations (6a) and 6b). The explicit form of this 
dispersion equation can be written as 
f l  sinh(a( ')d,)  cosh(a(2)dZ) + f 2  cosh(a( ')dl)  s inh(d2)d2)  

where 

x (2pyppk2 + p ! " p ~ ' y ' 2 '  + p~'_2'p~c2)y(1))/2,Uu!1)p~!2)a(l'a(2) (11) 

Ill@) = 1 t (y"' + p p a < k ) / p y ' a ' ' ' a ,  (12) 

+ f 3  s inh(a( ')dl)  s inh(d2)d2)  = 0 (13) 

(14a) 
(14b) 

- a<p-l!"p.tf'(a<puf'k + y'2'). (14c) 

f l  = py'a(2ya:py)pQ) - 2a,pG'k - y ' " )  
f 2  = p.l'"a"'(a:py'pCz' - 2 a u , p f ) k  - $ 2 ' )  

f 3  = ( p p p  - p p y " ' ) k  + a<py'pp(a,p. l f 'k  + y(1))  

Equation (13) determines surface solutions for a superlattice with two different magnetic 
layers in the elementary unit. The corresponding decay parameters in the free and 
occupied half-spaces can be then found from equation (3) and equation (4), respectively. 
However, only those solutions of equation (13), for which equations (5a) and (5b) are 
fulfilled describe true surface waves. 

The dispersion equations (11) and (13) are applicable to superlattices composed 
of ferromagnetic as well as uniaxial (with the in-plane easy axis) antiferromagnetic 
materials. Equation (11) was first derived by Raj and Tilley (1987). It includes also the 
known results for M/N layered structures (BarnaS 1987). In the magnetostatic limit 
c+ x, the above expressions reduce to those given previously (BarnaS 1988b). In the 
following sections we apply them to some special cases. 

4. Application to magnetichon-magnetic structures 

Consider now the case when one of the two materials, say that with i = 2, is non- 
magnetic: ,U?) = 1 and ,uf) = 0. The dispersion equation for surface modes reduces then 
considerably. In this particular case one finds that 

f l  = -f3 = a 5 p y p c )  - 2a,p$)k - p (15a) 
f 3  = 0. (15b) 

a:pypv) - 2 a  < /  # k  - p = 0 (16a) 
sinh(a( ')d,)  = 0. (16b) 

a(') = inn/dl n = 1 , 2 , 3 ,  . . .  (17) 

Equation (13) can then be written as two independent equations 

Equation (16b) can be rewritten equivalently as 

from which one can conclude that the corresponding solutions consist of bulk states in 
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Figure 1. Spectrum of bulk polaritons (hatched regions) and surface polaritons (broken 
curve) in ferromagnetic (Fe)/non-magnetic superlattices for d ,  = dz = 5 X lO-'cm and 
p O H o  = 1 T. The other parameters are given in the text. 

each magnetic layer. To  describe a surface wave each solution of equation (16a) and 
equation (16b) has to fulfil the stability conditions as discussed in section 2. These 
conditions will be analysed numerically in each particular case. 

Consider first the polariton spectrum of ferromagnetic/non-magnetic (F/N) super- 
lattices. For the magnetic permeabilities pl and px we assume that 

p1=  1 + RoR2,/(Q:, - w2) ,ux = -Q,w/(Q; - w2) 

where R, = g p o y o H ,  (with the uniaxial anisotropy neglected) and R, = gp,y,Mo. The 
parametersg, po and M O  denote the Lande factor, magnetic permeability of the vacuum 
and spontaneous magnetisation, respectively, and y o  = e /2m with e (>O) and m being 
the electron charge and electron mass. The appropriate polariton spectrum in the limit 
of thick films, lkld,,,) % 1 has already been analysed (BarnaS 1987, How and Vittoria 
1989). In figure 1 the mode spectrum is shown for equal film thicknesses, d l  = d,, which 
are small in comparison with the appropriate wavelength. The parameters typical for 
Fe, i.e. p o M P  = 2.15 T and gFe = 2.15, have been assumed here. The hatched regions 
represent the bands of bulk polaritons whereas the broken curve describes the surface 
modes. Two interesting features of the wave spectrum from figure 1 are worth noting. 
The first is the occurrence of the surface mode. In the corresponding magnetostatic limit 
the surface Damon-Eshbach modes occur only for dl  > d 2  (and, of course, only for 
negative k ) .  When the retardation corrections are included, the surface modes exist also 
for dl S d 2 ,  as is visible in figure 1. However, the surface modes exist then only in a 
restricted range of the wavevectors. The appropriate dispersion curves start at some cut- 
off wavevector and then merge into the band of bulk modes at a sufficiently large negative 
k .  For dl > d 2  they exist for k + - =. The second feature is the band structure of bulk 
waves, which differs considerably from that in the case of relatively thick films where a 
characteristic multiband structure appears. In the limit of small film thicknesses, 1 kid,,,, 
1, the appropriate wave spectrum, like that in figure 1, can also be obtained from the 
effective-medium theory developed by Raj and Tilley (1987). 
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Figure 2. Spectrum of bulk polaritons (hatched 
regions) and surface polaritons (broken curves) 
in antiferromagnetic (MnF,)/non-magnetic 
superlattices for d ,  = d 2  = 5 X cm. The 
other parameters are given in the text. 
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Figure 3. Same as in figure 2 but for d ,  = d, = 
0.035 cm . 

Equations (16a) and (16b) are also applicable to layered structures in which the 
magnetic constituent is a uniaxial antiferromagnet (AF/N structures) with an easy axis 
in the film plane and with an external field H o  parallel to the easy direction. The 
appropriate permeability components can be written in the form 

p- = 1 + Q,Q,/(Q: - w: ,  + QaQ,/(Q: - 0 2 )  

px = Q,Q,/(Q: - w:>  - Q,Q,/(n: - w 2 )  

where Q,,, is defined as in the case of a ferromagnetic material but with MO being the 
sublattice magnetisation, w,  are given as wi = w t g,uoYoHo, Q L  is determined by the 
anisotropy Ha and exchange Hex fields: 

Q l  = gPu,y,[Ha(Ha + 2HCX)I’’* 

and Qa is defined as Q, = gpoyoH,.  
In figure 2 the spectrum of bulk and surface polaritons in the limit of small film 

thicknesses is presented for H o  = 0 and H ,  > 0. Only the frequency range around 
the antiferromagnetic resonance is shown. Equal film thicknesses, d l  = d, = d,  and 
parameters typical for MnF2, puoHeX = 55 T, ,uoH, = 0.787 T, p o M ,  = 0.754 T and g = 
2, have been assumed. The hatched regions represent the bands of bulk waves and the 
broken curves correspond to surface modes. The surface waves occur in a restricted 
range of wavevectors. similarly to the case of F/N structures. (It is worth recalling now 
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Figure 4. Spectrum of bulk polaritons (hatched regions) and surface polaritons (broken 
curves) in ferromagnetic (Fe)/ferromagnetic (CO) superlattices. The film thicknesses 
assumed here are d ,  = d 2  = 5 x cm. The other parameters are given in the text. 

that no surface waves can propagate at d l  = d2  in the corresponding magnetostatic limit 
(Barnag 1988b).) 

The surface waves in figure 2 exist for k < 0 as well as for k > 0 and w ( - k )  = w ( k )  
at H o  = 0. For H o  > 0, however, the propagation of surface waves is non-reciprocal: 
w ( - k )  # o ( k ) .  

If the film thicknesses increase, the multiband structure of bulk modes appears, 
similarly to the case of F/N superlattices. This is shown in figure 3, where the same 
parameters as in figure 2 have been assumed, except the film thicknesses which are now 
larger. 

5. Magneticlmagnetic structures 

Consider now the case when both constituents are ferromagnetic. For the basic par- 
ameters we assume values typical for Fe (i = l), as given in section 4, and CO ( i  = 2); 
p o M p  = 1.76 T and gc" = 2.17. The appropriate spectrum of magnetic polaritons in 
the semi-infinite structure is shown in figure 4 for equal film thicknesses, d ,  = d2 = d ,  
and for I kld 1. As in the corresponding magnetostatic limit (BarnaS 1988b) there are 
two surface modes at k < 0. They start now at some cut-off wavevector at the photon 
line and for sufficiently large negative k they coincide with the magnetostatic waves. In 
comparison with the F/N structures (figure 1) there is an additional narrow band of bulk 
modes. 

The wave spectrum for larger film thicknesses is shown in figure 5. It is worth noting 
the existence of some additional surface modes which can propagate in some range of 
wavevectors. 
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