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Abstract. We discuss the physical nature of interactions between linear flexible chains in a
solvent. We review the results obtained on the structure of polymer solutions, with the help
of the observation techniques and conceptual approaches developedsince 1965. Comparison
between observed and predicted behaviour is made for values of the critical exponents and
the universal amplitude.
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List of main symbols

Size of a monomer

Intensity of interaction between two points on a polymer chain

Polymer concentration

Number of monomers in a polymer chain

Momentum transfer in a scattering experiment

Average square end-to-end distance of the equivalent random walk chain
Average square end to end of the polymer chain

Area proportional to the degree N of polarisation. Intrinsic measure of the
quantity of the polymeric material in a polymer chain (§ = °R?/3)

X Swelling (= R*/°R?)

z Coupling constant

Z(S)  Partition function of a polymer chain with one end at the origin

Z(S, S) Connected partition function of two chains, one of them having a fixed end of

o;zgug»a Ao

the origin
B = 1/kgT
T Osmotic pressure

1. Introduction

Polymers dispersed in solvents at room temperature form polymer solutions. This is
the state in which linear chains are characterised. Osmotic pressure measurements in
polymer solution revealed for the first time the existence of high molecular masses and
this result confirmed the macromolecular hypothesis.

In dilute solutions, the polymer chains behave, to a first approximation, as a gas.
Indeed, the expression for the osmotic pressure is similar to the ideal gas law. There are,
however, several intriguing facts that have aroused theoretical interest. A general and
systematic interpretation has only been given recently:

(i) the chain swells in good solvents, but does not in poor solvents (i.e. in the vicinity
of a ‘Boyle’ temperature);

(i) the chains overlap the total solution volume, while the polymer concentration is
still low.

Thermodynamic predictions based on the liquid lattice theory do not fit osmotic exper-
imental data.

Since 1970, results of neutron scattering experiments have become available for the
first time. They provided data on the structure of labelled fractions in polymer solutions.
Intra- and interchain correlations could be measured separately. This information made
it necessary to examine polymer solutions in more detail [1]. It became apparent that
overlapping polymers do not form a homogeneous system: correlations in the structure
change at a characteristic length. An inhomogeneity could thus be resolved with use of
the neutron scattering technique and this gave great confidence for the investigation of
closely related systems such as polymer networks.

At the same time, concepts were developed that departed radically from the liquid
lattice theory. Bold modellings of polymer solutions were proposed. The history of this
development is now well known. In 1972, de Gennes gave an equivalence between the
partition function of a single chain and the Green function in field theory. In 1974, des
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Cloizeaux showed the equivalence between polymer concentration and applied external
field. However, this equivalence was first restricted to systems in equilibrium poly-
merisation. The other decisive innovation came from early work (1965) by SF Edwards,
who introduced the path integral method to calculate observables associated with the
random conformation of a polymer chain.

As shown by des Cloizeaux and later by Duplantier, the combination of these
contributions proved to be very fruitful. It allowed major progress in the study of
polymers and it opened up the way to original developments. A considerable number
of publications have been devoted to this aspect. In particular, four books [2-5] have
been written about the subject. The present paper reports established facts. It will mostly
follow [4].

2. Molecular interaction: a comparison between polymers and colloids

The interaction between molecules is determined to a great degree by their structure.
In particular, the compactness of the molecule plays an important role. The case of
polystyreneisofinterest because it is possible to polymerise this molecule in two different
forms: tenuous and compact.

(i) Linear polymer chains are obtained by free radical or anionic polymerisation.
When dissolved in a good solvent, the chains have a random configuration. The average
volume that a chain occupies is much larger than the effective molecular partial volume.

(ii) The so-called latex spheres are obtained by emulsion polymerisation. After
washing out the surfactant in a non-solvent (such as alcohol), one obtains a suspension
of compact spheres. Of course, there are many other types of colloidal suspensions of
hard spheres, and our system is perhaps not the best representative. However, we wish
to compare comparable situations. When the spheres are dispersed in a good solvent,
the chains will ultimately unfold and adopt the linear random configuration. This process
takes time, and at the onset the dispersed phase is a solution of hard spheres. There are
ways to stabilise the spheres permanently against dissolution, but we consider the
somewhat extreme situation in which we may have a solution of stable spheres of pure
polystyrene in the same solvent as linear polystyrene solutions. The samples are given
the same degree of polymerisation (N ~ 107).

Our purpose is to compare the interactions between the two distinct types of high
molecular structure. They will be different and we wish to point out the origin of this
difference. We start from the interaction potential v(r) between the two bare monomers
of size a and, for simplicity, we shall assume that v(r) is of the form

o(r) = o r < 2a (core repulsion)

2.1)

A measure of the strength of this interaction is given by the co-volume » which is defined
by

o(r) = —a/r® r = 2a (van der Waals attraction).

v= f d3r (1 —e 0
0
and which, for small values of o (80/(2a)® < 1) is given by
4 po )
=— 3 > 0. 2.
v 3 ((Za) 2a)° 0 (2.2)
Two cases will now be considered: the case where the monomers constitute a linear
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Figure 1. Forces between mica surfaces bearing terminally anchored polymer chains in good
solvents, plotted against distances. O, @bare surfaces: the datashowvan der Waals attractive
forces. x, surfaces with anchored polymers: the data show repulsion between the plates.
(From Taunton et al [6].)

flexible chain made up of N monomers, and the case where the monomers constitute a
globule, also containing N monomers. For dilute solutions, the osmotic pressure 7 can
be expanded in the form

where Cis the concentration of polymerised molecules. The second virial coefficient A,
defines the interaction between two chains in a realistic manner. This coefficient will be
calculated in both cases and very different results will be obtained.

2.1. Linear flexible chains

For a solution of polymers with degree of polymerisation N, the second virial coefficient
reads

A, = —3Z(N,N)/|Z(N)|*. (2.3)

Here, Z(N) is the number of configurations of a chain with a fixed end point and Z(N, N)
is the connected partition function of two chains, one of them having a fixed end point.
To first order (single-contact approximation) we have

2
A= N = N2 (<2a)3 - (fa‘;) @4

If ois not large, A, is positive. This is what is generally observed: at room temperature,
the interaction between polymers in solution is usually repulsive [6] (see figure 1).
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2.2. Compact spheres

When the chains form spherical globules of radius R, the interaction V(r) between two
spheres can be written as follows:

V(r)=e0 r<2R
N \? o
Vo=va=-(mp5) [ o] en——=  e=m
47R*/3 '<R <R lr+r,—r
In this case, the second virial coefficient is given by
A, = %j d3r[1 - exp (- BV())] 2.5)
0
and for weak attractions
2
4y = QRY +%f d3r BV (1), (2.6)
r>2R

Moreover, assuming that the globule is a compact set of small spheres of radius a, we
can write

47R?/3 = 25?Na® : (2.7)
(the volume 2%2a° corresponds to a face-centred cubic arrangement), where
R®=1.350 Na®. (2.8)
An exact expression for V,(r) has been given by Hamaker [7]; the result is
72/ N \? 2R? 2R? rt - (2R)2)
Vulr) = 6 <4nR3/3> G[rz - (2R)? Tt ln< r? ] 2.9)

We note that this function has two interesting limits

Vo(r)=~- NZ% for-2—;;> 1 (2.10)
and
3 , O 1 r—2R
Vw(r)z—EN (ZR)SI’_-—__Z_E?— forQ < R < 1. (2.11)

This potential displays the Hamaker divergence [7] for r— 2R. This divergence makes
it necessary to introduce a cut-off at » = 2R + a., where qa_ is proportional to a.
Thus, neglecting terms that vanish when a. /R — 0, we obtain

* Nio 2R 5 4
Vw=f d3rVw(r)=—67t———[ln<——->———ln2-——].
J e, @Ry} L™\a, ) 737773

Finally, for N > 1, we obtain

4 3 po a
Ay, =N—1(1.35)(2 3————-————(1 +31 O.13—->]. A
2 =07 [( 39)28)° = 353507 \ IV +31n(0.183) 7 (2.12)
Now, the existence of the factor In N has a strong influence on the value of A, and if
Nislarge enough A, becomes negative (compare with (2.4)). Thiseffectis a consequence
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of Hamaker’s divergence. This can be seen by making the unrealistic assumption that
the van der Waals forces are exerted between the centres of the giobules. In this case
the value of 4, can be deduced from equation (2.2) by performing the transformation

a’>— (1.35)N a® o— N?o

which leads to the expression

4 Bo
=N—| (. I - —> 2.13
A= N {3900 - s .13
which must be compared with (2.12).

The main difference between polymer solutions and colloidal suspensions is then the
following.

(i) In solutions above the ‘Boyle’ temperature (usually lower than room tempera-
ture), the effective polymer interaction is repulsive. In neutral, non-polar colloidal
suspensions, interactions are attractive.

(ii) The configuration of the polymer chain varies with the strength of interaction.
The average shape of the configuration is the main object of theoretical and experimental
investigation.

Intermediate situations between linear polymer solutions and colloidal suspensions
are found in liquid membranes [8].

3. Swelling and screening

A useful model representing a polymer chain in solution is the standard continuous
model. In such a model, the chainis represented by a continuous curve which obeys self-
similarity. It has the fractal dimension D = 2 if there is no interaction between any two
points, or if this interaction is moderately small.

The curve can only be drawn approximately; nevertheless, computer simulation can
produce significant pictures [9] (see figure 2). The curve shown in figure 2 is a random
walk witha very smallstepa. When thisstep tends to zero the limit curve is the ‘Brownian’
chain. It becomes impossible to draw a tangent at any of its points, and the contour
length between any two points is infinite. The curvilinear coordinate of a point will be
given by the area

s=°r*/3 Oss<S§

where °r?is the average square end-to-end distance between the point and one extremity
of the chain (0 < °#? < °R?), in the absence of interaction. In particular, S is an intrinsic
measure of the number of monomers in a chain.

The repulsion, which causes self-avoidance between any two points (s’, s”) will be
written

bo(r(s’) — r(s")). (3.1)

Here &(r) is the three-dimensional delta function and b is the intensity of the interaction.
The relation between b and v, the monomer co-volume (2.2), is approximately: b =
v/a‘. A considerable literature is devoted to the study of the effects of repulsive (b > 0)
interactions. The case of attractive interactions will be discussed in section 5.
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Figure 2. Two-dimensional random walk of 2 x 103 steps. (From Duplantier and Luck [9].)
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Figure 3. Density probability for the end-
to-end distance of a polymer chain: ——,
self-avoiding (from des Cloizeaux [10]);
r/R ——~—, equivalent random walk.

3.1. The self-avoiding chain

Let us first consider the probability distribution p(r) of the end-to-end distance. In the
case of the random walk, p(7) is a Gaussian function. When self-avoidance is introduced
p(r) is modified in particular at r = 0. Des Cloizeaux [10] showed that the perturbation

at r = 0 extends to distances much greater than the monomer size (figure 3). In fact
r) o« r? forr— 0
p( (3.2)
6 = 0.275.

Computer simulations [4] confirm this prediction, but this is the only experimental
evidence for (3.2). However, there exists a universal number /4 that accounts for the
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Figure 4. Inverse scattered intensities plotted against ¢'/*. At the concentration 1 g1™! the
chain has a swollen configuration. The constant 4 is inversely proportional to the slope
of the function. At the concentration 150 g1! polymer—polymer interferences become
important. Swelling has decreased and screening becomes effective.

distributions Py(r) of all pairs of monomers. This number has been measured. It is
related to the asymptotic behaviour of the chain form function

1 s s
h(q) = 5 <J’ ds’ J’ ds"expig - (r(s’) — r(s”))> (3.3)
d d
which reads

h

Here v is the critical exponent associated with the swelling of the polymer chain (v =
0.588). In the Gaussian approximation

°h =2(1/2v)! = 1.89 (3.5)

but, accounting for (3.1), the value of 4 is smaller. From an expansion of the partition
function to first order, des Cloizeaux and Duplantier [11] obtained

h=1.04.

The number 4 is universal. It is a measure of the density of polymer matter along the
fractal path of the chain. Experimental evidence related to % is shown in figure 4. The
inverse scatteredintensity for scattering by a dilute polystyrene solutionis plotted against
momentum transfer. The value of 4 is determined from the slope of this function.

Recent data (absolute intensity measurement) give the result # = 1.19, which is in
fairly good agreement with the theoretical prediction.
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3.2. A characteristic geometrical constant
A characteristic quantity associated with a polymer chain is the ratio
R%/R?

of the square radius of gyration and the square end-to-end distance. For a rod, this
quantity is equal to {z, and for a random walk, §. In the case of a swollen chain, one
expects R% /R? < §. Indeed, using the Gaussian approximation, we obtain

R%/R?*=1/Qv + 1)(2v +2) = 1/6.911 (3.6)
but a better calculation [4] gives
R%/R? = 1/6.302. (3.7)

This ratio is closer to the random walk value. The reason is the non-homogeneity of the
swelling which is strongest in the centre of the chain.

3.3. Swelling of the polymer chain

Swelling of a chain results from the repulsive interaction between all pairs of monomers.
The weight of a configuration is

N N
exp — bf ds'f ds” 8(r(s") = r(s")). (3.8)
0 0
After introduction of the dimensionless variable x = 5/S, we write [12]:
1 1
bS2~ ) f dx’ f dx" 8(r(x') = r(x")) (3.9
0 0

where d is the dimension of space. In this manner we introduce the coupling constant
z = bS* WD), (3.10)

For d < 4, this coupling becomes infinite, as § (the size) — <. This is the limit of interest,
for which we calculate the observables. The dimension d = 4ismarginal (for three-body
interactions, the dimension d = 3 is marginal). The swelling is the ratio

X(2) = R*(2)/R*(0)

where R?(z) is the average square end-to-end distance. This quantity diverges as z — o,
It obeys a scaling law:

lim X(z) = z2@ 7D, (3.11)

> %

For available samples, X(z) varies from 1 to 10. With the help of diagrams, it is
possible to expand X{(z) in terms of the coupling constant z:

X(z)=1+ 2 a,z". (3.12)
n=1

Explicit calculations of a, were made up to n = 6, thus including single, double, . . . and
sixfold intrachain contacts [13]. However, the series (3.12) is divergent and its radius of
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Figure 5. Calculated swellings X (end-to-end) and X (centre-of-mass) plotted against the
coupling constant z.

convergence is zero. Des Cloizeaux et al [14] solved the problem by analytic renor-
malisation of (3.12). In this method, the swelling is expanded as a function of a charac-
teristic number o of the swollen state

0=2v—1=%43dInX/oInz. (3.13)

The quantity is a priori unknown, but the condition lim,_,.. 30/3 In z = 0 determines
lim,_,. o(z).
The expansion

alnX <
= n Nt
— E b,o (3.14)

is calculated with the coefficients {a,}. The final results for X(z) and o(z) are obtained
by integration of (3.14) and of 3 In z/d0 (see figure 5). Precise experimental values of
the swelling are given by light scattering data, from samples carefully prepared by
fractionation.

Consistency of the model is checked by comparing theoretical and experimental
values of swelling X(5). Consider a set of samples i (i =1, 2, . . . etc) characterised by
different sizes S; and experimental swellings X(S). With the help of figure 5 it is possible
to determine the corresponding coupling constants z;. We calculate the interactions

b, = (2m)¥?z,/S}2. (3.15)

If the model is consistent b, = b, for all samples / of a given solvent solute system, at a
given temperature.

Figure 6 shows the manner in which this requirement is actually satisfied. Two sets
of data [15, 16] are presented, corresponding to measurements made respectively in
1978 and 1971. The smaller dispersion of the more recent results corresponds to improved
sample synthesis and data collection.

We conclude that the standard continuous model and direct renormalisation give a
good account of swelling.
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Figure 6. Interaction b derived from swelling observations and figure S, plotted against
coupling constant z. Polystyrene in benzene: B, from Yamamoto et al [16]; @, from Miyaki
etal [15].

3.4. Osmotic coefficient and universal interaction constant

The repulsive interaction between two polymer chains determines the second virial
coefficient of the osmotic pressure expansion. By definition, this coefficient is equal to
the ratio of the partition functions (see (2.3)):

Z(S, S)[(Z(5))*. (3.16)

The ratio (3.16) has the dimensions of a volume. It accounts for all two-body interactions
between two polymer chains in solution. Since the chains expand as an effect of the
interaction, an intrinsic measure of the two chains interaction is the quantity (3.16) per
unit volume, 1.e. the number

3\ Z7(5,8) 1
This is the osmotic coefficient.
To first order in the interaction b, one has [4] (see also (2.4))
g(2) = (2n)?bS? /8 = 2 (3.18)

which is a result that is expected for weak interactions. The characteristic polymer
property is related to the asymptotic behaviour of g(z). Interaction becomes shielded as
z — =, Moreover,

lim g(z) = g* (= 0.233) (3.19)
is a universal number. The fact that g* is finite can be proved by the following argument

(des Cloizeaux [4]). First, we note in (3.11) and figure 5 that the swelling X = R?/°R?
tends to infinity as z — .
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Figure 7. Osmotic coefficient g plotted against coupling constant z: , theoretical

prediction; O, @, measured values. (From des Cloizeaux and Jannink [4].)

However, we may keep the square end-to-end distance, R?, fixed, while z and X(z)
tend to infinity. For this, we set S (=°R?/3) — 0. This is compatible with an infinite value
of

z = (2m)~bS2- @)

if the interaction b increases quickly enough. We now express all terms in (3.17) as a
function of R?, the size of the swollen chain, instead of § = °R?/3. The renormalised
terms are finite whatever the value of z, and this proves the assertion.

Theoretical and experimental values of g(z) are shown in figure 7. The approximate
expression of g* to second orderin 4 — dis (ford = 3) [4]

gt =1+ %(% +1n2). (3.20)

An analogy for the osmotic coefficient g is obtained in field theory by normalisation
of the four-point vertex function. In the n-vector model, the so-called ‘renormalised
coupling constant’ u is, to second orderin 4 — d (for d = 3), [17]

u*=1[6/(n+ 8)][t + 3(3n + 14)/(n + 8)?] (3.21)

but there is no simple relation between u* and g*.

3.5. Screening in semi-dilute solutions

In dilute solutions, the chains are far apart on average. When the polymer concentration
Cincreases, there exists a concentration C* at which the chains begin to overlap. This
is the onset of the semi-dilute regime. We may write

C* =< 1/(R?)*? (3.22)

where R?is the square end-to-end distance at zero concentration.

The concentration C* can be very low if the chains are long. Indeed, in the limit of
infinitely long chains, C* = 0. Thus a given concentration interval AC can either belong
to the dilute or to the semi-dilute regime, depending on the length of the chain. The
main difference between a dilute and a semi-dilute polymer concerns the homogeneity
of the polymer distribution in space. Homogeneity is a discriminating factor for the
effects of repulsive interaction. Dilute solutions have a heterogeneous structure: the



Polymers in solution 13

1/1lq)

g

~)

(=)
Gof-

g? (nm~%)
Figure 8. Inverse scattered intensity plotted against g2 (the squared wavevector transfer).
Polystyrene in CS;. , formula (3.23). @, measured values. £7%is measured by extra-
polation of the straight line. Departure from (3.23) reveals the blob structure of the solute.
(From des Cloizeaux and Jannink [4].)

polymer chains form isolated islands in the solvent. The repulsive interactions between
monomers add up to swell the chains.

Solutions with overlap (semi-dilute) possess a homogeneous structure on the large
scale (~R). However, in between nearest neighbour contacts, the solution is dilute,
and therefore inhomogeneous. The repulsive interactions acting on the homogeneous
structure do not combine to swell the structure. On the contrary, compensations occur
and on average the interactions screen the pair correlation function (figure 8). This
means that correlations between monomers are effectively weaker than those associated
with a random walk. Screening in polymer solutions was introduced by Edwards [18]
and proved to be a unifying concept. In semi-dilute solutions, screening and swelling
coexist, at different scales. This generates a structure. Chain sequences swell only within
distances &, the screening length. This length depends on monomer concentration and
interaction strength b (it is independent of polymer size).

Let us consider the experimental evidence for screening. The scattered intensity /(g)
(figure 8) obeys the relation

C/l(q) = A(g* + §7?) (3.23)

where A is a constant. The singularity g> = —&~2implies screening in real space, i.e. an
attenuation factor e /¢, The semi-dilute regime exists in the limit of infinite chains, since
the singularity is independent of chain size.

Because screening and swelling coexist, the length & varies in a singular manner with
concentration. This is based on the following remarks.

(i) An intrinsic measure of the monomer concentration is the ‘Kuhnian’ con-
centration [3]

Cx = C(R?/3)V? (dimension L'/*~4), (3.24)

This concentration defines the ‘Kuhnian’ overlap length [3]
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Eg = Cglem, (3.25)
(ii) The screening length & is proportional to &
§=Té&k (3.26)
where I is a universal constant approximated by the relation [4]
[ = (1/4m)(g*)~"? = 0.165 (3.27)

derived from the simple tree approximation of the structure function.

Experimental values of § are obtained from the scattered intensity data I(g) and
formula (3.23). The values of & derived in this manner satisfy relation (3.26). The
experimental value of I is found to be I' = 0.18 = 0.015 [4]. Formula (3.23) is quite
general, but relation (3.26) between £ 2 and the concentration is not trivial. It is of
interest tonote thatthe intensity scattered by a copolymer melt undergoing chain scission
and recombination ( polycondensation)is represented [19] by a formula similar to (3.23).
Here, the screening is only a manifestation of chemical homogeneity. The case of a
swollen polymer network is also of interest [20]. The distribution of the network function
has a characteristic inhomogeneity which causes an excess scattering with respect to
(3.23).

4. Crossover effects

The universal constants related to polymer chain structure (v, g*, k etc) are derived in
the limit of infinite coupling constant, z — «. However, physical chains are finite, and
for instance the maximum value of z for available samples is z = 40. Thus real chains
are in a crossover state. There are many crossover situations, depending on the chain
environment. The parameters associated with environment are, for instance, solution
temperature, polymer concentration and molecular mass dispersion. The effect of a
change in these parameters reveals the physical nature of polymer systems, even though
universality is not reached.

4.1. Osmotic pressure in dilute and semi-dilute solutions

The osmotic pressure experiment provides a crucial test for polymer theory. However,
it is only recently that an adequate theoretical framework has been proposed [21].
The earlier approach consisted in calculating the virial expansion in the single-contact
approximation

aB= 2 A,(z,°R})C". (4.1)
n=1

However, when such a formula fits the data in the dilute regime, it gives pressures
that are too high when extrapolated in the semi-dilute regime. It fails to account for the
depletion effect [2] caused by the repulsive interaction around each monomer.

The difficulty can be overcome if the fundamental length giving the scale of the
system is changed from (°R%)"/2 to (R?)"/2 (R?is the average square end-to-end distance
of the swollen chain (C— 0, z > 1), whereas °R? is the average square end-to-end
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Figure 9. Reduced osmotic pressure plotted against monomer concentration: @, polystyrene
(M,, = 72 000) in toluene at 37 °C; O, polystyrene (M,, = 155 000) in benzene at 30 °C. The
horizontal and vertical lines help in checking universality. (From des Cloizeaux and Jannink

[41)

distance of the equivalent random walk). This is the direct renormalisation method [4].
This gives the result

7B = gl B,(g(z), R?)C". (4.2)

This formula contains three parameters. Since, however, g(z) is practically equal to
g* for z = 4 (see figure 7), the osmotic pressure is a function of only two variables:
the polymer concentration C and the size R* (C— 0). We propose to test the direct
renormalisation procedure on experimental data. In this manner, we shall obtain a
universal representation of the osmotic pressure in good solvents [4].

Figure 9 shows two sets of osmotic pressure data, respectively for polystyrene
(molecular mass 7.2 X 10%) in toluene and polystyrene (molecular mass 15.5 X 10*) in
benzene [22]. The two curves are seen to be affine: this means that renormalisation of
the concentrations by a factor 1.92 for the higher curve leads to superposition of the two
curves. The renormalisation factor is equal to the ratio of the corresponding volumes
(R?)*?representing the volume occupied by the chains in the limit of zero concentration.
Hence, osmotic pressure data for all good solutions in the dilute and semi-dilute regime
can be represented on a universal curve:

aB/C = F(C/C*) (4.3)
where C* is given by (3.22). The asymtotic form is
F..(3.97 C/C*)V/¥d=D

where F. is a universal constant (F,. = 0.4855) [4].

4.2. Crossover to concentrated solutions

The standard continuous model represents the polymer chain by an immaterial curve,
as shown in figure 2. In this model, the chain occupies a certain volume (R?)*? in space,



16 G Jannink and J des Cloizeaux

but it has no volume by itself. The significative parameter is the fraction of occupied
volume C(R?)?*? = C/C* (see (3.22)). The increase of the osmotic pressure associated
with an increase of concentration is caused by repulsive interaction between fractal
objects. The partial volume of the chain does not contribute in any way. One could
imagine that this situation persists whatever the amount of polymer material filling a
given volume. However, this is not the case, and beyond a certain concentration (20%
by weight), the finite volume of the physical chain begins to be more significant than the
overlap ratio. This is the crossover from semi-dilute to concentrated solutions. In the
concentrated regime, the polymer solution behaves more like a binary liquid mixture.
The osmotic pressure can now be written as

mB/C = G(e)

where ¢ is the volume fraction of the chain. The function G has been calculated by Flory
and Huggins [4]. The relation between volume fraction ¢ and chain overlap C/C* is

@ = (C/C*)C*V = (C/C*)§t~™ (4.4)

where ¥ is the chain partial volume. Given the value of C/C* (=C(R?)*?) the volume
fraction is obviously a decreasing function of the chain length.

The crossover between semi-dilute and concentrated solutions is illustrated in figure
10. The osmotic pressure is plotted against chain overlap C/C*. In the universal regime
(dilute and semi-dilute concentration) all data fit the universal curve. However, beyond
agivenoverlap (C/C*) small chains give a higher osmoticpressure thanlong chains [23].
This is the indication of the crossover to the liquid mixture behaviour.

4.3. Bi-disperse polymer systems

A mixture of chains having two different lengths, but identical chemical nature, form
bi-disperse polymer systems. These systems present interesting structural problems,
which have not yet been entirely solved. Application of field theory and of renor-
malisation gives the answer, but some work remains to be done.

4.3.1. Swelling of a long chain in a liquid of shorter chains. Here we report predictions
and observations on the swelling of a long chain in a liquid of smaller chains. The result
displays interesting scale invariant properties of polymer chains.

Let S, be the Brownian size of the long chain, and the S the Brownian size of the
shorter chains (S < §,). If § is negligible with respect to S, the S;-chain will swell as
described in section 3.2. On the other hand, if S is of the order of S, the correlations
are totally screened and the S-chain has a random walk configuration (Brownian chain).
The problem is to determine the crossover function for the average swelling of the long
chain X(5,,S5).

For this, we express the swelling as a function of an effective coupling constant z. [4]:

Zegr = (27) b ST (4.5)
where the interaction b is given by
beff - 1/C52 (46)

Here C is the concentration of the small chains ( polymer melt). Formula (4.6) is
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Figure 10. Reduced osmotic pressure plotted against overlap ratio: ————, calculated asymp-

totic form of the universal behaviour. Deviations from universality are seen at higher
concentrations, at which the liquid lattice theory holds true. (From Noda et a/ [23].)

derived from the expression for the second virial coefficient for labelled chains in a
homogeneous polymer melt [1]. Finally

zos = (27) 2(8,/8)/CS (4.7)
and
X(8;,8) = z¥~ D (4.8)

which is the desired result.

The quantity CS is equal to the monomer concentration. In the liquid state, this
quantity is independent of the size S of the chains.

Thus z.; ~ S1/2/S. This is verified experimentally [24].

Let us now consider the consequences of (4.7) with respect to scale changes. If, for
instance, we double both sizes §; and S, then z. decreases and so does the swelling X
of the long chain (see figure 11). If, on the contrary, space is dilated

x' = Ax 4.9)

then z.4 remains unchanged! (This is because the density of the polymer liquid changes.)
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Figure 11. Schematic drawings of a long chain in aliquid of smaller chains. From left toright,
the lengths of the long and smaller chains are multiplied by a factor of four. Swelling is,
however, greater on the left than on the right.

4.3.2. The second virial coefficient in bi-disperse polymer solutions. The second virial
coefficient of two identical chains Z(S, S)/(Z(S))?relates to the volume (R?)*? occupied
by the polymer chain (3.18). It is therefore tempting to introduce the concept of equiv-
alent impenetrable spheres. The spatial distribution of two chains would be similar to
that of two rigid spheres. We have already seen that this picture is basically misleading
(see section 2), but here we give another illustration of this fact. Consider the extreme
case of a long chain S, and a short chain S, the latter being of the size of a solvent
molecule. Obviously, the short chain is able to approach the long chain well inside the
sphere of radius (R%(S;))"?. Thus, the equivalent hard sphere model breaks down.
Witten and Prentis [25] proposed a crossover formula

Z(5,,5) 3 2_;-5 3/2_5_1 ) .
Z(SHZ(S) ( 3> 5 (R*(5)8 (4.10)

where the osmotic coefficient g is slightly smaller than g* (g = 0.78g*). Experimental
results [26] seem to agree with (4.10). A good theory could give a more precise descrip-
tion of the polymer structure.

5. Polymer chains in poor solvents

In poor solvents, the attractive forces acting on polymer chains become important.
These forces cause two observable phenomena, which are critical demixtion and chain
collapse. In the standard continuous model, the balance (2.1) between repulsion and
attraction is replaced by a combination of attractive two-body and repulsive three-body
short range interactions.

5.1. Universality of critical demixtion?

If the temperature of a polymer solution in a poor solvent is lowered, the solution phase
separates into two phases. The transformation is associated with a critical phenomenon,
in the vicinity of a temperature 7, and a concentration C,. Critical opalescence is
observed. This behaviour is well described by the n-vector model, with a value n = 1 for
the dimension of the order parameter.
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The critical exponents associated with demixtion (n = 1, d = 3) are well known and
their values have been verified experimentally. They are same as those measured in
the demixtion of simple binary liquids. The difference concerns the domain of the
temperature-concentration diagram in which observables obey the critical scaling laws.
This domain is known to be quite extensive for the case of simple binary liquids. It
reduces to 1/VN in the case of polymer solution, and it shrinks to an insignificant size
in the case of polymer blends.

A complication arises from the fact that polymer chains in solution form by them-
selves a critical system in the limit § — <. This system was recognised to belong to the
n-vector model (n =0, d = 3) [2]. Thus two critical phenomena coexist in polymer
solutions and extert mutual effects on each other. In particular, in the limit S — =« the
temperature T, tends to the Flory temperature, identified as the tricritical point [2].
Here we report an effect of the chain size S on the critical demixtion curve.

In the vicinity of critical demixtion (7, C,) the solute volume fractions ¢'(T), ¢"(T)
for the demixtion curve obey the scaling relation

(@'(T) = ¢"(T)) /@ = B,(-1)° (5.1

where the reduced temperature ¢t = (T — T,)/T is the relevant parameter; B, is a non-
universal amplitude and f is the critical exponent of the (n =1, d = 3) model (f =
0.325 £ 0.002). Dobashi et a/ [27] have made precise measurements of  and B, for
different polymer sizes S. They found that B, decreases with S while 8 remains constant.
This is the way the two critical phenomena coexist.

It has been suggested [4] that there is a better representation of the demixtion
fluctuation in polymer solutions—namely, the use of a more intrinsic reduced tem-
perature

t=(1/T. - 1/T)/(1/T. = 1/T¥) (5.2)
where the result Tr = limg_, . T allows us to write
(@' (T) — ¢"(T))/@. = B(—1)* (5.3)

where B could be a universal amplitude. A calculation of B in the simple tree approxi-
mation gives B = 4.9.

Figure 12 shows the experimental results corresponding to three samples of different
sizes . In the representation (5.3) the data are seen to superpose on a unique curve.
The experimental value of B is 3.7. This presentation could be useful for investigating
the tricritical limit, § — o,

5.2. Remark on chain collapse

Adam and Delsanti, using light scattering, have shown that polymer chains collapse in
very dilute solutions, as the temperature is lowered towards the coexistence curve
[4]. This situation presents interesting problems concerning the stability of a chain
configuration at a given temperature of the solution [28].

The origin of the attractive forces that cause this collapse is related to van der Waals
forces (see §2). However, Edwards and Muthukumar [29] have shown recently that
effective attractive forces exist for other reasons. Namely, ‘if the random walk encoun-
ters randomly placed obstacles it will localize’. Therefore, the roughness of a surface on
which a polymer chain is deposited could cause collapse.
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Figure 12. Universal plot of (¢'(t) — ¢"(1))/ . against reduced temperature t. Polystyrene

in methylcyclohexane. O, M, = 1.73 x 10%; @, M, = 1.09 x 10°; x, M, =7.19 x 10%
(From des Cloizeaux and Jannink {4] and Dobashi et al [27].)

Another situation of interest with respect to the onset of attractive forces was
predicted by de Gennes [30] (see also Brochard and de Gennes [31]). Consider a dilute
polymer solution, in a mixture of two good solvents, which are close to their critical
demixtion point. The structure of such a solvent mixture is characterised by inhomo-
geneities of size &, diverging at the critical demixtion point. For a < & < R (where a is
the monomer size and R the polymer end-to-end distance), the effective forces acting
on the polymer chain are attractive. This results from the preferential solvation of a
monomer for one of the solvents. As a consequence, monomers will tend to aggregate
in the domains that are richer in the preferred solvent. However, it is necessary that
& < R; otherwise repulsion is dominant. The authors quoted above determined a charac-
teristic contour of the miscibility range in which the polymer chain is predicted to
collapse.

5.3. Polymer solutions under shear

When shear is applied to a polymer solution, turbidity and opalescence appear at
temperatures far above the stagnant cloud point. Rangel-Nafaile and co-workers [32]
provided data for this observation, using polystyrene (M,, = 8 x 10°) solutions in dioc-
tylphthalate. In their experiment, the solution is pushed through a capillary tube at a
given flow rate Q. A visible cloudiness is detected at a temperature 7.(Q). The results
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Figure 13. Plot of the cloud point temperature 7, against flow rate Q, for different con-
centrations of the polymer solution. (From Rangel-Nafaile er a/ [32].) O, C=0.02gml™';
O, C=0042gml™; ¥, C=0.057gml™,;, 0, C=0.077gml™".

are shown in figure 13. The effect is particularly important in semi-dilute solutions. This
phenomenon is typical of the polymer solution state. It does not show in binary mixtures
of simple liquids under shear.

Because the overlapping chains form a temporary network, it is natural to consider
the elastic energy E of conformation stored in the solute under shear flow. This energy
is proportional to the normal stress difference. When one introduces E as an external
field in the expression of the solution free energy, one is able to calculate [33] cloud
temperatures. A qualitative agreement with observations is obtained.

However it has been suggested [34] that it is not necessary to invoke a ‘symmetry-
breaking transition’ to explain the observed turbidity. The flow field provides conditions
for the growth of concentration waves by dissipation.

It should also be noted that bi-disperse polymer melts display [35] anomalous struc-
ture patterns when subjected to a uniaxial step strain. In reciprocal space, these patterns
appear as ‘butterflies’. Different interpretations are proposed for this observation,
among which enhancement [36] of demixtion between short and long chains is one.

6. Conclusion

We have reported recent progress in the study of polymer solutions. Let us now sum-
marise the results and comment on the present situation.

We have been concerned with the universal properties related to the structure of
polymer solutions. Precise predictions have been obtained from the standard continuous
model of the polymer chain. A typical result is the coupling constant in good solutions,
or osmotic coefficient g*, a universal number independent of the particular core repul-
sion and van der Waals attraction between monomers. Other characteristic numbers
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Table 1. Universal constants related to polymer solutions in three dimensions [4].

Constant  Definition Theoretical evaluation  Experimental result

v(n=20) Swelling 0.5885 = 0.0025 Light scattering
exponent 0.588 = 0.003

y{n=20) Attrition 1.160 = 0.004 Computer simulation
exponent 1.1663 = 0.0003

0 Contact exponent 0.275 = 0.002

vin=1) Correlation 0.63 = 0.0008 Light scattering
exponent 0.63 = 0.005

pln=1) Coexistence 0.325 £ 0.002 0.325+0.01
exponent

h Ratio related 1.04 Neutron scattering
to the asymptotic 1.16
form function

g Osmotic 0.233 Osmotic pressure and
coefficient scattering light

0.233 = 0.007
x Geometrical ratio 0.952 Computer simulation
0.93

F, Ratio related to 2.467 Osmotic pressure
osmotic pressure in 2.46 £ 0.02
the semi-diluted limit

r Ratio related 0.165 Neutron scattering
to screening 0.19 +0.01

A Ratio related to 0.48 0.49 = 0.03
chain size in
semi-dilute solutions

B Amplitude associated 4.9 Direct observation

with critical
demixtion

of phase separation
37

Table 2. Table of universal constants related to polymer solutions in two dimensions [4].

Definition

Theoretical evaluation

Experimental result

Constant
v(n=0)

y(n=0)

Vi

e}

4

Swelling exponent

Attrition
exponent

Swelling exponent
(tricritical)
Contact exponent

Geometrical ratio

0.75

1.333

0.55+0.01

0.444

0.799

Osmotic pressure
0.79 = 0.01
Computer simulation
1.33 = 0.003
Osmotic pressure
0.56 = 0.01
Computer simulation
0.49 = 0.06
Computer simulation
0.84

attesting to the universal nature of dilute and semi-dilute polymer solutions are displayed
intable 1, for three dimensions, and in table 2 for two dimensions. Thus, besides critical
opalescence, polymer solutions display an intrinsic critical behaviour, corresponding to
the limit of infinite chains. Tricritical and mean field behaviours are also identified.
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Predictions have been tested for physical experiments and computer experiments.
These experiments are complementary. However, the laws concerning the partition
function and directly related quantities have only been tested by computer experiments.
It is worth pointing out that new observation techniques have been developed. The
isotopic substitution method, associated with the neutron scattering technique, has
improved our ability to establish contrasts. The contrast between a polymer chain and
its environment is at the heart of the problem, because of the fractal nature of the
polymer configurations. It is also well suited for determining interaction parameters.

The standard continuous model could be used further to derive exact results, in
closely related domains such as:

(i) the structure of multicomponent solutions (more than one solute or solvent);

(ii) the dynamics of polymer chains in solution. Introducing the equivalent Brownian
areas (section 3.1) in the Rouse equation, one obtains immediately an expression of the
internal ‘diffusion’ coefficient & in units of s?/r (cm* s™1'), which is the expected result.

Remarkably, the simple tree approximation gives good results when applied to the
determination of structure functions in concentrated solutions. In semi-dilute and dilute
solutions, the contribution of loopsisimportant and explicit results need to be calculated.

The new concepts that were successfully developed for the study of linear flexible
chains in solution are also applicable to other similar systems: branched polymers, gels
and all sorts of finely divided matter with long range correlations. The polydispersion in
these systems is an essential factor in their structure and not simply a corrigible effect.

A basically different approach is probably needed for studying systems in which the
persistence length is important, such as solutions of charged molecules and, in general,
mesomorph polymers.
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