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Abstract
Density functional theory (DFT) of electrolytes is applied to the electrical
double layer under a wide range of conditions. The ions are charged, hard
spheres of different size and valence, and the wall creating the double layer
is uncharged, weakly charged, and strongly charged. Under all conditions,
the density and electrostatic potential profiles calculated using the recently
proposed RFD electrostatic functional (Gillespie et al 2002 J. Phys.: Condens.
Matter 14 12129; 2003 Phys. Rev. E 68 031503) compare well to Monte Carlo
simulations. When the wall is strongly charged, the RFD functional results
agree with the results of a simpler perturbative electrostatic DFT, but the two
functionals’ results qualitatively disagree when the wall is uncharged or weakly
charged. The RFD functional reproduces these phenomena of weakly charged
double layers. It also reproduces bulk thermodynamic quantities calculated
from pair correlation functions.

1. Introduction

Fluids of charged, hard spheres are widely used to represent physical systems such as electrolyte
solutions, colloids, and macromolecular environments. Density functional theory (DFT)
provides a computationally inexpensive way to determine particle density profiles of these
fluids. However, DFT is an approximation, and any new DFT must be tested, both for accuracy
against MC simulations and for thermodynamic self-consistency against sum rules. This paper
aims to test a recent DFT of charged, hard spheres.
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DFT determines thermodynamic properties of inhomogeneous fluids from the excess free
energy Fex and its functional dependence on the set of all the particle densities {ρk(y)}, where
k is the index of one ion species:

Fex = Fex[{ρk(y)}]. (1)

For uncharged, hard spheres, accurate approximations of Fex derived from fundamental
measure theory are available [1–4]. There are, however, few accurate approximations of
Fex for fluids of charged, hard spheres.

Several methods have been applied to approximate the electrostatic component of Fex.
These include thermodynamic integration [5, 6], the weighted density approximation [7–9],
and perturbation theories. These perturbation methods expand Fex in a functional Taylor
series about a reference fluid that is truncated after the quadratic term. The difference between
the perturbation methods is the choice of reference fluid. In the original derivations, the
reference fluid is the bulk fluid that determines the chemical potentials of the ions [10, 11],
but inhomogeneous reference fluids are also possible [12]. The bulk-fluid reference approach
has been applied to different systems [13–17]. Another approach uses an inhomogeneous
reference fluid that is itself a functional of the particle densities {ρk(y)} [18, 19]. This new
‘reference’ functional (given the name ‘RFD functional’ to recall its origin as a ‘reference
fluid density’ [19]) has been used in recent studies [18, 20]. To distinguish between
these two perturbation approaches, we will refer to them as the bulk-fluid (BF) and RFD
methods.

One of the strengths of the RFD approach is that it can be used in systems with two fluids
separated by a semipermeable membrane. Depending on the conditions, the concentration
of a species in the one compartment far from the membrane may be orders of magnitude
larger than its concentration in the other compartment. For example, in some biological ion
channels, the normal physiological range for the concentration of Ca2+ is seven orders of
magnitude, from 1 µM to more than 10 M [18, 21]. In a system with a semipermeable
membrane, on both sides of the membrane the system becomes homogeneous far from the
interface; two bulk fluids with different concentrations are established although the system is
inhomogeneous near the membrane. The BF method necessarily requires choosing the bulk
concentrations on one side as reference concentrations. If there is a large difference between
the bulk concentrations on the two sides of the membrane, the BF approach inherently involves
calculating a large perturbation to the chosen reference system when, ideally, any perturbation
should be small. Moreover, [19] shows that the common method [13–19] of using the mean
spherical approximation (MSA) [22] to describe the reference system cannot calculate an
accurate bulk density on the other side.

The RFD approach was originally constructed for systems with a semipermeable
membrane where the density profiles are smooth. The purpose of this paper is to compare
the RFD method to MC simulations of the electrical double layer (where the density profiles
are discontinuous) with the goal of understanding the strengths and weaknesses of the RFD
approach in reproducing the effects of ions of unequal size and charge [23]. Other DFT studies
of the double layer have assumed that the ions were the same size (the restricted primitive
model) [6, 7, 11, 12, 16].

We consider a wide range of conditions, with bath concentrations ranging from 0.05 to
3 M, ion diameters ranging from 0.15 to 0.425 nm, ion valences ranging from ±1 to ±3, and
wall surface charge density ranging from 0 to ±0.5 C m−2. In all cases, the RFD approach
reproduces the MC results well. Compared to the BF approach, the RFD functional results are
more accurate, particularly when the wall is uncharged or weakly charged. Both functionals
reproduce bulk thermodynamic quantities well and with similar accuracy.
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2. Theory

2.1. Model of the system

We consider the primitive model of a binary electrolyte near a hard, planar, charged surface.
The solvent is implicitly described by a dielectric constant ε that is uniform throughout the
system. The ions are modelled as charged,hard spheres so that the interaction potential between
ions of species i and j is

ui j(r) =





∞ r � di j

zi z j e2

4πεε0r
r > di j ,

(2)

where e is the fundamental charge, ε0 is the permittivity of vacuum, r is the distance between
the two ions, and zi and di are the valence and diameter, respectively, of ion species i . The
contact distance is

di j = di + d j

2
. (3)

The ion–wall interaction potential is

ui (x) =
{∞ x � di/2

− zi eσ

2εε0
x x > di/2

, (4)

where σ is the surface charge density of the wall and x is the distance of the ion from the wall.
In our calculations, the temperature T = 298.15 K and the dielectric constant ε = 78.5.

2.2. The electrostatic functional

The electrostatic functional we use is described in detail in [18, 19]. Here, we briefly summarize
it.

Perturbation methods approximate FES[{ρk(y)}] with a functional Taylor series, truncated
after the quadratic term, expanded around a reference fluid:

FES[{ρk(y)}] ≈ FES[{ρref
k (y)}] − kT

∑

i

∫

c(1),ES
i [{ρref

k (y)}; x]�ρi(x) dx

− kT

2

∑

i, j

∫ ∫

c(2),ES
i j [{ρref

k (y)}; x, x′]�ρi(x)�ρ j(x′) dx dx′ (5)

with

�ρi (x) = ρi (x)− ρref
i (x), (6)

where ρref
i (x) is a given (and possibly inhomogeneous) reference density profile. The RFD

approach makes the reference fluid densities functionals of the particle densities ρi (x) [19]:

ρref
k (y) = ρ̄k[{ρi(x)}; y]. (7)

ρ̄k is the RFD functional, recalling its origin as a ‘reference fluid density’. Reference [19]
shows that the first-order direct correlation function (DCF) is given by

c(1),ES
i (x) = − 1

kT

δFES

δρi(x)
(8)

≈ c̄(1),ES
i (x) +

∑

j

∫

c̄(2),ES
i j (x, x′)�ρ j (x′) dx′, (9)
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where

�ρk(x) = ρk(x)− ρ̄k(x), (10)

c̄(1),ES
i (x) = c(1),ES

i [{ρ̄k(y)}; x], (11)

and

c̄(2),ES
i j (x, x′) = c(2),ES

i j [{ρ̄k(y)}; x, x′]. (12)

For the RFD functional, the densities ρ̄k(x) must be chosen so that both the first- and
second-order DCFs can be estimated. This is possible because the densities {ρ̄k(x)} are a
mathematical construct and do not represent a physically real fluid. The particular choice of
the RFD functional we use here is that of [18], which is also discussed in [19]:

ρ̄i [{ρk(x′)}; x] = 3

4πR3
ES(x)

∫

|x′−x|�RES(x)
αi (x′)ρi (x′) dx′, (13)

where the {αk} are chosen so that the fluid with densities {αk(x)ρk(x)} is charge-neutral and
has the same ionic strength as the fluid with densities {ρk(x)} at every point x. The radius of the
sphere RES(x) over which we average is the local electrostatic length scale. Specific formulae
for αk(x) and RES(x) are given in [18, 19]. To estimate the electrostatic DCFs c̄(1),ES

i (x) and
c̄(2),ES

i j (x, x′) at each point, we use a bulk formulation (specifically the MSA) at each point x
with densities ρ̄k(x) [22, 24, 25].

This RFD functional has also been used by Sokołowski et al to create a (nonperturbative)
weighted density approximation electrostatic functional [8, 9]. They applied the energy route
of the MSA to define FES as a functional only of the {ρ̄k(x)}. Their approach successfully
described the phase behaviour of the restricted primitive model (RPM) of electrolytes in
pores [8] and the anomalous temperature dependence of the capacitance of the electrical double
layer of the RPM [9].

By defining RFD densities to be the bulk densities, the BF perturbation method is
recovered.

2.3. Numerical implementation of the double layer with DFT

We model the wall approximately as a semipermeable membrane with a neglible permeability
to all the ions in the system. We do this because of the RFD functional approach. The RFD
densities {ρ̄k(x)} are nonlocal averages of the densities {ρk(x)} (equation (13)). Therefore,
while ρk(x) = 0 for all ion species k immediately behind the wall, the RFD densities {ρ̄k(x)}
are not zero behind the wall because of the convolution integral in equation (13). The values
of these functions behind the wall affect the ion concentrations {ρk(x)} in front of the wall
through the convolution integral in equation (9). By modelling the wall as a semipermeable
membrane, it is straightforward to compute the convolutions in equations (9) and (13).

The negligible ion concentrations behind the wall are established by giving all ions a large
penalty µwall for moving behind the wall. We used values between 23 and 30 kT for µwall

because for these values the ion concentrations in the left bath are negligible, but still larger
than machine precision:

ρi (x < di/2) ∝ exp

(

−µwall

kT

)

= e−23 ≈ 10−10, (14)

where the ions are excluded from x � 0. In the numerical implementation, the results did not
depend on the exact value of µwall.

In any system with a semipermeable membrane, two bulk fluids are established far from
the membrane. In our case, the right bath (x > 0) determines the chemical potential µi of
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each ion species i by the bulk densities {ρR
k } and by assuming that the right bath has zero

electrostatic potential. The bulk concentrations {ρL
k } far to the left of the membrane (x < 0)

can be directly calculated because this bath is in equilibrium with the right bath:

ρL
i = exp

(
µi

kT
− zi e

kT
V − µwall

kT

)

. (15)

Because the ion concentrations are negligible to the left of the wall, equation (15) assumes
that the excess chemical potentials in the left bath are zero. For a general semipermeable
membrane, the excess chemical potential for the densities {ρL

k } must be included as well.
V is the Donnan potential of the semipermeable membrane and is calculated from the

charge neutrality of the left bath:
∑

i ρ
L
i = 0. The Donnan potential is the electrostatic potential

difference between the two homogeneous fluids formed on each side of any semipermeable
membrane (far from the membrane), whetherµwall is large or small or whetherµwall affects all
particle species or just some [27, 28]. An equivalent description is that V is the electrostatic
potential that must be applied by an electrode a long (but finite) distance away from the
membrane to keep the semipermeable membrane system in equilibrium.

In our calculations we applied these values for {ρL
k } and V as boundary conditions on the

left-hand side of the system at x = −1 µm. The concentrations {ρR
k } and zero electrostatic

potential were imposed as boundary conditions at x = 1 µm. (1 µm is more than 2300 times
the largest ion diameters we use.) To ensure that we placed the two electrodes far enough from
the membrane, in some calculations we increased the system length to 20 µm (from 2 µm)
and found the calculated results to be identical to several significant figures.

The equations are solved on a nonuniform grid. From 1 nm behind the wall to 2 nm in
front of the wall (−1 nm � x � 2 nm) the grid is uniformly spaced at �x = 0.005 nm.
Outside this region, the grid points are spaced farther apart, with the interval increasing with
distance from the edges of the uniformly spaced region [18]. Other choices of �x did not
substantially affect the results.

The surface charge σ is incorporated into the calculation by converting it into a volume
charge that is placed in one interval with molar concentration σ/1000NA�x , where NA is
Avogadro’s number. This volume charge is included in the Poisson equation used to compute
the mean electrostatic potential.

Details of the discretization of the equations and method of solution are given in [18].

2.4. Numerical implementation of the MC simulations

For the MC simulations, we use the canonical (constant NV T ) ensemble in a simulation cell
with periodic boundary conditions in the directions parallel to the double layer wall. In the
perpendicular direction, the cell is confined by a uniformly charged double-layer wall on the
left and by a neutral hard wall on the right, spaced far enough apart for a homogenous fluid to
exist in the middle of the cell. This length of the cell varied between 8 and 23.5 nm, depending
on the desired bulk ion concentration. In the other directions, the width of the cell varied
between 4.5 and 12 nm. The number of particles was 300–500, depending on cell size and
desired bath concentration. Very long simulations (1–2 million MC cycles) were required
because of the small effects at the surface at zero electrode charge and because of association
effects in simulations containing ions with high valence. The equations for the integration of
the electrostatic potential profiles from the density profiles are given in [23].

We included several equivalent simulations as a check that all the programs gave the
same answer in these cases. For example, simulations 13 and 15 (table 1) are equivalent
because interchanging the ion labels in simulation 13 gives simulation 15—except that the
ions’ valences have opposite sign. When the wall is uncharged, the resulting concentration
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Table 1. Table listing the parameters of the MC simulations we consider in this paper. The
simulations (Sim.) are numbered from 1 to 21. The other columns are: the cation and anion
valences, z+ and z−; the cation and anion diameters in nm, d+ and d−; the surface charge σ on the
wall in C m−2; the cation bath concentration c+ in molar (moles l−1); electrostatic potential ψ at
the wall in kT/e from MC simulations and BF and RFD DFT calculations; βP , the left-hand side
of equation (16); the right-hand side of equation (16), the contact sum rule (CSR), in m−3 ×10−27,
from BF and RFD DFT calculations.

Sim. z+ z− d+ d− σ c+ ψMC ψBF ψRFD βP BF CSR RFD CSR

1 1 −1 0.2 0.425 −0.0075 1 −0.0126 0.0221 −0.0311 1.13 1.32 1.16
2 1 −1 0.2 0.425 0 1 0.169 0.195 0.146 1.13 1.32 1.16
3 1 −1 0.2 0.425 0.005 1 0.280 0.311 0.266 1.13 1.32 1.17
4 2 −1 0.15 0.425 0 0.5 0.0215 0.195 −0.0229 0.612 0.978 0.682
5 2 −1 0.3 0.425 0 0.5 −0.0350 0.0915 −0.0204 0.733 1.01 0.795
6 2 −1 0.4 0.425 0 0.5 −0.0854 0.0157 −0.0507 0.799 1.04 0.857
7 2 −1 0.2 0.425 0 0.05 −0.00341 0.0468 −0.00223 0.0730 0.0911 0.0764
8 2 −1 0.2 0.425 0.005 0.05 0.298 0.312 0.268 0.0730 0.0910 0.0763
9 2 −1 0.2 0.425 −0.005 0.05 −0.258 −0.199 −0.240 0.0730 0.0911 0.0764

10 2 −1 0.2 0.425 0 0.5 0.00528 0.162 −0.0121 0.658 0.987 0.725
11 2 −1 0.2 0.425 0.01 0.5 0.241 0.365 0.198 0.658 0.987 0.732
12 2 −1 0.2 0.425 −0.01 0.5 −0.200 −0.0297 −0.201 0.658 0.987 0.719
13 1 −2 0.2 0.425 0 2 0.299 0.257 0.221 1.38 1.98 1.52
14 2 −1 0.2 0.425 0 1 0.00497 0.242 −0.00439 1.44 2.17 1.60
15 2 −1 0.425 0.2 0 1 −0.301 −0.257 −0.221 1.38 1.98 1.52
16 1 −3 0.2 0.425 0 3 0.474 0.307 0.285 1.45 2.66 1.80
17 3 −1 0.2 0.425 0 1 −0.291 0.278 −0.268 1.52 3.20 1.98
18 3 −1 0.425 0.2 0 1 −0.474 −0.307 −0.285 1.45 2.66 1.80
19 1 −1 0.2 0.425 −0.5 1 −5.92 −5.97 −5.60 1.13 1.26 1.28
20 2 −1 0.2 0.425 −0.5 0.5 −2.91 −3.58 −2.35 1.13 1.24 1.49
21 1 −1 0.2 0.425 0.5 1 10.6 9.87 10.2 0.658 0.848 0.856

profiles for the two simulations are identical and the electrostatic potential profiles are opposite
in sign. Simulations 16 and 18 are also equivalent in this sense.

Details of the MC simulation methods are given in [23, 29].

3. Results and discussion

Table 1 lists the parameters for the MC simulations and DFT calculations we consider in this
paper. Except for figures 9 and 12, we show the results of a representative sample.

3.1. Structure of the double layer

We start by comparing the DFT calculations of ion profiles near an uncharged wall to MC
simulations. Figures 1–3 show the concentration profiles of ions near the wall when the bulk
cation concentration c+ is 1 M and the cation valence z+ is 1, 2, or 3. The particle diameters
are d+ = 0.2 nm and d− = 0.425 nm. (All the ion diameters we chose are standard ion sizes
used in simulations (for example, [23, 30]) and are the approximate size of ions [31].) In the
MC simulations for all three cases (symbols), the cation concentrations at the wall are less
than bulk, with cation depletion increasing as z+ increases. Anions, on the other hand, are
adsorbed at the wall when z+ = 1 and 2 and slightly repelled when z+ = 3. The concentration
profiles also exhibit extrema when z+ = 2 and 3; when z+ = 1, the profiles are monotonic (for
a discussion, see [23]). At low bath concentrations, the profiles are also monotonic, as shown
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Figure 1. Comparing DFT ion concentrations of simulation 2 (table 1) to MC simulations
(symbols). The wall is uncharged, the cation concentration c+ = 1 M, and the ions have valence
z+ = 1 and z− = −1. The RFD DFT is shown with the solid line and the BF DFT with the dashed
line. The main figure shows the cation density profiles and the inset shows the anion concentration
profiles.

Figure 2. Comparing DFT ion concentrations of simulation 14 (table 1) to MC simulations. The
system is the same as in figure 1 except that the cation charge is z+ = 2. The lines, symbols, and
inset are as in figure 1.

in figure 4 (symbols) with z+ = 2 and c+ = 0.05 M. In this case, the anions are also depleted
near the wall. At high bath concentration (c+ = 1 M), when the cation and anion diameters are
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Figure 3. Comparing DFT ion concentrations of simulation 17 (table 1) to MC simulations. The
system is the same as in figures 1 and 2 except that the cation charge is z+ = 3. The lines, symbols,
and inset are as in figure 1.

Figure 4. Comparing DFT ion concentrations of simulation 7 (table 1) to MC simulations. The
system is the same as in figure 2 except that the bulk cation concentration is decreased to c+ = 0.05 M
from c+ = 1 M. The lines, symbols, and inset are as in figure 1.

exchanged so that the cations are larger than the anions (d+ = 0.425 nm and d− = 0.2 nm),
both anions and cations are depleted at the wall (figures 5 and 6, symbols).

All of these properties are reproduced by the RFD DFT, in most cases quantitatively
(figures 1–4, solid lines), but always qualitatively (figures 5 and 6, solid lines). Comparisons
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Figure 5. Comparing DFT ion concentrations of simulation 15 (table 1) to MC simulations. The
system is the same as in figure 2 except that the cation and anion diameters have been exchanged
to be d+ = 0.425 nm and d− = 0.2 nm. The lines, symbols, and inset are as in figure 1.

to other simulation data (table 1) are similar. The BF DFT, however, does not agree as well
with the MC data at an uncharged wall. In general, the contact concentration calculated for
the small ion is approximately the bulk concentration while the contact concentration for the
large ion is greater than the bulk concentration (figures 1–6, dashed lines). This also holds at
walls with small, rather than zero, surface charge density (not shown).

At a strongly charged wall, however, the two DFT methods give very similar results. For
ions with z+ = 1 and z− = −1 at a wall with surface charge density σ = −0.5 C m−2

the calculated contact concentrations of both methods are nearly identical (figure 7). When
z+ = 2 (figure 8), the cation contact concentrations are again nearly identical, but only the
RFD functional reproduces the structure of the anions.

3.2. Electrostatic potential

At equilibrium, ions of different size or valence at a hard wall create a nonzero electrostatic
potentialψ at the wall [30, 32–34]. As well as being an important property of the double layer,
ψ can also serve as a measure of accuracy for an approximate theory like DFT. This potential
is listed in table 1 for both the MC simulations and the DFT calculations we performed.
Moreover, to give an overview of the accuracy of the DFT we also graph these results in
figure 9. For uncharged and weakly charged walls, the RFD functional results agree well with
the MC simulation results while the BF functional results are less consistently close to the MC
results (figure 9(A)).
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Figure 6. Comparing DFT ion concentrations of simulation 18 (table 1) to MC simulations. The
system is the same as in figure 3 except that the cation and anion diameters have been exchanged
to be d+ = 0.425 nm and d− = 0.2 nm. The lines, symbols, and inset are as in figure 1.

As with the ion concentration profiles, the BF approach agrees better with the MC
results when the wall is strongly charged than when the wall is uncharged or weakly charged
(figure 9(B)). At the strongly charged wall, ψ is sensitive to whether the counter-ion is the
small or the large ion, an asymmetry described by Valleau and Torrie [30]. Both DFT methods
reproduce this result as σ is changed from −0.5 to 0.5 C m−2 (simulations 19 and 21, table 1).

When the wall is strongly charged, the double layer is dominated by the counter-ions. But,
when the wall is weakly charged, the co-ions also play a significant role in determining ψ .
Theories of the double layer like the MSA and Gouy–Chapman fail to reproduce MC results of
the dependence of ψ on ion valences or on the wall surface charge density σ [23, e.g., figures
5 and 6]. The RFD functional, however, does reproduce these results, usually quantitatively,
but always qualitatively (table 1):

(1) The dependence of ψ on the valence ratio |z+/z−| is shown in figure 10(A). When
|z+/z−| � 1, the RFD results agree very well with the MC simulations, but the agreement
is only qualitative when |z+/z−| < 1.

(2) The dependence of ψ on the wall surface charge density σ is shown in figure 10(B). The
corresponding electrostatic potential profiles near the wall are shown in figure 11.

To our knowledge, the RFD functional is the first electrostatic DFT to reproduce these
phenomena. Although not shown in this paper, the RFD functional also reproduces diameter
and concentration dependencies described by Valiskó et al [23].



Density functional theory of the electrical double layer: the RFD functional 6619

Figure 7. Comparing DFT ion concentrations of simulation 19 (table 1) to MC simulations. The
wall has a surface charge of −0.5 C m−2 and the ions have valence z+ = 1 and z− = −1. The
lines, symbols, and inset are as in figure 1.

Figure 8. Comparing DFT ion concentrations of simulation 20 (table 1) to MC simulations. The
wall has a surface charge of −0.5 C m−2 and the ions have valence z+ = 2 and z− = −1. The
lines, symbols, and inset are as in figure 1.
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Figure 9. Comparing DFT calculations of the electrostatic potential at the wall ψ (y-axis) to the
potential calculated from all the MC simulations listed in table 1 (x-axis). Exact equality is given
by the line y = x . (A) Results of simulations 1–18 (table 1), where the wall has low or zero surface
charge density. (B) Results of simulations 19–21 (table 1), where the wall has high surface charge
density.

3.3. Thermodynamic self-consistency

While one measure of accuracy for a DFT is reproducing MC results, it is also important to
know if a functional is thermodynamically self-consistent. There are various thermodynamic
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A

B

Figure 10. (A) Changes in the electrostatic potential at the wall ψ as the ratio of cation to anion
valence is changed. Results from simulations 2, 13, 14, 16, and 17 (table 1) are shown. In these
simulations d+ = 0.2 nm and d− = 0.425 nm and the ion with the largest absolute valence is at
1 M bath concentration. (B) Changes in the electrostatic potential at the wall ψ as the surface
charge density σ is changed. Results from simulations 10, 11, and 12 (table 1) are shown. In these
simulations z+ = 2 and z− = −1 and c+ = 0.5 M.

sum rules of ionic fluids that can be used to test self-consistency [35]. Here we consider the
contact density sum rule [35, 36]

βP =
∑

i

ρi (di/2)− βσ 2

2εε0
, (16)
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Figure 11. Comparing DFT electrostatic potential profiles (lines) of simulations 10, 11, and 12
(table 1) to MC simulations (symbols) as the wall charge density σ is changed. The main figure
shows the RFD DFT results and the inset show the BF DFT results. Values ofψ for these simulations
are shown in figure 10(B).

where P is the pressure of the bulk fluid far from the wall and β = (kT )−1. The pressure
is P = PHS + PES, where PHS is the pressure of a pure hard-sphere fluid and PES is the
electrostatic component of the excess pressure. P is the same for both the BF and RFD DFTs
because they use the same bulk thermodynamics. The hard-sphere component is the Percus–
Yevick (compressibility) pressure ([37] and references therein). The electrostatic component
uses DCFs derived from the energy route and we use the excess pressure derived from this
route [38].

Figure 12 shows that both the BF and RFD functionals are not self-consistent. This has
been described for the BF functional [15], but this has not been studied for the RFD functional.
One reason for the inconsistency of the two functionals is a previously described shortcoming
of both the BF and RFD functionals [18]: the second-order DCF from the MSA used in
equation (9) cannot accurately predict the chemical potential of a bulk fluid as a perturbation
of a different bulk fluid. This is because the MSA second-order DCF is thermodynamically
inconsistent with the free energy of the reference fluid. Since each of these components is
related to one side of the contact sum rule, the sum rule cannot be satisfied. In particular, when
all ions are the same size and the MSA second-order DCF is used, the perturbation term in
equation (9) is identically zero, resulting in density profiles identical to a hard-sphere fluid.
On the other hand, the pressures of charged and uncharged hard-sphere fluids are obviously
different. This use of an insufficiently accurate second-order DCF is (at least partly) responsible
for the thermodynamic inconsistency we find. For the BF approach, Rosenfeld describes a
numerical method to achieve self-consistency by calculating a better second-order DCF [11].
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Figure 12. Testing thermodynamic self-consistency with the contact density sum rule,
equation (16), for all the simulations listed in table 1. The x-axis is the left-hand side of equation (16)
and the y-axis is the right-hand side. Exact equality is given by the line y = x . The units on both
axes are m−3 scaled to order 1 by 1027.

Both the left- and right-hand sides of equation (16) are listed in table 1. Comparing these
values for the BF and RFD approaches shows that the RFD functional is almost always closer
to self-consistency than the BF functional (see also figure 12). Since both P and σ are the same
for both approaches, we conclude that the contact densities computed with the RFD functional
are closer to the self-consistent contact densities.

3.4. Thermodynamic quantities

So far we have shown that the ion densities near the wall are well described by the RFD
functional. However, there are functionals that reproduce ion structure but fail to reproduce
thermodynamic quantities. To test the thermodynamic accuracy of the RFD functional we
follow Li and Wu [17] and calculate the excess internal energy per particle Eex and the osmotic
coefficient φ of various bulk fluids via the pair correlation function gi j(r):

Eex = 2π

ρt

∑

i, j

ρiρ j

∫

r2gi j(r)ui j(r) dr (17)

φ = 1 +
βEex

3
+

2π

3ρt

∑

i, j

ρiρ j d
3
i j gi j(di j), (18)

where ion species i has bulk density ρi and ρt is the total bulk density. In the DFT calculations,
gi j(r) was determined by placing an ion of species j at the centre (r = 0) so that ion species i
is subject to an external potential of ui j(r). The DFT equations were then solved in spherical
coordinates.

The results for four bulk fluids are summarized in tables 2–5. In each case, both DFT
methods reproduced the thermodynamic quantities well and with approximately the same
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Table 2. Results for a bulk system with cation concentration c+ = 0.1 M. The ions have valence
z+ = 1 and z− = −1 and diameters d+ = 0.2 nm and d− = 0.425 nm. The first four columns
show contact values for the pair correlation functions gi j (r). The last two columns show two bulk
thermodynamic quantities, the excess internal energy per particle Eex and the osmotic coefficient
φ, calculated from the integrated pair correlation functions.

Method g++(d++) g+−(d+−) g−+(d−+) g−−(d−−) βEex φ

MC 0.0561 5.51 5.51 0.333 −0.279 0.930
BF 0.0496 5.85 5.60 0.317 −0.303 0.923
RFD 0.0501 5.52 5.66 0.319 −0.304 0.922

Table 3. Results for a bulk system with cation concentration c+ = 1 M. The ions have valence
z+ = 1 and z− = −1 and diameters d+ = 0.2 nm and d− = 0.425 nm. The first four columns
show contact values for the pair correlation functions gi j (r). The last two columns show two bulk
thermodynamic quantities, the excess internal energy per particle Eex and the osmotic coefficient
φ, calculated from the integrated pair correlation functions.

Method g++(d++) g+−(d+−) g−+(d−+) g−−(d−−) βEex φ

MC 0.0941 3.28 3.28 0.557 −0.605 0.154
BF 0.0952 3.39 3.32 0.534 −0.633 0.155
RFD 0.0947 3.38 3.26 0.528 −0.631 0.154

Table 4. Results for a bulk system with cation concentration c+ = 0.1 M. The ions have valence
z+ = 2 and z− = −1 and diameters d+ = 0.2 nm and d− = 0.425 nm. The first four columns
show contact values for the pair correlation functions gi j (r). The last two columns show two bulk
thermodynamic quantities, the excess internal energy per particle Eex and the osmotic coefficient φ,
calculated from the integrated pair correlation functions. ∗ indicates that the concentration cannot
be determined because it is less than the statistical error of the MC simulation.

Method g++(d++) g+−(d+−) g−+(d−+) g−−(d−−) βEex φ

MC 0∗ 23.3 23.3 0.825 −1.13 0.753
BF 1.47 × 10−5 19.7 15.0 0.423 −0.924 0.787
RFD 1.63 × 10−5 19.7 24.1 0.566 −1.01 0.783

Table 5. Results for a bulk system with cation concentration c+ = 1 M. The ions have valence
z+ = 2 and z− = −1 and diameters d+ = 0.2 nm and d− = 0.425 nm. The first four columns
show contact values for the pair correlation functions gi j (r). The last two columns show two bulk
thermodynamic quantities, the excess internal energy per particle Eex and the osmotic coefficient
φ, calculated from the integrated pair correlation functions.

Method g++(d++) g+−(d+−) g−+(d−+) g−−(d−−) βEex φ

MC 1.42 × 10−4 5.64 5.64 0.810 −1.61 0.857
BF 1.97 × 10−4 6.33 5.28 0.730 −1.61 0.855
RFD 1.27 × 10−4 6.18 5.45 0.768 −1.65 0.848

accuracy. Again both DFT methods were thermodynamically inconsistent with g+−(d+−) �=
g−+(d−+) and again the RFD functional is closer to self-consistency.

4. Conclusion

We have shown that the RFD functional approach to computing the electrostatic functional
of DFT accurately approximates the double layer structure near a charged or uncharged wall
under a wide variety of conditions (table 1). The analysis also shows that functionals like the
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BF functional may be more accurate the larger the wall surface charge density. Electrostatic
functionals are almost exclusively compared against MC simulations with large wall surface
charge density (|σ | � 0.1 C m−2) [6, 7, 10, 16], but comparisons against simulations with no
surface charge are also necessary.

Acknowledgments

This work was supported by a grant GM67241 from the National Institutes of Health (to DG).
The authors wish to thank Dr Roland Roth for very long and useful discussions on sum rules
and for his comments on the manuscript. We also thank Dr Wolfgang Nonner for his comments
on the manuscript.

References

[1] Rosenfeld Y 1989 Phys. Rev. Lett. 63 980
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