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Abstract
We analyse the locking phenomena arising when an external-cavity diode laser is subjected to
optical injection from another uncontrolled diode laser. The system stability is investigated as
a function of coupled cavity time delay and the optical injection strength. Different regimes,
spanning from ‘in-phase locking’ to ‘out-of-phase locking’ with ultimate amplitude death of
low-frequency fluctuations/pulsations, are described experimentally as well as numerically for
weak to moderate injection. Qualitative agreements between numerically and experimentally
observed results for amplitude quenching are shown. Numerical studies describe the shifting
of phase-flip bifurcation as the optical injection strength is varied for a particular time delay.
Stable phase-locking behaviours, which are desired from the point of view of practical
applications, are observed numerically in a wide range of control parameter space.

1. Introduction

Semiconductor diode lasers are widely used in modern
technologies because of their compactness, low cost and
durability. In order to improve the diode laser characteristics in
terms of narrowing of linewidth [1] and wavelength tunability
[2], optoelectronic feedback [3] or optical feedback [4] or
injection [5] in an external cavity [6] is generally used. A
semiconductor laser subjected to external optical feedback
exhibits a large variety of dynamic behaviours, such as periodic
and quasi-periodic oscillations, chaos [7], coherence collapse
[8] and low-frequency fluctuations [9] or regular pulsations
that degrade the laser characteristics. The low-frequency
fluctuation/pulsation (LFF/LFP) regime is typically observed
when laser diodes are pumped near threshold and subjected
to moderate optical re-injection from a distant reflector. This
complex dynamical regime is characterized by a succession
of sudden drop-outs and slow recoveries of the laser’s mean
intensity in between the drop-outs [10]. The recovery
process of LFF/LFPs has been described as a sequence of
transitions among compound cavity modes [11, 12]. A
complete understanding of LFF regimes has been under debate
since the very first observation. There is no analytical or

experimental picture showing how the dynamics of the injected
laser depends on the parameters on a global scale [13]. The
only map showing various dynamical properties of the system
for a relatively large range of parameter space comes from
experimentalists [14]. But from the experimental point of
view, a complete characterization of low-frequency dynamics
is also quite difficult because of very diverse time scales
involved in the dynamics. The LFF poses a serious problem in
applications where a constant average output power from the
laser is desired [15]. It is thus important to investigate minutely
the nonlinear dynamical behaviour induced by external optical
feedback in an external-cavity diode laser (ECDL), and explore
methods of suppressing or controlling chaos and LFFs. The
external optical feedback can induce additional noise, which
is considered as feedback-induced deterministic. On the other
hand, it has been shown that noise characteristics of a free-
running laser can be improved by injection locking techniques
[16]. We wish to consider whether the optical injection can
be used to suppress the feedback-induced noise, and study
the effect of optical injection on the feedback-induced noise
performance and the phase locking [17] behaviour of the
ECDL system. Here ‘phase’ refers to intensity oscillation
cycles and it is not related to the optical phase of the electric
field.
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A few experimental and theoretical studies have been
performed on the quenching of the amplitude of the LFF via a
second optical feedback [18] or optical injection from another
laser [19]. But detailed information about the phase locking
and route to ultimate amplitude death is lacking, which is the
crucial point we wish to pay attention to in the present paper
in the context of a mutually-coupled laser system [20]. The
coupling between the lasers could be in either unidirectional
[21, 22] or bidirectional fashion [12] leading to different kinds
of outputs [23]. The mutually-coupled diode laser system is
very interesting because of its potential application in a wide
range of fields, specially in communications [24]. Apart from
this, the coupled diode laser system also provides a simple
and powerful tool to unveil the collective behaviour within a
wide range of control parameter space. Among the collective
behaviour, amplitude death can occur when two identical or
non-identical coupled chaotic systems drive each other to a
fixed point and stop the oscillations [25]. The amplitude death
of low-frequency dynamics may arise in different scenarios.
First, if the coupling between two diode lasers is sufficiently
strong that it can create a saddle node pair of fixed points
on the limit circle when the natural frequencies of the diode
lasers are sufficiently separated [26], amplitude death can
occur. Secondly, if there exists a time delay in coupling when
the frequency mismatch between the coupled lasers is zero,
a variation in the time delay eventually leads to amplitude
death [27, 28] of the laser output. In the second case, the
time delay initiates a Hopf bifurcation [29] in which the two
lasers pull each other off their limit cycles and collapse to a
steady state. The most accessible control parameters, from an
experimental implementation point of view, are probably the
injection current, the coupling strength and the time delay. The
number of adjustable external and internal parameters and their
combinations is so high that new dynamical regimes are still
being observed by careful adjustment of the laser parameters.
An important focus of this paper is on investigating some
intriguing aspects of the collective behaviour and route to
ultimate amplitude death of the low-frequency dynamics.

In our system of a single-mode ECDL (slave) [11, 30, 31],
we present a novel scheme of stabilization by phase locking
and suppression of LFPs via bidirectional coupling with a
multimode free-running (master) diode laser having similar
characteristics. Optical injection locking [32] usually arises
in one of the two ways: either both the lasers emit in
the same phase (in-phase solution), or the phase difference
between the laser outputs is π (out-of-phase solution).
The in-phase locking produces constructive interference in the
output whereas the out-of-phase locking produces destructive
interference. We also observe, in a certain parameter range,
that the phase difference between the laser outputs is either
in between 0 and π (signifying phase synchronization) or
unbounded (signifying desynchronization). In our set-up, the
ECDL is subjected to both delayed optical feedback from a
reflector (grating) and bidirectional coupling of the light from a
driving laser into the external cavity. This system is interesting
from several viewpoints, as it can combine desirable features
of both external-cavity lasers and injection-locked lasers. For
example, feedback and injection can both contribute to a

narrowing of the laser linewidth [33], while strong injection
inhibits coherence collapse. For optical communications
using a chaotic carrier, it has been predicted numerically that
optical injection may enhance the bandwidth in an external-
cavity semiconductor laser operating on a high-dimensional
chaotic state [34]. This allows the possibility of higher data
transmission rates. This interest in optically injected external-
cavity semiconductor lasers motivates the characterization of
their simplest modes of operation. The dynamical behaviour
has been investigated theoretically, tracing a route from
stability to coherence collapse at increasing injection levels
[35]. In this paper we concentrate on the regimes of
continuous-wave emission of the injected laser (slave ECDL),
phase-locked on the master laser, and study of phase-flip
bifurcation [36] of the coupled laser system. We have found a
new route to complete amplitude death in this purely optically-
coupled diode laser system and obtained results for the locking
of different dynamical regimes with low to high coupling
strengths.

The organization of the paper is as follows. The
experimental setup is introduced in section 2. This is followed
by discussion of numerical results in section 3. The
conclusions are presented in section 4.

2. Experimental set-up

The schematic of the experimental set-up is shown in figure 1
where a single-mode tunable ECDL (Advanced Laser Systems
LA-5C-830 semiconductor laser, with a grating in the Littrow
configuration) is operated at a wavelength of 825 nm at a
threshold current of 63.0 mA from a well-stabilized home-
made current controller within an accuracy of ±0.01 mA. The
temperature of the ECDL is set by a home-made temperature
controller at 23.25 ◦C within an accuracy of ±0.01 ◦C. A
second uncontrolled injection diode laser (Advanced Laser
Systems LA-5C-830) operating at 830 nm with a solitary
threshold of 73.0 mA is coupled to the ECDL via a polarizing
beam-splitter. Special attention has been paid to achieve a
well-defined coupling condition and time delay. The slave
laser is subjected to self-feedback from its external cavity and
a coupling from the master laser, and the master laser to only
coupling from the slave ECDL. The self-feedback strength is
adjusted by a piezo-disc in order to get the perfect Littrow
configuration, and the coupling strength is adjusted using a
polarizer. The feedback and coupling strengths are tuned
so that the proportionate injection field to each laser is the
same (=η). The path length between the lasers is 52.6 cm
(coupled-cavity round-trip time = 3.5 ns). The length of the
external cavity is set to 4.6 cm (round-trip time = 0.306 ns). A
fast avalanche photodiode (Hamamatsu C5331-02) is used to
monitor the ECDL intensity, which is simultaneously recorded
with a digital oscilloscope (Tektronix TDS350, resolution =
2.5 ns).

The experimental results of the LFPs from the ECDL
with no coupling: η = 0.0, and the amplitude suppression
of these LFPs at a particular delay time (=coupled-cavity
round-trip time) and varying coupling strengths, η = 0.0283,
0.0286 and 0.0311, are shown in figure 2. The figure clearly
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Figure 1. The schematic experimental set-up; ECDL: external-cavity diode laser, TC: temperature controller, CC: current controller, G:
grating, PZT: piezo-electric transducer, PBS: polarizing beam-splitter, POL: polarizer, PD: photodidode, DU: detection unit and OSC:
oscilloscope.

Figure 2. Experimentally observed slave laser output powers (in
microwatts) versus time (in seconds), showing amplitude
suppression of low-frequency pulsations. The curves are for
injection strengths (a) η = 0.0, (b) η = 0.0283, (c) η = 0.0286 and
(d) η = 0.0311, at a fixed time delay =1.75 ns.

indicates that as we increase the coupling strength, amplitudes
get suppressed.

3. Results of numerical simulation

The fundamental equations modelling a single ECDL is a
set of delay-differential equations, known as Lang–Kobayashi
(LK) equations [37], which describe the time evolutions of the
complex electric field E(t) of a single longitudinal mode and
the carrier density N(t) (with the threshold value subtracted
out) averaged spatially over the laser medium. In order to

analyse the behaviour of the proposed scheme of the two
coupled lasers, the LK equations can be written in a standard
normalized form:

dE1

dt
= (1 + iα)N1(t)E1(t) + η e−iω2τE2(t − τ),

T
dN1

dt
= J1 − N1(t) − [2N1(t) + 1] |E1(t)|2,

dE2

dt
= (1 + iα)N2(t)E2(t) + η eiω1τE1(t − τ),

T
dN2

dt
= J2 − N2(t) − [2N2(t) + 1] |E2(t)|2,

(1)

where η is the coupling parameter, i.e., the fraction of light of
ECDL injected into the other laser and vice versa, J are the
injected constant current densities (with the threshold value
subtracted out), T is the ratio of the carrier lifetime to the
photon lifetime, the delay time τ = 2L/c is the round-trip
time taken by the light to cover the distance L between the
lasers, and α is the linewidth enhancement factor of the diode
lasers. The measured quantities are output powers of the lasers,
P1,2 = |E1,2(t)|2.

The LK equations represent a simple and generally
accepted model in the literature to describe a semiconductor
laser. This model is mono-mode and quasi-monochromatic.
We also ignore the gain compression term, spontaneous
emission, and the Langevin noise term in our model. Since the
aim of our work is to gain a physical insight by fast numerical
analysis, we have not tried to develop a more accurate model
including noise sources or describing the laser technology.

We study the dynamical behaviour of a diode laser
subjected to an external optical injection from a coupled diode
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Figure 3. Plot of laser output power P1 versus time (in units of
cavity photon lifetime) for a fixed time delay τ = 14. The curves are
at different coupling strengths, η = 0.0321 (continuous line), 0.0322
(dashed line), 0.0323 (dotted line), 0.0324 (dash-dotted line) and
0.0325 (dash-double dotted line).

laser, as a function of the injection time delay τ (in units of
cavity photon lifetime) and of the relative amplitude η of the
injected field. Numerical integration is done using a Runge–
Kutta fourth-order scheme with a step size, �t = τ/n, where
n = 1000 is chosen based on the accuracy criteria. We have
checked the stability of this method and found that for a fixed
time delay, it gives reliable results if n is sufficiently large.
The dimensionless parameters in equations (1) are taken as
J1 = 0.165, J2 = 0.175, T = 1000 and α = 5.6.

We start by analyzing the modulation properties of
the coupled laser system from the rate equations. The
effect of modulation is strongly dependent on the injection
locking parameters and injection locking range. Three
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Figure 4. The laser output powers, P1 and P2, versus time (in units of cavity photon life-time) for a fixed time delay τ = 14 and coupling
strength η = 0.25, showing in-phase motion in the amplitude-death region B in figure 6. The initial transients are not shown.

control parameters (J , η, τ ) defined above are relatively
straightforward to determine experimentally, even though the
internal parameters of diode lasers are typically not very
accurately known. An example of suppression of low-
frequency pulsations at a particular time delay τ and varying
coupling strengths η is shown in figure 3.

Numerically, we see that there are two types of amplitude
modulation of low-frequency dynamics in our coupled diode
laser system. The first one is the almost non-transient
amplitude suppression with constant time delay as shown
in figure 3, which is in good qualitative agreement with the
experimental result shown in figure 2. In the other interesting
dynamics, the amplitude death occurs with time in low-
frequency dynamics as shown in figure 4. At a constant
time delay, the injection strength does not change the drop-
out behaviour (pattern or shape) except changing its in-phase
amplitude. A similar dynamics of amplitude death with out-
of-phase motion for a different η is shown in figure 5. The
experimental observation of amplitude suppression of LFPs
at a particular injection strength and time delay is in good
agreement with the simulated result; however, the detailed
comparison between the model and experiments for the other
different observed in-phase and out-of-phase dynamics is left
for future work. Here the in-phase and out-of-phase amplitude
death are dependent on the type of the coupling (resonant or
non-resonant) parameters. For the resonant case, both the
lasers are in phase with amplitude death occurring as shown
in figure 4. For the non-resonant case, when the injected light
does not meet the laser round-trip time phase condition, then,
to a good approximation, we can assume that the amplified
light only makes a single pass through the device before being
lost from the laser cavity. This non-resonant amplification of
light does not couple into the slave laser modes and decreases
the carrier number density, which results in increased refractive
index and subsequently decreased cavity resonance frequency
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Figure 5. The laser output powers, P1 and P2, versus time (in units of cavity photon life-time) for a fixed time delay τ = 14 and coupling
strength η = 0.30, showing out-of-phase motion in the amplitude-death region A in figure 6. The initial transients are not shown.

of the slave laser. This means that fewer carriers take part in
the gain process for the slave laser mode reducing the optical
power. This leads to the out-of-phase phenomenon between
the master and slave lasers as shown in figure 5.

The different dynamical regimes are shown in figure 6 in
a schematic phase diagram in control parameters η and τ . Due
to the presence of the delay in the optical injection, our system
has an infinite-dimensional phase space making any rigorous
analysis of equations (1) very difficult. In our simulation
of equations (1), we first fix the delay time τ , and vary the
coupling strength η. At each set of parameters, in order to
remove the initial transients, it is sufficient to discard the first
105 data points, and then we look for sustained dynamical
behaviour within the next 105 data points. We plot the output
powers P1 and P2 of both the lasers versus time (as shown
in figure 7) and the phase relation between P1 and P2 (as
shown in figure 8). Based on these two figures, we identify
the dynamics for each set of parameters, whether it is in-
phase or out-of-phase or mixed phase or amplitude death state.
After a rigorous scanning of the (η, τ )-parameter space, we
mark the transition line across which the dynamical states are
of different behaviour. In figure 6, symbols A to H mark
the different types of dynamical regimes. The phase-flip
bifurcation [28, 36] within an (η, τ )-parameter space takes
place along the thick line marked by ‘•’, across which the
dynamics are given by in-phase and out-of-phase motions.
Such typical in-phase and out-of-phase motions are shown in
figures 4 and 5 for regions B and A, respectively. We have
checked our results for different values of the current densities
J1 and J2. We do not find any new dynamics, although
the locus of the transition curves, defining the boundaries of
the different types of motion, gets shifted or modified. We
have also checked the dynamical states with many different
uniformly-distributed random initial conditions, and found that
there is no multistability.

We now attempt to provide an understanding of the route
to ultimate amplitude death. We find distinct stages during

the transition to complete amplitude death where the system
gets locked as the coupling strength is increased from zero. In
the first stage, the ECDL decreases the amplitude to death, but
before reaching complete death, a laser transition takes place
to another dynamical state, as can be seen from the results in
figures 2 and 3. The first stage describes the transition to partial
amplitude death. In the second stage, the injected ECDL
shows different dynamical output states as shown in figure 7.
In the final stage, the amplitude decreases until ultimate
amplitude death, in-phase or out-of-phase, is established,
as shown in figures 4 and 5. The variation of the phase
difference with coupling strength η is shown in figure 8(a)
while phase relations in between P1 and P2 are shown in
figures 8(b), (c) and (d) for in-phase, out-of-phase and mixed
phase, respectively, in different regimes of the parameter
space (figure 6). It is worth mentioning here again that our
description of the route to ultimate amplitude death is based
on a set of numerical observations, rather than any rigorous
analysis of equations (1), as given for example in [38] for
bifurcation scenarios in an ECDL, which is difficult because of
the delayed coupling. We have checked the robustness of these
dynamics by considering small noise. Experimental results,
where noises are unavoidable, also confirm the robustness.

4. Conclusions

We have presented an extended analysis of the dynamics of
a semiconductor laser subjected to external optical injection.
Due to the presence of the delay in the optical injection, which
makes the system infinite-dimensional, an analytical treatment
of the problem is quite difficult. We have investigated
the transition of the coupled diode laser system to ultimate
amplitude death, in-phase or out-of-phase, by using numerical
simulation. We have found a new route to complete amplitude
death in this purely optically coupled diode laser system.
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Figure 6. Schematic phase diagram in the parameter space of delay time τ and coupling strength η. The different regions are marked as A:
out-of-phase amplitude death, B: in-phase amplitude death, C: out-of-phase desynchronized, D: in-phase desynchronized, E: out-of-phase
quasiperiodic; F: out-of-phase periodic, G: in-phase limit circle, and H: in-phase quasiperiodic motions.
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Figure 7. Plots of laser output powers, P1 and P2 versus time (in units of cavity photon life-time) for a fixed time delay τ = 14,
corresponding to different regimes of figure 6, with (a) η = 0.05 in the in-phase unsynchronized state in regime D, (b) η = 0.15 in the
out-of-phase unsynchronized state in regime C, (c) η = 0.27 in the in-phase quasiperiodic state in regime H, (d) η = 0.32 in the out-of-phase
quasiperiodic state in regime E, (e) η = 0.36 in the out-of-phase periodic state in regime F, and (f) η = 0.38 in the in-phase periodic state in
regime G. The initial transients are not shown.
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The different transitions are characterized in this way: low-
frequency periodic pulsations → irregular pulsations →
constant periodic motion → amplitude death state.

The transition to complete amplitude death is manifested
by two parameters: the coupling strength η and coupled-cavity
delay time τ . The results presented in figures 2 and 3 show that
for a small η the amplitude does not reach zero in physically
accessible time scales and complete amplitude death is not
seen. However, for sufficiently large η, ultimate amplitude
death could exist in a range of coupling strengths as shown in
figure 6. Therefore, there exists a first stage which describes
the process of transition to partial amplitude death and after
that the laser jumps to another LFF state. At the onset of
partial amplitude death, the master laser provides a sufficient
delayed optical injection to the slave ECDL to suppress the
LFF/LFP by destroying or pushing the antimodes far away
from the external cavity mode, which are responsible for the
power drop-out crisis.

We have obtained results for the locking of different
dynamical regimes with low to high coupling strengths. The
locking diagrams have been drawn in a window in the (η, τ )-
plane, where separate first and final stable locking regions
have been found. The injected light decreases the carrier
density which results in an increase of the refractive index and
subsequently a lowering of the cavity resonance frequency of
the slave ECDL. The master laser provides a physical means to
the slave ECDL for generating almost zero feedback through
bidirectional coupling between the lasers. For very small
injection strengths, both the lasers are essentially independent
(out-of-phase) and for large values of the injection strength,
both the lasers are tightly coupled (in-phase) acting as one
laser. At a particular set of values of η and τ the laser

transitions to amplitude death take place. An important
advantage of this technique is that one can apply it, unlike most
existing locking or stabilization techniques, without changing
any parameter of the ECDL.
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