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Abstract
We present a theoretical analysis of how intense, few-cycle infrared laser
pulses can be used to image the structure of small molecules with nearly 1 fs
temporal and sub-Å spatial resolution. We identify and analyse several physical
mechanisms responsible for the distortions of the diffraction image and describe
a recipe for recovering an un-distorted image from angle and energy-resolved
electron spectra. We also identify holographic patterns in the photoelectron
spectra and discuss the requirements to enhancing the hologram resolution for
imaging the scattering potential.

(Some figures in this article are in colour only in the electronic version)

Intense laser pulses can generate a diffraction image of a molecule using the molecule’s own
electrons [1–3], with sub-Å spatial and nearly 1 fs temporal resolution. After strong-field
ionization, the electron wave packet is first pulled away from the ion by the electric field of the
laser. Within the same laser cycle, the electric field reverses its direction and the electron can
be driven back to recollide with the parent ion. Elastic scattering takes the diffraction image
of the parent molecule (figure 1) [2].

From the ion’s perspective, during the recollision the electron current density exceeds
1010 A cm−2 and is concentrated within a small fraction of the laser cycle (<1 fs) [3], exceeding
these characteristics in conventional approaches to ultrafast electron diffraction (see, e.g., [4])
by many orders of magnitude. Energy W of the returning electron reaches 3.17Up [5], where
Up = E2/4ω2 is the average electron oscillation energy and E, ω are the field amplitude and
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Figure 1. Diffraction during strong-field ionzation. The inset sketches ground state in the velocity
space, with shades of grey coding the probability.

frequency, respectively (atomic units are used everywhere). For the Ti:sapphire laser W ≈
133 eV at the intensity I ≈ 7×1014 W cm−2 and increases propositional to λ2 with increasing
the wavelength λ, yielding sub-Å spatial resolution. A laser pulse can also be used to align
[6] molecules, emphasizing the diffraction pattern.

These advantages do not come for free: the nature of the electron pulse and the presence
of the strong laser field lead to several complexities. We identify and analyse them numerically
and analytically and describe the procedures for recovering the undistorted diffraction image.
The main ingredients in our recipe are (i) tunnel ionization regime, (ii) special cuts in the
photo-electron spectra and (iii) the use of nearly single-cycle pulses E(t) cos(ωt + ϕ) with
stabilized carrier-envelope phase ϕ. Yurchenko et al [7] describes three-dimensional ab initio
numerical simulations which demonstrate how the internuclear distance for diatomics can be
identified in the multiphoton regime. Our paper suggests a general recipe for obtaining the
overall diffraction image.

We use an example of a diatomic molecule aligned perpendicular to the field E cos ωt

polarized along the x axis, see figure 1. Numerically, we use the same H+
2-like 2D model as in

[2] with the soft-Coulomb electronic potential (a = 0.5 au)

VM(x, y|R) = VA(x, y − R/2) + VA(x, y + R/2)

= − 1√
x2 +

(
y − R

2

)2
+ a2

− 1√
x2 +

(
y + R

2

)2
+ a2

. (1)

The internuclear distance is frozen at R = 4 au (Ip = 0.96 au). Reading the recollision
induced diffraction image forces one to deal with several unavoidable complexities outlined
below.

(1) Imprint of the initial state during tunnelling. Consider the limit of tunnel ionization
γ 2 = Ip/2Up � 1, where Ip is the ionization potential. For each moment of ionization
t0, the newly created electronic wave packet in the continuum ��(v⊥, t0) depends on the
transverse velocity v⊥ as (see, e.g., [8]):

��(v⊥, t0) ∝ 〈v⊥|�i〉 exp

(
−v2

2
τT (t0)

)
(2)

Here τT (t0) is the tunnelling time, ωτT (t0) cos ωt0 = γ . The Gaussian shape due to
tunnelling filters the Fourier-transform 〈v⊥|�i〉 of the initial orbital �i which already
carries imprint of the orbital’s structure (figure 1, inset). This distorts the shape of the
ionizing wave packet. We choose laser parameters to minimize such distortions.
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(2) Holographic-type structures. The nonzero width of the Gaussian velocity distribution
�v ∼ 1/

√
τT equation (2) gives rise to a holographic-type interference in the final electron

spectrum. For example, the deflection of the electron recolliding with the velocity v ‖ x
creates transverse component v⊥ after the scattering. If v⊥ is within �v, the scattered
wave will interfere with the reference wave that has started with nonzero v⊥ and has
missed the ion. Similar interference occurs for an atom.

(3) Large scattering angles. For typical recollision energies ∼100 eV, deflection with relevant
transverse velocities v⊥ ∼ π/R corresponds to large scattering angles θ . Quickly
decreasing cross sections dσ(θ) distort the diffraction image.

(4) Distortions induced by the laser field. After the scattering, the electron’s longitudinal
velocity is changed by the laser field while the transverse velocity remains unaffected.
Therefore, for a given recollision energy, the electron’s final energy after the ‘elastic’
scattering depends on the deflection angle. An angle-resolved spectrum for a fixed final
energy does not correspond to the diffraction pattern for a given recollision energy.

(5) Interference between diffraction images taken at different energies. The recollision energy
ranges from 0 to ∼3.2Up [5]. In the absence of the laser field, energy-resolved spectra
would discriminate between the diffraction images taken at different energies. However,
in the presence of a laser field, electrons recolliding with different energies at different
times t may end up with the same final velocity vector v. The resulting interference is
caused exclusively by the laser field.

The first step in recovering the diffraction pattern is to account for the laser-induced change
in the electron energy after the scattering. In the strong low-frequency field, a large electron
oscillation amplitude α = E/ω2 (α ≈ 40 au at I ≈ 7 × 1014 W cm−2 and λ = 800 nm)
separates the recollision into three stages: (i) electron approach with the velocity v, (ii) fast
recollision during an interval �t ∼ R/v much shorter than the laser cycle (in a quarter-cycle
the electron covers the distance α 
 R) and (iii) free oscillation in the laser field after the
recollision. Since ω�t � 1, scattering occurs at a well-defined phase φ = ωt and velocity
v(t). Without the laser field, the elastic scattering means v2

x + v2
y = v2, where v is the

incoming velocity and vx, vy are the parallel and perpendicular velocities after the scattering.
The laser-induced oscillation changes this to

(vx − v0 sin ωt)2 + v2
y = v2(t), v0 = E/ω (3)

where vx, vy are the final velocities at the detector and v(t) is the incoming velocity (along
the x-axis). Equation (3) assumes fast collision and means that the diffraction image taken at
a given energy v(t)2/2 lies on the circular cut through the electron spectrum with the radius
v(t) and the origin shifted by v0 sin ωt . Each time period of the recollision defines its own
circle (both the radius and the shift); the overall spectrum is their superposition.

The simple recollision model [5] assumes that after tunnelling at t0 the trajectory starts
near the origin with negligible velocity. In this model v(t) = v0(sin ωt0 − sin ωt) and the time
of ionization t0 corresponding to t is given by

ω(t − t0) sin ωt0 + (cos ωt − cos ωt0) = 0. (4)

Equation (4) means that at t the electron returns to its initial position at t0. However, after
tunnelling the electron appears at some distance x(t0) from the origin. For a given recollision
moment t, this changes the recollision energy. In the tunnelling limit the correction is [9]
v2(t)/2 ⇒ v2(t)/2 − Ip dt0/dt , where t0(t) is still defined by equation (4). The cut in the
electron spectrum for a given recollision energy from equation (3) becomes

(vx − v0 sin ωt)2 + v2
y = v2

0(sin ωt0 − sin ωt)2 − 2Ip

dt0

dt
(5)
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Figure 2. Recollision-induced diffraction for a single phase of birth. (a) Reference signal
|�(vx, vy)| for a model atom, each new colour corresponds to the next order of magnitude;
(b) |�(vx, vy)| for a model diatomic molecule; (c) circular cuts for the atom (dashed) and the
molecule (solid).

or, introducing dimensionless velocity u ≡ v/v0,

(ux − sin ωt)2 + u2
y = (sin ωt0 − sin ωt)2 − γ 2 dt0

dt
. (6)

For the most energetic (3.17Up) trajectories dt0/dt  −0.32: the correction is small in the
tunnelling regime.

To check this simple recipe for removing the effect of the laser field, we simulate re-
scattering for a single phase of birth ωt0 = 17◦, which corresponds to the maximum return
energy. First, we propagate a classical trajectory starting at the ‘exit’ of the tunnelling barrier
x0 ≈ Ip/E cos ωt0 from ωt0 = 17◦ to the zero of the laser field ωt∗ = π/2. The position
and velocity of the trajectory at ωt∗ = π/2 is used to initialize a Gaussian wave packet which
is then propagated by solving the time-dependent Schrödinger equation in 2D for the model
molecule equation (1), starting at ωt∗ = π/2. The wave packet width is set equal to that
found by solving the Schrödinger equation over one half-cycle, starting in the ground state.
The propagation in the electric field E cos ωt with ω = 0.057 au and E = 0.14 continues
until ωt = 2π . With such a set-up, the first recollision is completed, the later returns have
not occurred yet, and the vector-potential A(t) = −v0 sin ωt is equal to zero at the turn-off,
resulting in the zero velocity shift due to the instantaneous turn-off.

Figure 2(a) shows the |�| at ωt = 2π in the velocity space. Figure 2(b) shows
the calculation for an identical initial condition for a single scattering centre V =
−1.3/

√
x2 + y2 + a2 which provides an atomic-like reference with the same ionization

potential. As expected, the spectrum lies on the circle with a shifted origin. The circular
cut (figure 2(c)) has the diffraction minima and maxima at the expected positions. The triple-
peaked structure of the zero-order maximum is due to the holographic-type interference, which
is also present in the reference atomic-like signal and disappears when the transverse velocity
width is set to zero by setting �(x, y) = �(x, 0) at ωt∗ = π/2. The hologram region is
narrow due to narrow transverse distribution in the initial wave packet.

Having learned how to make proper cuts and how to identify holograms, we can now
analyse laser-induced interference of different trajectories in the final spectrum.

Direct versus rescattered trajectories. The amplitude a(v) to detect an electron with velocity
v has contributions from both direct (no recollision) and rescattered electrons: a = ad + ar .
The energy spectrum of the direct electrons has a cut-off at 2Up and is narrowly focused along
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the laser polarization, see [8] and equation (2). The holographic interference is also present
there. Outside this region, we only deal with rescattered trajectories and their interference.

Interference of long and short rescattered trajectories. In the strong field limit, the amplitude
ar(v) factorizes into the product of the amplitudes of the consecutive processes of tunnel
ionization aion, propagation in the laser field apr, scattering asc and propagation to the end of
the pulse:

ar(vx, vy) =
∑

t

aion[t0(t)]apr[t0(t) → t]

× asc[(v(t), 0) → (vx − v0 sin ωt, vy)]apr[t → ∞]. (7)

The summation is carried over all moments of recollision t which lead to the same final vx, vy .
In contrast to standard above-threshold ionization, where such an interference of ‘quantum
trajectories’ (see, e.g., [10]) is studied for a given final energy, here the angular pattern is taken
at a given recollision energy. Such t = const cuts do not correspond to a fixed final energy,
changing the set of interfering trajectories: one of the moments t in the sum equation (7) is
fixed for all vx, vy , others change as we change vx, vy along the cut.

To minimize the number of interfering trajectories, in our simulations we use phase-
stabilized nearly single-cycle pulses with zero carrier-envelope phase, E(t) = Ef (t) cos ωt .
This suppresses contributions of rescattered trajectories that start with phases other than
0 < ωt0 < π/2, as well as the contributions of late and multiple returns. However, this
does not eliminate the interference of two trajectories that start within the same quarter-cycle
(0 < ωt0 < π/2) and return within the same cycle (ωt < 2π). These are the short (ωt < φ∗)
and long (ωt > φ∗) trajectories, where φ∗  4.4 is the phase of the highest energy trajectory
(3.17Up). The key problem for diffraction related to these trajectories is that their recollision
energies are different.

We can identify the interfering trajectories and phases for given vx, vy using
equation (6). For brevity, we drop the small term γ 2 dt0/dt , which makes our analysis Ip

independent. In the dimensionless variables u = v/v0, immediately after scattering the
outgoing velocity in the x direction is u(out)

x = ±
√

(sin ωt0 − sin ωt)2 − u2
y for the forward (+)

and backward (−) elastic scattering. Here ‘forward’ and ‘backward’ mean that, without the
laser field, the scattering angle would have been below or above π/2. Velocity at the detector
is

ux = u(out)
x + sin ωt = sin ωt ±

√
(sin ωt0(t) − sin ωt)2 − u2

y ≡ F±(ωt, uy). (8)

The functions F±(φ, uy) versus φ are shown in figure 3(a) for uy = 0.9. For each
vy, F

±(φ, uy) form a loop which means that there are always two different moments of
return, corresponding to the same final vx . Note that the corresponding energies of return
(figure 3(a)) are different. The horizontal lines separate different regions of interference:
forward–forward (FF) between two forward scattered trajectories, backward–backward (BB)
between two backward scattered trajectories and forward–backward (FB) between one of each.
Local maxima (minima) of F + (F−) define the energy cut-offs for each value of vx .
Figure 3(b) combines such points to show the classical cut-off of the angle-resolved spectrum
and different areas of interference. A dashed circle in figure 3(b) is the cut for φ  4.4
(recollision energy 3.17Up), which contains no interference in the ‘BB’ area.

Figures 4 show numerical simulations of the time-dependent Schrödinger equation for
the model potential equation (1), with the peak field E = 0.14 au and ω = 0.057 au. Panel (a)
shows the electron spectrum for 1.25 cycle long cos ωt pulse with constant amplitude. The
pulse starts at ωt = −π/2 and ends at ωt = 2π . The ground state is projected out at ωt = π/2.
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Figure 3. (a) Velocities ux of forward F + (solid line) and backward F− (dashed line) scattering
as a function of the return phase φ = ωt , for uy = 0.9. The thick solid line shows the return
energy. Dotted lines separate three regions of interference marked as FF, FB and BB (see text).
(b) Classical cut-off of the angle-resolved spectrum (solid line) and a circular cut for the recollision
phase φ = 4.4 (recollision energy 3.17Up).

Therefore, (i) the ionization occurs predominantly during the half-cycle −π/2 < φ0 < π/2,
(ii) interference of long and short trajectories is not obscured by multiple returns and
(iii) terminating the pulse abruptly at ωt = 2π causes no shift in the free electron velocity.
The shape of the angle-resolved spectrum is the same as expected from the analytical analysis
shown in figure 3(b). The interference of long and short trajectories leads to high-frequency
(the corresponding phase difference scales as Up/ω) ring-like structures in figures 4(a) and (c).
It does not mask the diffraction pattern, which is clearly visible along the cut corresponding
to the maximum recollision energy in figure 4(a) (see figure 4(b)).

Panels (c) and (d) show simulations for a short pulse with the envelope f (t) =
cos2(πt/2T ) for −T < t < T and f (t) = 0 otherwise, for T = 5 fs (FWHM = 5 fs).
The diffraction pattern is still clear along similar cuts, see panel (d). Note that we have two
overlapped spectra similar to figure 4(a), one reflected through vy = 0. They originate from
ionization events near ωt0 = 0 (left-hand image) and near ωt0 = −π/2 (right-hand image).
The images are not mirror-symmetric, as would have been the case for the long pulse. The
first ionization event near ωt0 = −π/2 has lower probability but higher recollision energy due
to the minimal change of the envelope during the oscillation. For the second ionization event,
the maximum recollision energy is reduced by the quickly decreasing envelope.

The ring-like structures in the interference of long and short trajectories can be reproduced
by the stationary phase analysis equation (7) (which contains no contribution from direct
electrons and hence no hologram). Figure 5 shows

ℵ(v) =
∣∣∣∣∣
∑

n

exp
[−iS1

(
t (n), t

(n)
0

) − iS2(v, T , t (n)) + iIpt
(n)
0

]∣∣∣∣∣
2

, (9)

which singles out the interference by setting weights associated with ionization and scattering
to unity and omitting the structural (diffraction) contribution. The summation index n = 1, 2
goes over the two trajectories that start at 0 < ωt0 < π/2 and end up with the same final velocity
v. The corresponding moments of recollision t (n) are found from equation (6) (neglecting the
γ 2 term), and t

(n)
0 = t0(t

(n)) are the solutions of equation (4). The actions accumulated before
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Figure 4. (a) Electron spectrum |�(vx, vy)| for a 1.25 cycle pulse with a constant amplitude, E =
0.14 au (I ≈ 6.9 × 1014 W cm−2 and λ = 800 nm, each new colour represents the order of
magnitude; (b) spectral cut for a fixed moment of recollision (ωt ≈ 4.4); (c), (d) same as (a), (b)
but for a 5 fs pulse f (t) = cos2(πt/2T ), T = 5 fs.
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Figure 5. Analytical results emphasizing ring-like structures in figure 4(a) caused by the
interference of short and long trajectories.
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and after the recollision are

S1(t, t0) = 1

2

∫ t

t0

dt ′ [−v0 sin ωt ′ + v0 sin ωt0]2

(10)

S2(v, T , t) = 1

2

∫ T

t

dt ′ [v − exv0 sin ωt0]2.

The number of interference fringes counted along the vy = 0 cut in figure 5 is only slightly
less then that counted in figure 4(a). We currently attribute this small difference to the effects
of the Coulomb potential.

Thus, despite a series of complications, the diffraction image of the parent molecule can
be distilled out of the electron spectrum generated by intense-field ionization.

One of the most interesting directions suggested by this work is the opportunity to use
holographic structures to image the molecule. Unlike diffraction, the hologram records both
the magnitude and phase of the scattering amplitude. In the present calculation, the hologram
barely distinguishes atom from molecule: the molecule is aligned perpendicular to the laser
field, and the initial spread in the transverse velocity is too small to provide sufficient spatial
resolution. However, changing the alignment of the molecule would allow one to use the large
longitudinal velocity component for holography, increasing the resolution. Another possibility
is to use elliptical polarization, either constant or time dependent, to move the wave packet
by its half-width along the molecular axis, enhancing the holographic signal near the first
maximum while retaining the zero maximum. One can also stretch the molecule.
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