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Abstract, Ii is shown that oscillation or precession phenomena of atom multipole moments
occur when atoms with spin § > 1 are passing through the area occupied by a constant electric
field. The presence of media located in the electric field leads to an additional phase shift of the
atom wavefunction. This effect can be used for the creation of an atomic spin interferometer
and the verification of the weak equivalence principle.

1. Introduction

1t 1s well known that due to the magnetic moment interactions of neutrons with a magnetic
field, the neutron wave, passing the border of the vacuum-magnetic field, experiences a
refraction effect. This effect is characterized by two refractive indexes, n. for neutrons
with spin paralle] (anti-parallel) to the magnetic field,

i B

. M
where i, is the neutron magnetic moment, B is the magnetic induction, W = h2k2/2m is
the neutron kinetic energy before the area occupied by the magnetic field, & is the neutron
wavenumber and / is its mass.

If the neutron spin before the field is oriented through some angle to the magnetic field,
then its wavefunction ¥ is the superposition of the states with spin parallel to the magnetic
field ¥ = C1(}) and anti-paralle] to the magnetic field y_ = C;({} (quantization Z-axis
is chosen parallel to the magnetic field [Cy]? + |C2® = 1). After passing in the field in the
way [ the neutron wavefunction is

¥ =C eikn+i( é ) +Czeikn_l( ? ) @

Hence we arrive at the well known result that the neutron polarization vector P (P =
(Wié’ [} /S) rotates in the field through an angle @ equal to

8 =kin, —n_i. (3)

ni=1%x

In this case
P, =2Rey: (Dy- () Py=2Imyl () v- (D Po=lye O =y
P () = Cp et yo () = Gy,
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So, the neutron spin-rotation effect in the magnetic field can be considered as a result
of interference of neutron states with spin parallel and anti-parallel to the field. Let us note
that the neutron spin-rotation effect in the magnetic field is kinematically similar to the
Faraday effect, i.e. to the effect of light polarization plane rotation in the media, located in
the magnetic field. The Faraday effect is also determined by the fact that, in this case, the
photon refractive index with spin parallel to the magnetic field is not equal to the photon
refractive index with spin anti-paralle! to the magnetic field. Let us consider the case when
the non-magnetic media are in the zone occupied by the magnetic field. In this case

U B
2 n
] — — o 20T
" W W @
where U = —(2nh%/m)pf (0) is the effective potential energy of neutron interaction with
the media, m is the neutron mass, p is the number of scatters in em?®, £(0) is the amplitude

of neutron forward elastic coherent scattering. So, the following important result follows

from (4):
B\ 2 B\ 172
o=k|(1-ZL 4 B -(1—2-"“ !
W w w W

_ 2B
T T Wing+n)

As may be seen, the spin rotation angle 8 depends upon U, i.e. we can measure this
media characteristic through the neutron-spin rotation angle. According to Baryshevsky
et al (1991), in this case we deal with a peculiar interferometer in which the two waves
necessary for wave interference move together unlike in the usual interferometer, in which,
for example, a semi-transparent mirror splits the incident wave into two parts, which pass
different spatial paths. Obviously, the arguments presented above refer to atoms (molecules)
with spin % The closest real situation for experimental investigation is when the target is
gaseous, which increases the pathlength for the atoms without noticeable scattering.

&)

2. Spin atom interferometry of atoms with spin S = % in the electric field

Let us pay attention to the fact that the potential energy U arises not only due to collisions
but also due to atomic interaction with a constant homogeneous electric field,

U = ~1a€? (®)

where « is the atom polarizability and £ is the electric field intensity. As a result, the spin
rotation angle when the particle is passing through the area occupied by the magnetic and
electric fields can be given as

wE?  uB 172 o  uB 172
— = _r = -=
o=k {(l 2w W ) ( v W ) ! ™

where u is the atom magnetic moment. In the case where the particle kinetic energy is
much larger than the energy of its interaction with the electric and magnetic fields we have
the following approximate formula:
_,2uB 2uB af?
B_kvl—k—w—l e (8)
According to (7) and (8) the spin rotation angle measurement permits measurement of the
polarizability &, i.e. the value which is not connected with spin.
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3. Spin interferometry and birefrigence of atoms with spin & > 1 in the electric field

Let us consider the case where the atom with spin § 2 1 passes the area occupied by the
electric and magnetic fields. In this case the interaction energy (Landau et al 1991) of the
atom with the field can be written as

‘} = —gS - B - éa}k&-& ()]
where g is the gyromagnetic relation,
bt = @i + B(Si S + S — L5 (S + 1) ) (10)

is the tensor of atom polarizability and e is the scalar atom polarizability and 8 is the tensor
atom polarizability. In the result,

~

14

Y]

=1-—. 11
Z o an
To analyse new aspects of the interaction of the atom with spin § = 1 and the electric feld
let us investigate the refraction in the absence of magnetic field (B = (). Let the atom be

travelling along the x-axis. Before the electric field area the atom wavefunction is

¥ =1o. (12)
Then after the atom passes in the x-direction in the electric feld, its wavefunction will be
¥ = . (13)
Let us consider the case when V/E < I; then
v
Aoe] — — 4
" 2w (14)

Let the constant electric field be directed along the Z-axis. The spin wavefunction ¥ can
be represented as a superposition of the basis spin functions ya which are eigenfunctions

of the operators 8§ and 522:

o= ayu. (15)
M
In the result the solution (13) can be written in the following way:
wn — z eikn(M)xaMxM (16)
M
where r(M) is the atom refraction index located in the quantum state yu:
m&? )
n(M) =1+ s (p+ P M) (17
py =28 (18)
p=a—3BS(S+1). (19)

Then after the atom passes a way x in the area occupied by the field, the wavefunction
can be presented as

W = {IHMEWp)x Z aM My {20}
M

where

S = 21

&8 0w
h = wa

<=
o [
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wg = EXBfh; v is the atom velocity. Let us introduce the following:

mé&2
ns =1+ Y P (22)
pM = gM lfiM'x (23)
Then the wavefunction (20) can be presented as
go=emr S pH (24)
M

4, Refraction of atoms with spin S = 1 in the electric field

Let us consider the case where the atomic spin is equal to one. Using the wavefunction
(24) let us calculate the values of polarization vector components. It is easy to show that

(¥18, 1) = V2{Re b b° + Re b1 5%}
W’I‘ST)'W) = /2{Imb" B + Im 6" b7} (25)
(WIS |y = B2 — 157 .

Let the atom polarization vector comprise the angle ¢ with the X-axis before the electric
field. Then for the coefficients a* we have the following expression:

a¥ = Cpe MY, (26)
As a resulf, we have
(Sx) = V2Co[Cy cos (¢ — fix) + Coycos (P + fix)]
(Sy) = V2Co[Crsin (¢ — fix) + Cysin (d + fi)] @7
(S,) =C? - C?,.
Let us consider some particular cases.

(a) Let the atom be polarized primarily in the plane X @Y orthogonal to the Z-axis.
According to (27) it is necessary that

C=C,.
In the result we have
(S} = zﬁcl Cocos @ cos fix
(Sy} = 2+/2C, Cosinp cos fix (28)
(S;y=0.
From (28) it follows that the atom polarization vector, passing the area occupied by the

field, osciliates in the plane orthogonal to the field.
(b) Now, let us consider the case where

C—l 4 Cl’ CO

i.e. the initial polarization vector is oriented within some small angle relative to the direction
of the electric field. In the result, from (28) we find

(S} = ~2CoC; cos (¢ — fix)
(Sy} = V2CoC) sin (¢ — fix) (29)
(S} = CI.
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The values of the initial vector components of the polarization vector are determined by the
foliowing expression:

(S:}o = V2CoCy cos ¢
{Sy}o = v2CoCysin g (30)
(Sado = C2. ‘

Comparing (29) and (30) we find

{8x) = {Sx}ocos fx + (Sy)o sin fix
{Sy) = — (S Josin fix + {Sy}QCOS hx {31)
(82} = (Szdo-

According to (30) a very interesting effect of atom spin rotation around the direction of
electric field arises. In this case the precession frequency around the field is equal to (—&)‘5).
While passing through the area occupied by the electric field the polarization vector turns
through the angle

= —fix= _wﬁfg. (32)

The minus sign means that the rotation goes in the clockwise direction.
{c) Let us consider the case where the initial polarization vector is directed primarily
against the electric field, i.e. the condition

CK(,G
is fulfilled. Then

(Se) = ~2CoC1 cos (¢ + fix)
(Sy) = v2CoCysin (¢ + fix) (33)
<Sz) = -CEI .

As we see the polarization vector is turned through an angle equal to fix (i.e. anticlockwise)
around the field direction.

Now let us notice the fact that the polarization state of particles with spin § > 1 is
characterized not only by the polarization vector but also by polarization moments of higher
order. The maximum number of these moments is 25 (Ramsey 1956). So, in the case of
particles with spin § = 1, there is a polarization moment of first order (polarization vector)
and a moment of second order (quadrupolarization tensor) Q. According to the definition

~

O I
= [ 58 + §i5i - Z8% | .
Qi @D ( i 5% + Si S 3 :k)
Now, let us consider the components of quadrupolarization tensor Q;-k. It is easy to
show that the components Qux, Qyy, @iz » Gy, Oyx are not changed while passing the area

occupied by the field. The components Q,;, @y, can be written as

Qs = —=ColC1 c08 (§ — f12) — C—y 008 ( + Fi)]
2 (34)

Q) = \/iicﬂ[cl sin (¢ — fix) — C_rsin(g + fix)].

Let us consider the following special cases:
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(a) Cy = C-;. In this case
sz - ’\/EC[CUSiﬂquin flx
Qyz = —‘*/EC1 Cocosgsin fix.

Comparing the above expressions with the components of the polarization vector (28) we
can draw the conclusion that

T .4 14 T
Qx; = 2<sx (65 fix- 5)) 0y = 2(Sy (6-F Ax-3) ) (36)

The right-hand side of (36) indicates the dependency of poIarizlation vector components on
the azimuth angle ¢ and phase fix. Introducing the vector

Ny = Q€1 + Opr€2 + 085 (37)

we find that the components of the given vecior, orthogonal to the field and the vector (S)
are orthogonal to each other and their oscillations are phase-shifted by x/2. According
to (Baryshevsky 1992) the mentioned oscillation effect describes the exhibition of the
birefringence effect for particles analogous to the birefringence effect in the media located
in the electric field (Kerr effect).

{b) C_; « C, Cy; then

(35)

i
Qi = TECDCI cos (¢ — fix)

1
Qyz = x_ficocl sin (¢ — fix) (38)

Qp =% (CE-2C3) .
From the derived expressions it follows that vector ny; behaves similarly in the electric
field to the polarization vector, namely, it turns through an angle ~ fix while the atom is

passing through the area occupied by the field.
(c) When C; € Cp, C_; , then

1
Q= ——ﬁcocl cos (@ + fix)

1
Oy, = _J_Ec°c1 sin (¢ + fix) (39)

= =1 (C% —2C3) .

From (38) it follows that the vector 7, behaves similarly to the polarization vector, ie.
turns through the angle fix while the atom is passing through the area occupied by the
field.

5. Refraction of atom with spin S = % in the electric field

Now let us consider the atom with spin § = % For the components of the polarization
vector we find the following expressions:

{8x) = ~/3[C3/2C1/2€08 (¢ — 2f1x) + CyaCijp €08 (¢ + 2f1X)] + 2C12Cotj2 cOS B
(Sy} = V3[C32C 2 sin (¢ — 2£1x) + CoyjaCoppsin (¢ + 2£1%)] +2C1 pCyppsing  (40)
(Se) =3/2{Chp = C%n) +1/2(C2, - ) -
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As previously, let us study some special cases,
(a) The initial polarization vector is orthogonal to the electric field. In this case the
condition

Cipp=Cop Cip=Cop
is fulfilled. Then
= 24/3C3/2C 2008 ¢ cos 2 fix + 2CT, cos ¢
Syb = 24/3C3pCippsin p cos 2 fix +2CE, singd @D
{Sz) =0

According to (41) the polarization vector consists of two components; the first oscillates at
the frequency 2wg, the second is constant.
{b) Under the condition

Coapp K C1y2. Ciyn, Cap
we have
(S} = ﬁcs,rzcz,fz cos (¢ — 2f1x) +2Cy2C_y 2 cos b
) = V3C3Cipsin (¢ — 2f1x) + 2C12Coy 2 sin g (42)

(Sz) 3C3/2 +3 2 (Cuz Clz,!z) .
From (42} it follows that polarization vector is the sum of two vectors. The first turns
through the angle —2 fi.x while the atom is passing through the area cccupied by the field,
the second does not change its direction.
{(c) In the case where

Capp € Cip2, Co1p2, Coapp

the polarization vector is also the sum of two vectors. However, the first of them turns
through the angle 2 f1x, i.e. in the direction opposite to that described above in case (b).
Now let us consider the quadrupolarization tensor Q:

Oux = 1/6 (85 + §:8i — 5/28u) . “3)
The appropriate calculations leads to the following expressions:
Q. =13/12 (6‘3,,2 +C 3/2) 1/3 Cuz + C_W) (44)
Qux = =1/6(C33 + C25)) + 1/6 (C + C2, )
+1/+/3[C32C-12¢052 (¢ — f1x) + C—32C12€082 ($ + fix)] (45)
Qyy = —1/6(Chn + C255) +1/6(Cr + C2 )
—1//3[C3p2C1/2¢082 (@ — f1x) + C_3p2C1j2c082 (¢ + f1%)] (46)
Qsy = 1/v3[C3aCipa8in2 (¢ — fix) + C_3p2Crpzsin2 (@ + frx)] 47)
ye = 1/¥3[C3Crpasin (¢ — 2£ix) = CoapCorppsin (@ + 2i)] (43)
Oxy = 1/V3[C3p2Cy 12608 (§ — 2fix) — C_32C_12008 (¢ + 2£10)]. (49)

From the expressions derived it follows that for particles with § = % only one component
is retained, namely ,,. When the particie polarization vector is orthogonal to the electric
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field, all the components of the quadrupolarization tensor, except (2,,, oscillate with the
frequency 2wg. In this case

Oxx = —1/3(Cl — C}y) + 2/+/3C3C1ja cos 2 cos 2 fix (50)
Qyy = —1/3(C}, - C}p) — 2/~/3C3;Cy 2 cos 2 cos 2 fix 51)
Qry = 2/v/3C352C1 2510 2¢p cos 2 fix (52)
Qy; = —2//3C3pCippcos psin2 fix (53)
Qe = 2/v/3C32Crpasing sin2 fix . (54)

The components @, Q,, become proportional to the polarization vector components Sy, Sy,
respectively, in which ¢ is changed to ¢ — /2 and 2 f; to 2 fix — x/2. In the case where
the polarization vector forms some angle with the positive or negative field direction, the
vector 1), turns, respectively, through the angle —2 fix or 2 fix around the field direction.
Let us introduce two vectors 111y and n,, determining them in the following way:

Ry = Q,\:yel + nyBZ + sz63 (55)
My = Qrre) + Oy -+ Oues. (56}

Let us consider the behaviour of the vector 72,y in the case when we can neglect the value
C_3p. Let us also suggest that

Ciy2Co3pp € C1pCapa
Then

Osy = 1/V3C3C_1ja8in2 ($ — f1x)
Qyy = —1/v/3C3;2C_y20082(§ ~ fix) — 1/6C3, + 1/6(Clp + C2 1) (57)
04y = 1/v/3C3nCipp8in (p — 2f1x)
Let us denote
Oy = Qyy +1/6 (C%’/z - Clzjz —C_i2) - (58)
In the result we have
Oy = QF,cos2fix + 0, sin2 fyx
Qyy = @8, cos2fix — 0% sin2fix (59)
Quy = 1/v/3C3Crpa8in (¢ — 2 fix)

where Qxy,éo are the components of Oy, Q’,y under x = (. From the derived expressions
it follows that the orthogonal vector component 721y, in which the component Qy, is changed
to Q,,y, turns through an angle —2 fix while the atom is passing the area occupied by the
electric field. The Z-component of the given vector oscillates with frequency 2wg. So, the
vector 1, end will describe some ellipse-type trajectory.
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6. Atom with spin S =2

Let us consider one more special case of an atom with spin § = 2. Performing all necessary
calculations we find for the polarization vector component the following expression:
(Sz) = 2[C2C) cos (p — 31x) + C2C_y cos ($ + 3 fix)] + V6Co[C) cos ($ — fix)
+C-1cos (¢ + fix)]
(Sy} = 2[C2C1 sin (¢ — 3f1x) + CoC_y sin (@ + 3fix)] + VECo[Cysin (@ —~ fix)  (60)
+C_1sin{¢ + fix)]
(8;) =2(C; ~C) +Ci -2y
From (60) it follows that the components x, y of the polarization vector contain the
terms which oscillate at frequencies 3wg and wg in the electric field. It is easy to show that
in the case when the atom polarization vector is orthogonal to the electric field it can be
presented as a sum of (wo vectors. One of them oscillates with frequency 3wg, the other
with frequency wg. If the ipitial polarization vector is oriented primarily along or (opposite
to) the feld direction, then its further behaviour is determined by the behaviour of the two
vector components. One of them is trned through the angle 3 fix while the atom is

passing the area, occupied by the field, the other through the angle  f1x. Let us write the
average meanings of the quadrupolarization tensor components:

Oir = 1/4(85; Sy + Sk S — 4/38i) (61)
0, =Ci+C2,—1/2(C] +C2)) (62)
Oy = —1/2(C3 + C2,) + 1/2CE + 1/4(CF + ¢} + 3/2C, € cos 2¢

++/6/2Co[C2 08 (2¢ ~ 4 f1x) + C_p 008 (29 +4f1x)] (63)
Oyy = —1/2(C3 + C2,) + 1/2C5 + 1/4(C} + C2,) ~ 3/2C1G-y cos 2¢

—6/2Co[Cysin (2 ~ 4 fix) + C_osin (2¢p + 4 fix)] (64)
Qry = V6/2Co[Casin (26 — 4 £1x) + C_ 5in (2¢ + 4 £1x)] + 3/2C,C_y sin 24 (65)
0y, = 3/21CC; sin (p — 3£1x) — C_zC—; sin (¢ + 3 £1x))

+/6/4Co[Cy sin (¢ — fix) — Coysin (g + f1x)] (66)
Ox, =3/2[CaCycos (¢ — 3 fix) — CCycos (@ + 3 f1x)]

+/8/4CylCy cos (@ — fix) — Coycos(p + fix)]. (67)

The components (Qn, Qyy, QU), oscillating with frequency 4wy appear in the derived
expressions. This frequency exceeds the maximum oscillation frequency of polarization
vector which equals 3wg.

As in cases previously considered it is easy to show that the behaviour of vector n); is
similar to that of the polarization vector.

7. Atom with arbitrary spin §

Atom polarization vector with the arbitrary half-integer spin § located in the area occupied
by the constant electric field can be given as a series

§-1/2

(8} = E S . (68)

n=0
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The vector Sy, has the following components:

2
S2nx = (S + ‘%) - HZ[C,;+[/2C,,_;/2 cos (t;i’ e 2nf]x)
+C_tnt1/2)C—u-172) cO8 (P + 2nf1x)]

2 .
Sony =/ (S+3)" — n2[Cry1/2Cu-1/28in (@ — 2nfix) (69}
+Coui1/2C—u-172) 8in (¢ + 2nf1x))
Sz = (n+ 7) (Cor1p = Cliy) -

As follows from (69) the oscillation frequency of the x and y components of the vector
under consideration equals 2neg. In the case of integer spin S,

8=
(8) =) Smui (70)
n=0
Sansix =/ S (S + 12 = n.(n = DICrs1Caos (¢ — 2n + 1) fix)
+Couan)Cun o8 (¢ + 20 + 1) fix)]

Statty = \/S (§+1? —n(n — DICy1 Cysin (6 — 21 + 1) fix) (711}
+C_(,,+[)C_,, sin (t,'b + (2n -+ 1) flI)]
Sant1z = (1 +_1) (C;E-H - CE(,;H)) .

The components x, y of 82,41 vector oscillate with the frequency (22 + 1) wg.

Considering the evolution of quadrupolarization tensor components we should note
the following: the vector ny, will behave similarly to the polarization vector. The
components Q,x, Qyy will oscillate on the frequencies proportional to [S2 —(§-2)* ]wg;
4(5-2)wg....

8. Atom spin interferometry when the atom with spin S > 1 is passing through the
electric field

As was mentioned above, the presence of an additional phase shift of the neutron wave in the
media can be used as a basis of the experimental method called neutron spin interferometry,
The potential energy of the atom in the electric field in gquantum state xy, equals

UM)==-128 (p+ pM?) . (12)

In the area occupied by the electric field we put some media with thickness ! and optical
potential ¥ (for example a gas target); then the refraction index has the following form:

M V)= l_ﬂ_@ 4 v

After passing through the media the spin components of the wavefunction, for which the
value of the quantum number M differs per unit, obtain an additional phase difference

¢=kln(M,V)y—n(M -1, V)lI=¢o+ Ad (74)

(73)

where

£28 1 !
¢’0=(2M“1)?ﬁ;=(2M'1)¢0ﬂ; (75)
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the phase difference is connected with the rotation in constant ‘electric field in the absence
of potential ¥ by :
i V!
Ag = 2 M I)wﬁzw S (76)
The additional difference of phases is caused by the presence the of media.

Thus, the existence of additional phase differences of the atorm wavefunction in the
media can be used as a basis for the spin interferometer. It is very interesting that an atom
spin interferometer permits us to immediately detect the infiuence of the gravitational field
on separate atoms. In fact, in the quasi-classical approximation the phase difference, which
occurs when the particles are moving along a certain trajectory ! (for example, up or down)
is calculated according to the well known expression

¢=kfr[n(M,V(r))—n(M-LV(r))]df- {7

Integration over [ in (77) follows the trajectory [; » and rg are correspondingly the
coordinates of the beginning and end of the trajectory. Using the same approximation

as in {73) the gravitation effect value is determined by the expression
gl

3

1 mgl 1 1
_——— M— —— TR ——— ZM—
Ader = =5 M = Dwpzrs— === (M — Doy

(78)
where g is the free-fall acceleration.

Let us note the fact that the given shift has a simple quasiclassical explanation. Namely,
the given effect can be explained by a velocity change and as a consequence a time for
which a particle, being in different quantum states, passes the given trajectory /.

As follows from (78) the gravitation shift is proportional to the frequency wg, to the
square of the distance travelled, and is inversely related to the atom velocity cubed.

Let us estimate the given value for the atom *’Ne (nuclei spin is equal to zero), located
in the metastable 3P, state (lifetime of the given state is 20 s). According to Miller et a!
(1972) the neon atom tensor polarizability in the given state 8 = —1.1 x 107%* ¢m? then
under an electric field strength £ = 30 SGS = 9 kV cm™!, frequency wg = (=) 0.94 MHz,
where the minus sign in brackets should be taken into consideration when determining the
direction of atom spin rotation, If the length of the way passed in the gravitation field
equals 100 cm, then under the atom velocity v = 10° cm s™! with M = 2, the gravitation
shift Agy = —1.38 x 1072 rad, i.e. the effect has a rather considerable value.

9. Description of the proposed experiment

Let us briefly describe the experimental set-up for observation of the effects described in this
paper. The atom beam exiting the atomizer passes through a system of diaphragms forming
the necessary (rectangular) beam geometry. To reduce the velocity spread of atoms in the
beam we are planning to use a velocity selector. After passing the system of diaphragms
and velocity selector, the atom beam enters a polarizer (Stern—Gerlach magnet), where the
atoms with the needed polarization are selected. In this case, if we use a Stern-Gerlach
magnet as a polarizer, then for atoms with nuclear spin / = 0, the beams will possess the
chosen polarization close to 100 % at the magnet exit.

One of the selected beams enters the reference hot-wire detector. The beam of interest
for our polarization passes, without deposition on the wire (or strip), through the reference
detector and enters the interaction chamber with electric field £ = 350 SGS. After passing
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the interaction chamber, the beam enters the analyser (in our case another Stern—Gerlach
magnet). In the last unit of the set-up the positionally sensitive hot-wire detector is situated.

The analyser geometry is chosen so that its axis is parallel to the polarization vector of
the atom beam before entering the interaction chamber. When there is a constant electric
field in the interaction chamber with strength £ the atom wavefunction will suffer the phase
shift described in this paper, i.e. the rotation (oscillation) of the polarization vector. In the
result the polarization vector of the atom beam is not paralke]l to the analyser vector. So
at the detector entrance 25 + 1 atom beams will arrive. The atom density in these beams
changes proportionally to the rotation angle of polarization vector in electric field, Qur
hot-wire detector is positionally sensitive, i.e. it permits us to tune to each of the 25 + 1
beam components.

The numerical modelling carried out leads us to the conclusion that the chosen geometry
of the experiment permits to avoid swamping of the effect due to velocity spread of the
particles. To measure the gravitational atom shift in the electric field we shall locate our
set-up vertically.

In our experiment we are planning to work with atoms of the rare-earth elements Cesg,
Smgz, Eugs. The magnitude for Smgy and Eugs was determined experimentally (Angel
and Sandars 1968). So for Sme; B(J =6) = —3.64 £ 0.17a3, for Eugy B(J =1) =
0.0141 & 0.0007a3. The value of total electron spin is given in brackets, ag is the Bohr
radius. In the interaction chamber the intepsity of the electric field £ is 50 SGS, then
for Sms; ws = —1.35 MHz, for Eusy ws = 5.24 kHz. Heat velocities are calculated
according to the expression v = /3kT /m, where T is the temperature of the beam source
Vgm = 4.72 % 10* cms™!, vgy = 4.24 x 10* cms™!. To evaluate the rotation angle let us
use the expression 6 = wgl/v. Then at [ = 10 cm, fsyy = 287 rad, fg, = 1.23 rad, ie.
the observed effect has the correct magnitude. In the first stage of the experiment we are
planning to work with Cesg atoms. The choice of this element is based on the fact that
Cesg atom spin S = 4 and nucleus spin is equal to zero. Unfortunately, we have no data
concerning the magnitude of Ces; atom tensor polarizability (we are planning to measure
it in our experiment). Nevertheless, the analysis of the value of the effect for the above-
mentioned elements Smgp, Eugs gives us a basis to suggest that for Cesg the given effects
have essentially the same value,

Besides, Cesg atoms possess a low lonization potential V = 5.4 eV, It essentially
increases the effectiveness of hot-wire detection on the basis of surface ionization (for
example, we are planning to work with Ir strips ¢ = 5.75 eV, ¢~work function).

The given experiment is of interest for the following reasons. First of all, we shall
observe directly the effect connected with the atom (molecule) spin rotation in the electric
field; secondly, the given experiment will permit us to obtain information about scalar and
vector atom polarizabilities; thirdly, the effect considered in the last section of this paper
is connected with the additional shift of atom wavefunction phase. This shift is caused by
the medium located in the electric field and may be used for creation of an atomic spin
interferometer. Let us also note that this effect may be used for the verification of the weak
equivalence principle in quantum mechanics. We know that ‘the weak equivalence principle,
in the formation of general relativity, reads something like this: all small bodies free of
any force (in practice the electromagnetic force) other than gravity, placed at the same
inertial point in spacetime, and with the same inertial velocity, follow the same trajectories
in spacetime geodesics of the spacetime metric), irrespective of their internal constitutions’
(Schmiedmayer 1989). Up to now the experiments to verify the principle of equivalence
for isolated atoms and elementary particles were not convincing, except for the experiments
with neutrons (Clifford 1981). The interest in the verification of weak equivalence principle
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in a quanturn field is caused by the search for the so-called fifth force introduced by Fishbach
et al {1986).

10. Conclusions

The atom (molecule) interaction with spin § 2 1 with constant electric field leads to
dependence of effective potential interaction energy from atom spin projection. As a result,
in the case where atom spin comprises an angle smaller than /2 with the directed field,
polarization vector spin rotation occurs clockwise. If the angle is larger than m/2 the rotation
is anticlockwise. If the angle is equal to 7r/2 then the oscillation of particle spin occurs.
It also appears that atom (molecule} quadrupole moment in the electric field depends on
the time and the components Q;;, @yy of atom guadrupolarization tensor oscillate with
frequencies proportional to [$% — (S — 2) |wg; 4(S — 2)wg ... . This effect may be used
as the basis of a new method permitting experimentally the determination of the atom
(molecule) polarizability, The effect considered in the last section conpected with additional
phase shift of atom wavefunction caused by the presence of the media located in the electric
field can be vsed for the creation of an atomic spin interferometer.

The atomic spin interferometer may be used for verification of the weak equivalence
principle in quantum mechanics.
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