Paper The following article is Open access

The boundedness-by-entropy method for cross-diffusion systems

Published 15 May 2015 © 2015 IOP Publishing Ltd & London Mathematical Society
, , Citation Ansgar Jüngel 2015 Nonlinearity 28 1963 DOI 10.1088/0951-7715/28/6/1963

0951-7715/28/6/1963

Abstract

The global-in-time existence of bounded weak solutions to a large class of physically relevant, strongly coupled parabolic systems exhibiting a formal gradient-flow structure is proved. The main feature of these systems is that the diffusion matrix may be generally neither symmetric nor positive semi-definite. The key idea is to employ a transformation of variables, determined by the entropy density, which is defined by the gradient-flow formulation. The transformation yields at the same time a positive semi-definite diffusion matrix, suitable gradient estimates as well as lower and/or upper bounds of the solutions. These bounds are a consequence of the transformation of variables and are obtained without the use of a maximum principle. Several classes of cross-diffusion systems are identified which can be solved by this technique. The systems are formally derived from continuous-time random walks on a lattice modeling, for instance, the motion of ions, cells, or fluid particles. The key conditions for this approach are identified and previous results in the literature are unified and generalized. New existence results are obtained for the population model with or without volume filling.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.