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Abstract
A ratio-dependent predator–prey model with infection in prey population is
proposed and analysed. The behaviour of the system near the biological
feasible equilibria is observed. The conditions for which no trajectory can
reach the origin following any fixed direction or spirally are worked out.
We investigate the criteria for which the system will persist. It is observed
that the introduction of an infected population in the classical ratio-dependent
predator–prey model may act as a biological control to save the population from
extinction.

Mathematics Subject Classification: 34D05, 34K20, 92D25

1. Introduction

After the pioneering studies of Alfred James Lotka and Vito Volterra in the mid-1920s for
predator–prey interactions, prey-dependent predator–prey models were studied extensively
(see, e.g., Freedman (1980), Murray (1989) and references therein). Similarly, epidemiological
models have also received much attention after the seminal model of Kermack–McKendrick
on SIRS (susceptible–infective–removed–susceptible) systems. There are so many references
in this context that we are unable to cite all of them (see, e.g., Bailey (1975), Anderson (1991)
and references therein).

4 The authors are extremely sorry to announce that the first author of this paper, Professor Ovide Arino, passed away
and this paper is dedicated to his memory.
5 Author to whom any correspondence should be addressed.
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Ecology and epidemiology are major fields of study in their own right, but there are some
common features between these systems. It is interesting and important from the biological
point of view to study ecological systems under the influence of epidemiological factors. Quite
a good number of studies has already been performed in eco-epidemiological systems (see, e.g.,
Hadeler and Freedman (1989), Beltrami and Carroll (1995), Venturino (1995), Chattopadhyay
and Arino (1999), Chattopadhyay and Bairagi (2001), Chattopadhyay and Pal (2002)). Most of
the studies on such eco-epidemiological systems are based on prey-dependent models. As far
as our knowledge goes, no work has been carried out on such systems with a ratio-dependent
functional response. This paper deals with an eco-epidemiological model with disease in the
prey population and functional responses following the law of ratio-dependent theory.

Before introducing the model, we would like to present a brief historical account of the
biological relevance of the classical prey-dependent model and the controversial (Abrams
1994, Abrams and Ginzburg 2000) ratio-dependent model.

The classical prey-dependent predator–prey model exhibits not only the well known
‘paradox of enrichment’ formulated by Hairston et al (1960) and Rosenzweig (1969) but
also the so-called ‘biological control paradox’, which was recently discussed by Luck (1990).
The analysis of the ratio-dependent predator–prey model shows that it will produce neither
the paradox of enrichment nor the biological control paradox (see Hsu et al (2001a, b)). It
also allows mutual extinction as a possible outcome of a predator–prey interaction (Kuang and
Beretta 1998, Jost et al 1999). Ratio-dependent models require high population densities for
both prey and predator while the most interesting dynamics is near the origin (see, e.g., Xiao
and Ruan (2001)). The ratio-dependent theory has been successfully used by Hsu et al (2003)
in the food chain model.

The ‘paradox of enrichment’ states that enriching a predator–prey system (increasing
the carrying capacity) will cause an increase in the equilibrium density of the predator but
not in that of the prey, and will finally destabilize the positive equilibrium. As a result, it
increases the possibility of stochastic extinction of the predator. But what is observed in
nature is that enriching the system increases the prey density, does not destabilize a stable
steady state and fails to increase the amplitude of oscillations in systems that already cycle
(Abrams and Walter 1996).

The so-called ‘biological control paradox’ states that we cannot have a low and stable
prey equilibrium density, which contradicts many examples of successful biological controls
where the prey is maintained at low densities compared with its carrying capacity (Arditi
and Berryman 1991). A further example is Cactoblastis-Opuntia in Australia, where the
crucial factor seems to be Pseudointerference (see May (1981)); here, biological control has
worked and resulted in low and stable pest densities. So this paradox is a pure artefact,
created by simplifying assumptions on functional response. For the rest, the paradox of
enrichment exists, but only in systems where one predator–prey pair exists in isolation, and
the predictions radically change when they are embedded in a simple food chain model (see
Oksanen and Oksanen (2000)). Most natural systems are indeed much more complex than this,
since predators are exposed to various degrees of facultative secondary carnivory (intraguild
predation) and interacting with (n+1) other predator–prey systems in various ways. This clearly
indicates that the paradox of biological control is not intrinsic to predator–prey interaction.

When we have good data on simple and fairly isolated predator–prey systems, like Mary
Power’s catfish–alga system in Panamanian streams (Oksanen et al 1995), we see that more
resources for the prey at equilibrium will, indeed, mean more predators but no more prey. In
systems where the Holling disc is a reasonable assumption for predators (e.g. the weasel–vole
system found in boreal Europe, in which voles have no hiding places where weasels could not
follow them and weasels have no significant alternative resources), we do indeed find large
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amplitude population cycles, which have the signature of a carnivore–herbivore cycle (see
Oksanen et al (2000, 2001)). As predicted by the paradox of enrichment, these cycles are
found in relatively productive taiga areas and in the most productive parts of the tundra, while
voles inhabiting less productive tundra areas are relatively stable (Oksanen et al 1999). In
high alpine barrens, where predators are practically absent, violent cycles are found again, but
now with rodent time trajectories showing the fingerprints of a predator (Turchin et al 2000).
The shift in the dynamic position of herbivores along productivity gradients thus corroborates
the predictions of simple food chain models (see Oksanen and Oksanen (2000)). Recently,
models with such a prey-dependent response function have been facing challenges both from
biological and physiological researchers (see, e.g., Arditi and Ginzburg (1989), Arditi and
Berryman (1991), Akçakaya (1992), Gutierrez (1992)). The main criticism which has been
raised against the ratio-dependent approach is that its proponents have made things too easy
by providing easy explanations of positive correlations found in nature in an ad hoc manner,
without having a credible mechanism that could produce ratio-dependence (the time scale
argument initially used is pathetic as it tacitly presumes that current reproductive output of
a predator would depend on future prey density). It also seems to fail to account for the
cases where the paradoxes of prey dependence are actually found. Indeed, prey-dependent
and ratio-dependent models are extremes or limiting cases; prey-dependent models focusing
entirely on the daily energy balance of predators, ratio-dependent models presupposing that
prey are easy to find and that predator dynamics is, in essence, governed by direct density
dependence, with prey densities determining the sizes of defended territories. In nature, both
aspects probably influence predator–prey dynamics, and the question regarding which of the
two extremes is closer to reality in which systems is wide open. Moreover, pursuit of the prey-
dependent approach has proved more fertile, since its ‘paradoxes’ seem to be quite realistic
where the premises for their existence are found, but here opinions may differ and there is no
reason to close one door or another. Thus, it is definitely good to develop both approaches
towards greater realism by including other interactions. Based on biological and physiological
evidence, some researchers argue that the functional response in a predator–prey model should
be based on the ratio-dependent theory, especially when predators have to search for food,
and the per capita predator growth rate should be a function of the ratio of prey to predator
abundance.

Arditi and Ginzburg (1989) first proposed the following Michaelis–Menten type, ratio-
dependent predator–prey system, which was then studied extensively by a number of authors
(see, e.g., Kuang and Beretta (1998), Jost et al (1999), Hsu et al (2001a, b))

dx

dt
= rx

(
1 − x

K

)
− α

xP

k1P + x

dP

dt
= P

(
−δ2 +

f x

k1P + x

) x(0) > 0, P (0) > 0. (1)

Disease in ecological systems cannot be ignored. From this fact, we now modify the
above model (1) by introducing a transmissible disease in the prey population. We make the
following assumptions:

(A1) In the absence of disease the prey population grows in logistic fashion with carrying
capacity K > 0 and an intrinsic growth rate constant r > 0.

(A2) In the presence of disease the prey population is divided into two parts, the susceptible
prey (S(t)) and the infected prey (I (t)). Therefore, at time t the total prey population is

x(t) = S(t) + I (t).
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(A3) We assume that only the susceptible prey population is capable of reproducing and
contributing to its carrying capacity. We also assume that the infected prey do not
grow, recover and reproduce. The experiment on dinoflagellate Noctiluca scintillans
(miliaris) in the German Bight by Uhlig and Sahling (1992) indicated that the cells
become damaged, and they neither feed anymore nor reproduce. The model of Hamilton
et al (1990) showed that no infected individuals contribute in the reproduction process;
infection rather reduces the remaining capacity due to the inability to compete for
resources. Beltrami and Carroll (1995) also used this theory to establish the role of
viral disease in recurrent phytoplankton blooms. Thus, one can assume that the growth
term of the susceptible population follows only the law of logistic growth.

(A4) We also assume that the disease transmission follows the simple law of mass-action.

With the above assumptions, model (1) leads to the following set of ordinary differential
equations

dS

dt
= rS

(
1 − S

K

)
− αS

SP

k1P + S + I
− λSI

dI

dt
= λSI − αI

IP

k1P + S + I
− δ1I

dP

dt
= k(αSS + αI I )P

k1P + S + I
− δ2P

S(0) > 0, I (0) > 0, P (0) > 0. (2)

Here, αS and αI are the searching efficiency constants or the predation rate on the susceptible
and infective prey, respectively. It is observed in nature that αS can be less or, in contrast, larger
than αI depending on the type of parasitism. At this point, we would like to mention some
relevant books: e.g. Dawkins ‘The Extended Phenotype’ (1982), Combes ‘Les associations du
vivant’ (2001a) and Combes ‘Parasitism, The Ecology and Evolution of Intimate Interactions’
(2001b). αS/k1 and αI/k1 are the maximum per capita capturing rate for predator on susceptible
prey and infected prey, respectively. λ is the force of infection, δ1 and δ2 are the death rates of
infected prey and predator, respectively, and k is a conversion rate.

This work can be seen as a continuation of the work done by two of the authors
(Chattopadhyay and Arino 1997a) on a predator–prey system with disease in the prey. The
main modification here is that we take into account the ratio-dependent theory, which has some
important features for the dynamics of the system.

Kuang and Beretta (1998), Jost et al (1999), Xiao and Ruan (2001), observed that the
dynamics of system (1) near the origin is more complicated since the vector field is not well
defined at that point and cannot be linearized around this point. There exist numerous kinds of
topological structures in the vicinity of the origin (see, e.g., Berezovskaya et al (2001), Xiao and
Ruan (2001)). This is the main reason for ratio-dependent models possibly to have complicated
rich dynamics. Kuang and Beretta (1998) proved that total extinction is also possible. Jost
et al (1999) proved that the origin can be a saddle-point or an attractor. Xiao and Ruan (2001)
analysed a situation where solutions reach the origin following a fixed direction. The results
obtained in the three above-mentioned papers are roughly complementary to each other. We
would like to mention that the diseased population cannot be ignored in such models and has
some influence on the dynamics. We study the dynamics of the zero equilibrium starting from
the first positive quadrant, and, especially, carry out a thorough study near the origin in the
sense that we have studied the possibilities of reaching this critical point following any fixed
direction in the domain of interest. In this paper, we use a reduction principle which allows us
to reduce the system to a two-dimensional system where the Poincaré–Bendixson result can
be applied. We find suitable conditions on the parameters such that we cannot reach the origin
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spirally. We have also pointed out that total extinction can be controlled by the diseased prey
population and that under some conditions, the model is persistent.

This paper is organized as follows: section 2 gives preliminary results; different equilibria
are given in section 3; the behaviour of the system around E0(0, 0, 0) is discussed in section 4.
In section 5, we show that the infected prey may act as a system saver. Persistence results are
presented in section 6. Section 7 deals with the problem of finding some suitable conditions
for which there is no periodic solution around the positive equilibrium and this paper ends with
a conclusion.

2. Preliminary results

We first observe that the right-hand side of system (2) is a smooth function of the variables
(S, I, P ) and the parameters in the positive octant, as long as the sum of these quantities is
non-zero. So, local existence and uniqueness properties hold in the positive octant.

From system (2), it follows that S = 0 (resp. I = 0, P = 0) is an invariant subset, that
is, S ≡ 0 (resp. I ≡ 0, P ≡ 0) if and only if S(t) = 0 (resp. I (t) = 0, P (t) = 0) for some t .
Thus, S(t) > 0 (resp. I (t) > 0, P (t) > 0) for all t if S(0) > 0 (resp. I (0) > 0, P(0) > 0).

So, if I = 0, which corresponds to a system without disease, then the system reduces to a
two-dimensional one which has been studied extensively by several authors (see, e.g., Kuang
and Beretta (1998), Jost et al (1999), Xiao and Ruan (2001)).

We first prove the boundedness of system (2).

Lemma 1. All the solutions of system (2) which initiate in R
3
+ are bounded, with ultimate

bound.

Proof. We define a function

W(t) = kS(t) + kI (t) + P(t). (3)

Taking the time derivative of W along the solutions of (2), we have
dW

dt
(t) = rkS(t)

(
1 − S(t)

K

)
− kδ1I (t) − δ2P(t).

For any positive constant µ (>0), we have
dW

dt
+ µW = S

{
rk + µ − rk

S

K

}
+ (µ − kδ1)I + (µ − δ2)P .

If we take µ such that 0 < µ < min(kδ1, δ2), then, we obtain

dW

dt
+ µW � K

rk

(
rk + µ

2

)2

= M (4)

where M is the maximum value of the function S{rk + µ − rk(S/K)}.
From (4) we have

dW

dt
� −µW + M

which implies that

W(t) � e−µtW(0) +
M

µ
(1 − e−µt ) � max

(
W(0),

M

µ

)
.

Moreover, we have

lim sup
t→∞

W(t) � M

µ

which is independent of the initial condition. �
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3. Equilibria

System (2) has the following equilibria

E0(0, 0, 0), E1(K, 0, 0), E2(S2, 0, P2)

with

S2 = K

(
1 − kαS − δ2

kk1r

)
and P2 = r

(
1 − S2

K

)
kS2

δ2

E3(S3, I3, 0)

with

S3 = δ1

λ
and I3 = r

λ

(
1 − δ1

λK

)
and an interior equilibrium E∗(S∗, I ∗, P ∗) where

I ∗ = −
(

r

λK
+

αS

αI

)
S∗ +

(
r

λ
+

αSδ1

λαI

)
, P ∗ = (kαS − δ2)S

∗ + (kαI − δ2)I
∗

δ2K

and S∗ satisfies the following equation

AS2 + BS + C = 0

with

A = kk1rαIλ

B = − k {rαI (αI + k1δ1) + k1K(rαI + αSδ1)λ + δ2(−rαI + kλ(αI − αS))}
C = K(rαI + αSδ1) {k(αI + k1δ1) − δ2} .

It is easy to see that a necessary and sufficient condition for the existence of E2 is

0 < kαS − δ2 < kk1r.

From the expression of I3, it is clear that a necessary and sufficient condition for the existence
of E3 is

λK − δ1 > 0.

It can be easily shown that E∗ exists and is unique if the following set of inequalities hold
simultaneously

k < 1, δ1 < Kλ <
rαI (1 − k)

k(αI + αS)
, δ2 < min

(
kαI , kαS,

r(kαI + αS)(Kλ − δ1)

rαI + αSλK

)

r >
kαSδ1 + αI (δ2 + kδ1)

αI (1 − k)
.

4. Behaviour of the system around E0(0, 0, 0)

At the trivial equilibrium E0, the Jacobian matrix is not defined. Let us now, for a moment,
consider the problem in a general context; that is to say, we consider a system in R

N ,

dX

dt
= H(X(t)) + Q(X(t)) (5)

in which H is C1 outside the origin, is continuous and homogeneous of degree 1

H(sX) = sH(X)
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for all s � 0, X ∈ R
N , and Q is a C1 function such that

Q(X) = o(X)

in the vicinity of the origin.
Throughout the section, ‖.‖ denotes the Euclidian norm on R

N and (. , .) the associated
inner product.

In the case of our model, N = 3,

X = (x1, x2, x3) = (S, I, P )

H(X) = (H1(X), H2(X), H3(X))

Q(X) = (Q1(X), Q2(X), Q3(X)).

The functions Hi and Qi (i = 1, 2, 3) are given by

H1(X) = rx1 − αS

x1x3

k1x3 + x1 + x2
, H2(X) = −αI

x2x3

k1x3 + x1 + x2
− δ1x2

H3(X) = k(αSx1 + αIx2)x3

k1x3 + x1 + x2
− δ2x3

Q1(X) = −r
x2

1

K
− λx1x2, Q2(X) = λx1x2, Q3(X) = 0.

Let X(t) be a solution of system (5). Assume that lim inf t→∞ ‖X(t)‖ = 0, and X is bounded.
One can extract from the family (X(t + .))t�0 sequences X(tn + .), tn → ∞, such that
X(tn + .) → 0 locally uniformly on s ∈ R.

Define

yn(s) = X(tn + s)

‖X(tn + s)‖ . (6)

Recall that

Q(X) = o(X)

in the vicinity of the origin. We can then write Q as

Q(X) = ‖X‖2O(1). (7)

We have
dX(tn + s)

ds
= H(X(tn + s)) + Q(X(tn + s)). (8)

From (6), we have

X(tn + s) = yn(s)‖X(tn + s)‖ = yn(s) · 〈X(tn + s), X(tn + s)〉1/2. (9)

Now using the derivative of 〈X(tn + s), X(tn + s)〉 with respect to s

d

ds
(〈X(tn + s), X(tn + s)〉) = 2

〈
X(tn + s),

dX(tn + s)

ds

〉
in (9), we obtain

dX(tn + s)

ds
= dyn(s)

ds
‖X(tn + s)‖ +

yn(s)

‖X(tn + s)‖
〈
X(tn + s),

dX(tn + s)

ds

〉
.

Therefore, we have

H(X(tn + s)) + Q(X(tn + s)) = dyn(s)

ds
‖X(tn + s)‖

+
yn(s)

‖X(tn + s)‖〈X(tn + s), H(X(tn + s)) + Q(X(tn + s))〉.
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Now dividing by ‖X(tn + s)‖ and replacing X(tn + s)/‖X(tn + s)‖ by yn(s), we obtain

dyn(s)

ds
= H(yn(s)) − 〈yn(s), H(yn(s))〉yn(s) + ‖X(tn + s)‖

×
{

1

‖X(tn + s)‖2
Q(X(tn + s)) −

〈
yn(s),

1

‖X(tn + s)‖2
Q(X(tn + s))

〉
yn(s)

}
which is equivalent to

dyn

ds
= [H(yn(s)) − (yn(s), H(yn(s)))yn(s)]

+‖X(tn + s)‖[Q(yn(s)) − (yn(s), Q(yn(s)))yn(s)].

Clearly, yn is bounded, ‖yn(s)‖ = 1, ∀s, and dyn/ds is bounded too. So, applying the Ascoli–
Arzela theorem (see, e.g., Brezis (1983)), one can extract from yn a subsequence—also denoted
by yn—which converges locally uniformly on R towards some function y, such that

‖X(tn + s)‖[Q(yn(s)) − (yn(s), Q(yn(s)))yn(s)] →
tn→∞ 0

and y satisfies the following system:

dy

dt
= H(y(t)) − (y(t), H(y(t)))y(t), |y(t)‖ = 1, ∀t. (10)

Equation (10) is defined for all t ∈ R.
Let us, for a moment, focus on the study of equation (10). The steady states of H are

vectors V satisfying

H(V ) = (V , H(V ))V .

This is a so-called nonlinear eigenvalue. Note that the equation can be alternatively written as

H(V ) = µV (11)

with ‖V ‖ = 1; it then holds that µ = (V , H(V )).
These stationary solutions correspond to fixed directions that the trajectories of

equation (10) may reach asymptotically.
Equation (11) can be written as

[(µ − r)v1 + (µ − r)v2 + (αS + k1µ − k1r)v3]v1 = 0 (12)

[(µ + δ1)v1 + (µ + δ1)v2 + (αI + k1µ + k1δ1)v3]v2 = 0 (13)

[(µ + δ2 − kαS)v1 + (µ + δ2 − kαI )v2 + k1(µ + δ3)v3]v3 = 0. (14)

Now, we are in a position to discuss in detail the possibility of reaching the origin following
fixed directions.

Case 1. v1 = 0

(a) v2 = 0 and v3 
= 0
In this case, there is a possibility of reaching the origin following the P -axis, with µ = −δ3.

(b) v2 
= 0 and v3 = 0
In this case also, there is a possibility of reaching zero following the I -axis, with µ = −δ1.

(c) v2 
= 0 and v3 
= 0
In this case, we obtain different results depending on the parameters.

Subcase 1. If kk1 < 1 then

(i) We reach the origin if kk1δ1 + kαI − δ2 < 0.
(ii) We cannot reach the origin if kk1δ1 + kαI − δ2 > 0.
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Subcase 2. If kk1 > 1 then the conclusion is the reverse of subcase 1.

Case 2. v1 
= 0

(a) v2 = 0 and v3 = 0
In this case, we cannot reach the origin following the S-axis; that is to say that the S-axis
is not a fixed direction that the trajectories can follow to reach zero.

(b) v2 = 0 and v3 
= 0
In this case, we have two possibilities

(i) If E2 exists and kk1 < 1 then the SP-plane can be followed by the trajectories to reach
the origin.

(ii) If kk1 > 1 then there is no possibility of reaching the origin following the SP-plane.

(c) v2 
= 0 and v3 = 0
In this case, there is no possibility of reaching the origin following the SI-plane.

(d) v2 
= 0 and v3 
= 0
In this case, there are two subcases

(i) αS � αI

In this case, there is no possibility of going to the origin following a fixed direction
that is contained in the positive octant.

(ii) αS > αI

Under this condition, the trajectories may follow a fixed direction that is contained in
the positive octant.

Now, we would like to show that under some suitable conditions, no orbit of system (2)
tends to the critical point spirally. To do that, we return to equation (10).

Proposition 2. If we assume that

Hi(X) = XiH̄i(X)

for all i, then equation (10) preserves positiveness. So, every non-zero solution of equation (10)
with closure at a positive distance from at least one of the (N − 1)-coordinate hyperplanes
can in fact be seen as a solution of an o.d.e. in R

N−1.

Proof. Let y be a non-zero solution of

dy

dt
= H(y(t)) − (H(y(t)), y(t))y(t).

With no loss of generality, assume that yN(t) � m > 0; then, we may write

yN =
√

1 − y2
1 − · · · − y2

N−1

ỹ = (y1, . . . , yN−1) satisfies a system of o.d.e of the form

dỹ

dt
(t) = G̃(ỹ(t))

in an open subset of R
N−1
+ in which G̃ is C1. �

Corollary 3. In the case when N = 3, the reduced system is a planar o.d.e. to which the
Poincaré–Bendixson theorem applies.
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We now return to the equation under study with y being the limit of a sequence
X(s + tn)/‖X(s + tn)‖.

Let us investigate the asymptotic behaviour of y(t). Either there exists j ∈ {1, 2, 3} such
that yj (t) � m > 0 ∀t . In this case, the equation can be reduced to its planar projection onto
(yi, yk), i, k 
= j , or lim inf t→∞ yi(t) = 0, for i = 1, 2, 3.

We have
dy

dt
(t) = H(y(t)) − (y(t), H(y(t)))y(t) ‖y(t)‖ = 1.

If we put y = (y1, y2, y3) and ỹ = (y1, y2), then we can write y3 =
√

1 − y2
1 − y2

2 and reduce
the system to the following two-dimensional system:

ỹ ′(t) = H̄ (ỹ(t)) − ỹ(t)[(ỹ(t), H̄ (ỹ(t))) +
√

1 − ỹ2(t)H̄3(ỹ(t))] ‖ỹ(t)‖ < 1 (15)

with

H̄ ((y1, y2)) = (H1, H2)
(
y1, y2,

√
1 − y2

1 − y2
2

)
H̄3((y1, y2)) = H3

(
y1, y2,

√
1 − y2

1 − y2
2

)
.

Now, we will use the Poincaré–Bendixson criteria to show that under some suitable
conditions, if a solution of (15) tends to the origin then it must tend to it along a fixed direction.

We define

f1((y1, y2)) = H1

(
y1, y2,

√
1 − y2

1 − y2
2

)
− y1g((y1, y2))

f2((y1, y2)) = H2

(
y1, y2,

√
1 − y2

1 − y2
2

)
− y2g((y1, y2))

g((y1, y2)) = ((y1, y2), H̄ ((y1, y2))) +
√

1 − ỹ2(t)H̄3(ỹ(t)).

We have

y1(t)
dy2

dt
(t) − y2(t)

dy1

dt
(t) = y1(t)H2

(
ỹ(t),

√
1 − ỹ2(t)

)
− y2(t)H1

(
ỹ(t),

√
1 − ỹ2(t)

)
.

Using the expressions for H1 and H2, we find that

d

dt

[
ln

(
y2(t)

y1(t)

)]
= (αS − αI )

√
1 − ỹ2(t)

y1 + y2 + k
√

1 − ỹ2(t)
− (δ1 + r). (16)

From equation (16), we can conclude that if αS � αI then we cannot have a periodic solution
because (d/dt)[ln(y2(t)/y1(t))] cannot change signs. In the other case, when αS > αI ,

suppose that ỹ(t) is a periodic solution, then, from equation (16), we can see that a necessary
condition is that on the minimum point; the quantity (d/dt)[ln(y2(t)/y1(t))] vanishes and is
less than the maximum value of the right-hand side of equation (16), which implies that

0 � (αS − αI )

k
− (δ1 + r). (17)

We conclude that if αI > αS − k(δ1 + r), then we cannot reach the origin spirally.
Now we are in a position to summarize the above results in the following two theorems.

Theorem 4. If the predation rate on the infected prey is higher than or equal to that of the
susceptible prey, then any trajectory can reach the origin from the interior following a fixed
direction.

Theorem 5. If the difference of the predation rate has an upper threshold value, given by

αS − αI < k(δ2 + r)

then any trajectory can reach the origin spirally from the interior.
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Remark 6. In the paper of Jost et al (1999), (0, 0, 0) is a global attractor if Q + R < S (see
proposition 4.1, p 27), which in terms of our model parameter corresponds to αS > k1(r + δ2).

We find that if αS � αI then no trajectory can reach E0(0, 0, 0). So, if we set

k1(r + δ2) < αS � αI

then total extinction is not possible with our model while it is possible with Jost et al’s model.
Xiao and Ruan (2000) studied the behaviour of zero equilibrium as t → +∞ or t → −∞

depending on the parameters in the interior of the first octant, but they did not discuss the
behaviour of this equilibrium starting from the rest of the domain. Our analysis takes this into
account. So, our results include the whole topological structure near (0, 0, 0) starting from
any position of the domain of interest. (In Ruan’s paper, the parameters b/a, resp. c, m, d and
f , correspond to K , resp. αS, k1, δ2 and k.)

Kuang and Beretta (see theorem 2.6) proved that under some conditions, the origin is
globally asymptotically stable; that is to say, the system goes to total extinction. Their
conditions can be formulated in terms of our system parameters as follows:

k � δ2

αS − k1r
and αS > k1r.

5. Role of infected population

In the remark of section 4 we find that the predator–prey system considered by Jost et al (1999)
and Kuang and Beretta (1998) goes to total extinction under some parametric conditions.
It is to be noted here that our system (1) is equivalent to their system, considered in the
above-mentioned papers, for I = 0.

In the following theorem we show that introduction of infected prey into the predator–prey
system prevents total extinction and may act as a biological control.

Theorem 7. Assume that λ < λ∗, kk1 > 1 and

δ2 >
kαS

kk1 − 1
then the boundary steady state E2 is locally asymptotically stable (LAS).

Proof. Local stability of E2 depends on the sign of a22 and the eigenvalues of the following
matrix

V 0
2 =

(
a11 a13

a31 a33

)
.

We have

det(V2) = a22

[
δ(kαS − δ2)(kk1r − kαS + δ2)

k1k2αS

]

tr(V2) = a22 − r − (kαS − δ2) [(kk1 − 1)δ2 − kαS]

k1k2αS

.

Existence of E2 implies that det(V2) has the same sign as that of a22.
Now if λ < λ∗, then a22 < 0. In this case, the stability of E2 depends on the eigenvalues

of V 0
2 .
We have

det(V 0
2 ) = 1

a22
det(V2)

tr(V 0
2 ) = 1

a22
tr(V2).
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We know that det(V 0
2 ) > 0. Sufficient conditions to have tr(V 0

2 ) < 0 are

kk1 > 1

δ2 >
kαS

kk1 − 1
. �

Remark. E2 is a disease-free equilibrium, and if the conditions given in theorem 7 are true,
then this disease-free equilibrium is stable and cannot reach (0, 0, 0). This means that under
these conditions total extinction is not possible and hence the introduction of disease into the
system may act as a biological control to save the population from extinction.

6. Persistence results

We have already proved that system (2) is uniformly bounded. Now, in order to prove the
persistence of the system, we will first show that all the boundary equilibria are repellers.

Theorem 8. If the following conditions hold

(i) αI � αS

(ii) 0 < kαS − δ2 < kk1r

(iii) λ > λ∗

where λ∗ is given in (18), then the system is persistent.

Proof. After computing the variational matrix associated with E1(K, 0, 0), we find the
following eigenvalues: µ1 = −r, µ2 = λK − δ1 and µ3 = kαS − δ2.

We conclude that existence of E2 or E3 implies that E1 is unstable.
For the equilibrium point E2, the entries of the Jacobian matrix V2 computed at E2 are as

follows:

a11 = αS

S2P2

(k1P2 + S2)2
− rS2

K
, a12 = αSS2P2

1

(k1P2 + S2)2
− λS2,

a13 = − αSS
2
2

(k1P2 + S2)2
, a21 = 0, a22 = λS2 − αIP2

(k1P2 + S2)
− δ1, a23 = 0,

a31 = kk1αSP
2
2

(k1P2 + S2)2
, a32 = kP2{αIk1P2 + (αI − αS)S2}

(k1P2 + S2)2
, a33 = kαSS

2
2

(k1P2 + S2)2
− δ2.

Since a21 = a23 = 0, we see that a22 is an eigenvalue of V2 and can be written as

a22 = KλαS(kk1r − kαS + δ2) − rαI (kαS − δ2) − kk1rδ1αS

kk1rαS

.

We write

λ∗ = rαI (kαS − δ2) + kk1rδ1αS

KαS(kk1r − kαS + δ2)
. (18)

It is easy to see that if λ > λ∗ then E2 is unstable (as a22 > 0).
From the variational matrix computed at E3 we conclude that if the sufficient condition

k min(αI , αS) − δ2 > 0

is true then E3 is unstable (because one of the eigenvalues is (k(αSS3+αI I3)/(S3+I3))−δ2 > 0).
Thus, we see that all the boundary equilibria of system (1) are repellers if the conditions

stated in theorem 8 hold. �
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7. Conditions for non-existence of periodic solutions around E∗

In this section, we would like to prove that under some suitable conditions, there is no periodic
solution of system (2) around the positive equilibrium E∗.

To prove this, the following criteria by Li and Muldowney (1993) can be applied. Consider
the general autonomous ordinary differential equation

dX

dt
= F(X(t)) (19)

where F is a C1 function in some open subset of R
N with values in R

N . Denote by
J = (∂F/∂X) the Jacobian matrix of (19). Denote by J [2] the

(
N

2

) × (
N

2

)
matrix which

is the second additive compound matrix associated with the Jacobian matrix J (see appendix
for more details), and recall that if X ∈ RN then the corresponding logarithmic norm of J [2]

(that we denote by µ∞(J [2])) endowed by the vector norm |X|∞ = supi |Xi | is

µ∞(J [2]) = sup


∂Fr

∂xr

+
∂Fs

∂xs

+
∑
j 
=r,s

(∣∣∣∣∂Fr

∂xj

∣∣∣∣ +

∣∣∣∣∂Fs

∂xj

∣∣∣∣
)

: 1 � r < s � N


 (20)

where µ∞(J [2]) < 0 implies the diagonal dominance by row matrix J [2]. Then, the following
holds.

Theorem 9. A simple closed rectifiable curve that is invariant with respect to system (2) cannot
exist if µ∞(J [2]) < 0.

Before we find conditions under which there is no periodic solution, we perform some
changes of coordinates to lower the number of parameters in system (2).

We set

U = S

K
, V = I

K
, W = P

K
and τ = rt (21)

and

α′
S = αS

r
, α′

I = αI

r
, δ′

1 = δ1

r
, δ′

2 = δ2

r
, λ′ = λK

r
.

Then, system (2) preserves the same form but with r = 1 and K = 1 and the new parameters
mentioned in (21) for which we omit the prime to simplify the notation.

Let us now apply Li–Muldowney’s criteria in the new coordinates for the non-existence
of periodic solutions of system (2). The logarithmic norm µ∞, endowed by the norm |X|∞ of
the second additive compound matrix J [2], associated with the Jacobian matrix J , computed
on E∗, is negative if and only if the suprema of the following functions satisfy

1 − (2 − λ)S − λI − δ1 − αSP (2k1P + S + I )

(k1P + S + I )2

+
kP |I (αS − αI ) + k1αSP | + kPS(αI − αS) + k1P

(k1P + S + I )2
< 0 (22)

1 − 2S − λI − δ + λS +
(S + I )k(αSS + αI I ) − αS(k1P + I )

(k1P + S + I )2

+
αSPS

(k1P + S + I )2
+

αIkP (k1P + ((αS − αI )/αI )S)

(k1P + S + I )2
< 0 (23)

2λS − αIP
(k1P + S)

(k1P + S + I )2
− δ1 − δ2 +

k(αSS + αI I )(S + I ) + αSPS + αSS(S + I )

(k1P + S + I )2
< 0.

(24)
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Sufficient conditions to satisfy (22), (23) and (24) are, respectively,

0 < λ < 2 and δ1 − 1 − αS > 0 (25)

0 < λ < 2 and δ2 − 1 − αS

(
k +

1

2k1
+

k

k1

)
� 0 (26)

0 < 2λ < δ1 + δ2 +
αI

2k1
− αS

(
k +

1

2k1

)
and δ1 + δ2 +

αI

2k1
> αS

(
k +

1

2k1

)
.

(27)

A direct application of Li–Muldowney’s method shows that under the conditions (25)–(27),
there is no periodic solution for system (2).

8. Conclusion

The classical prey-dependent and ratio-dependent models are well studied. In this paper, we
have investigated the dynamical behaviour of a ratio-dependent predator–prey model with
infection in the prey population. The proposed model is a modification of the model proposed
by Arditi and Ginzburg (1989). The behaviour of the system near the biologically feasible
equilibria has been studied. The parametric conditions for which the solutions of the system
cannot reach the origin following a fixed direction or spirally have been worked out. All
the topological structures near the origin starting from any position of the domain of interest
have been taken care of. Moreover, Jost et al (1999) and Kuang and Beretta (1998) also studied
the model of Arditi and Ginzburg; they obtained the conditions for which the whole population
may go to extinction. In contrast, we have observed that introduction of diseased prey into
the system may save the population from extinction. Thus, we may conclude that the infected
prey population in a classical ratio-dependent predator–prey system may act as a biological
control. Moreover, using Muldowney’s criteria, persistence conditions have been worked out.

The ratio-dependent functional form in the infection rate is of considerable interest and
cannot be ignored. To understand the parasite-induced host extinction, Elbert et al (2000)
formulated a plausible but ad hoc epidemiological macroparasite model and its stochastic
variation. Their model fails to explain host deterministic extinction phenomena. Hwang and
Kuang (2003) modified their model by taking into consideration that the encounter infection
rate makes sense only when it follows the law of ratio-dependence and not the law of simple
mass action. They showed that their model exhibits parasite-induced host extinction. This
extinction dynamics resembles that by ratio-dependent predator–prey models (many references
are given in the introduction). Based on the above observations, we would like to mention that
there is much room for the improvement of our model and results in this direction.
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Appendix

The definition of the second additive compound matrix can be found in the paper of Li and
Muldowney (1993).

Let A = (aij ) be an n × n matrix. The second additive compound A[2] is the
(

n

2

) × (
n

2

)
matrix defined as follows.

For any integer i = 1, . . . ,
(

n

2

)
, let (i) = (i1, i2) be the ith member in the lexicographic

ordering of integer pairs (i1, i2) such that 1 � i1 < i2 � n. Then, the element in the



A ratio-dependent predator–prey model 1115

ith row and j th column of A[2] is

ai1i1 + ai2i2 , if (j) = (i)

(−1)r+sair js
, if exactly one entry ir of (i) does not occur in (j ) and js

does not occur in (i)

0, if neither entry from (i) occurs in (j ).

For n = 3

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33




its second additive compound matrix is

A[2] =

a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33


 .

In this case, (1) = (1, 2), (2) = (1, 3) and (3) = (2, 3).

Theorem (Bendixson’s criterion in Rn). A simple closed rectifiable curve that is invariant
with respect to (19) cannot exist if any one of the following conditions is satisfied on Rn:

(i) sup

{
∂Fr

∂xr

+
∂Fs

∂xs

+
∑
q 
=r,s

(∣∣∣∣∂Fq

∂xr

∣∣∣∣ +

∣∣∣∣∂Fq

∂xs

∣∣∣∣
)

: 1 � r < s � n

}
< 0,

(ii) sup

{
∂Fr

∂xr

+
∂Fs

∂xs

+
∑
q 
=r,s

(∣∣∣∣∂Fr

∂xq

∣∣∣∣ +

∣∣∣∣∂Fs

∂xq

∣∣∣∣
)

: 1 � r < s � n

}
< 0,

(iii) λ1 + λ2 < 0,

(iv) inf

{
∂Fr

∂xr

+
∂Fs

∂xs

−
∑
q 
=r,s

(∣∣∣∣∂Fq

∂xr

∣∣∣∣ +

∣∣∣∣∂Fq

∂xs

∣∣∣∣
)

: 1 � r < s � n

}
> 0,

(v) inf

{
∂Fr

∂xr

+
∂Fs

∂xs

−
∑
q 
=r,s

(∣∣∣∣∂Fr

∂xq

∣∣∣∣ +

∣∣∣∣∂Fs

∂xq

∣∣∣∣
)

: 1 � r < s � n

}
> 0,

(vi) λn−1 + λn > 0.

where λ1 � λ2 � · · · � λn are the eigenvalues of 1
2 ((∂F/∂x)∗ + (∂F/∂x)) and where ∂F/∂x

is the Jacobian matrix of F , and the asterisk denotes transposition.
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