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Abstract
By a dynamical system we mean a pair (X, T ), where X is a compact metric
space and T : X → X is surjective and continuous. We study weak disjointness
in topological dynamics. (X, T ) is scattering iff it is weakly disjoint from
all minimal systems and (X, T ) is strongly scattering iff it is weakly disjoint
from all E-systems, i.e. transitive systems having invariant measures with full
support. It is clear that a weakly mixing system is strongly scattering and the
latter is scattering. An existential proof of scattering and a non-weakly mixing
example is obtained by Akin and Glasner (2001 J. Anal. Math. 84 243–86). In
this paper, we will give an explicit example which is strongly scattering and not
weakly mixing. We also define extreme scattering, weak scattering and study
the relationships of the various definitions.

For a dynamical property P stronger than transitivity, let P� be the
property such that a system has P� iff it is weakly disjoint from any
system having P . We show that P� = P���. Moreover, we prove that
(thickly syndetic-transitive)� = piecewise-syndetic-transitive and (piecewise-
syndetic-transitive)� = thickly syndetic-transitive.

Mathematics Subject Classification: 54H20

1. Introduction

Let (X, T ) denote a given dynamical system on a compact metric space X induced by a
continuous surjective map T of X onto X. Recall that (X, T ) is transitive if for each pair of
non-empty open subsets U and V , N(U, V ) = {n ∈ Z+ : T −nV ∩ U �= ∅} is infinite. Two
dynamical systems are weakly disjoint if their product is transitive. (X, T ) is an E-system if
(X, T ) is transitive and there is an invariant measure µ with full support, i.e. supp(µ) = X;
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(X, T ) is topologically ergodic (TE, for short) if (X, T ) is transitive and for each non-empty
open subset U of X, N(U,U) is syndetic, i.e. with bounded gaps. It is known that a minimal
system is an E-system and the latter is TE [GW2].

For a dynamical property P stronger than transitivity, let P� be the property such that
a system (X, T ) has P� iff it is weakly disjoint from any system having P . It turns out that
P� = P���. The chaoticity of a system is an important aspect in the study of dynamical
systems and it is known that a weakly mixing system is chaotic in many aspects [HY,BGKM].
To study how the chaoticity of a system is related to open covers of the system, the notion of
scattering is introduced by Blanchard et al [BHM] (using the complexity of open covers) and
it can be interpreted as follows: (X, T ) is scattering iff it is in minimality�. It is known that if
(X, T ) is weakly mixing then it is scattering. Akin and Glasner [AG] give an example which
is scattering and not weakly mixing. The existential proof of the fact is based on the existence
of monothetic groups whose only minimal actions are trivial [G]. In this paper, we will give an
explicit, constructive example which is a subshift and can be verified directly. In the process
to construct the example, we naturally define a property which is called strong scattering.
A dynamical system is strongly scattering iff it isE-system�. Glasner and Weiss [GW2] show
that a weakly mixing system is weakly disjoint from an E-system. Thus a weakly mixing
system is strongly scattering, and the latter clearly implies scattering as a minimal system
is an E-system. Since our example is in fact strongly scattering and not weakly mixing,
strong scattering and weak mixing are different properties and at the same time it suggests
that scattering, non-weakly mixing systems are not so ‘rare’. This motivates us to define other
notions comparable to scattering and to study the relations among them.

A dynamical system (X, T ) is extremely scattering iff it is in TE�. As a weakly mixing
system is weakly disjoint from any TE system [AG, GW2], weak mixing implies extreme
scattering1. Since an E-system is TE, extreme scattering implies strong scattering. We show
that if (X, T ) is extremely scattering, then the access time N(U, V ) is piecewise syndetic, i.e.
the intersection of a syndetic set with a thick set which by the definition contains arbitrary long
intervals. As N(U, V ) cannot be piecewise syndetic for an almost equicontinuous system
(see [F2, AAB] for the definitions), an almost equicontinuous system cannot be extremely
scattering, and this fact implies that extreme scattering and scattering are different properties
as there is an almost equicontinuous scattering system [AG]. In fact, a close look at our example
shows that strong scattering and extreme scattering are different properties.

It is known that (X, T ) is weakly mixing iff the access time N(U, V ) is thick [F1].
Using some results in [F2, W], we show that a system is strongly scattering iff the access
time N(U, V ) is a Poincaré set, and a system is scattering iff the access time N(U, V ) is
a recurrence set. Though there exists a recurrence set which is not a Poincaré set [W], the
question if strongly scattering is equivalent to scattering remains open as here there are some
restrictions on those sets.

A dynamical system is weakly scattering iff it is in (minimal equicontinuity)�. Using
some result of [BHM] one easily gets that 2-scattering implies weak scattering. At the same
time a weakly scattering system is totally transitive, and for an E-system weakly scattering is
equivalent to scattering. If scattering and weakly scattering are different properties, then the
question of [W, p. 53] if a recurrence sequence for all group rotation is a recurrence set will
have a negative answer. To summarize, we have (note that any irrational rotation of the circle
is totally transitive and not weakly scattering)

weak mixing � extreme scattering � strong scattering

⊂ scattering ⊂ weak scattering � total transitivity.

1 Huang and Ye showed recently that they are different properties.
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Two dynamical properties P1 and P2 are symmetrically dual if P�
1 = P2 and P�

2 = P1. It
is clear that for a property P stronger than transitivity, P� and P�� are symmetrically dual.
We prove that thickly syndetic-transitive and piecewise-syndetic-transitive are symmetrically
dual (see section 4 for the definitions). This is the first pair of symmetrically dual properties
(we know) which can be described explicitly using access times.

2. Preliminary

For a dynamical property P stronger than transitivity (write P � transitivity or P ⊂
transitivity), we use P� to denote the property such that a dynamical system has P� iff it
is weakly disjoint from all systems satisfying P . Hence we have P� � transitivity. The
following fact is easy to prove.

Theorem 2.1. For a dynamical property P stronger than transitivity, we have P��� = P�.

Proof. It is clear that P � P�� and hence P� � P���. As P� is a dynamical property and
P� � transitivity, we have P� � P���. That is, P��� = P�. �

For a dynamical system (X, T ), x ∈ X and a pair of non-empty open subsets U,V of X,
let N(x,U) = {n ∈ Z+ : T n(x) ∈ U} and

N(U, V ) = {n ∈ Z+ : T −nV ∩ U �= ∅}.
Lemma 2.2. Let (X, S) be a transitive system with a transitive point x. If for any
neighbourhood U of x we have property (∗),
(∗) for any r ∈ Z+ and any k ∈ N there are p1, . . . , pk > r such that for any 1 � i1 � j1 � k,
pi1,j1 − r ∈ N(U,U), where pi1,j1 = ∑j1

l=i1 pl ,

then (X, S) is strongly scattering.

Proof. Let (Y, T ) be any E-system and T be a homeomorphism. Then there is an invariant
measure µ on Y with supp(µ) = Y .

LetU1, U2 be any non-empty open subsets ofX andV1, V2 be any non-empty open subsets
of Y . Then by the definition

N(U1 × V1, U2 × V2) = {n ∈ Z+ : (S × T )−n(U2 × V2) ∩ (U1 × V1) �= ∅}.
As (X, S) is transitive, there are n0, k ∈ N such that U = S−(n0+k)(U2) ∩ S−k(U1) is a

non-empty neighbourhood of x. Thus,

N(U1 × V1, U2 × V2) = {n ∈ Z+ : (S × T )−(n+k)(U2 × V2) ∩ (S × T )−k(U1 × V1) �= ∅}
= {n ∈ Z+ : (S−(n+k)(U2) ∩ S−k(U1))× (T −(n+k)(V2) ∩ T −k(V1)) �= ∅}
⊃ n0 + {m ∈ Z+ : (S−m(U) ∩ U)× (T −mT −(n0+k)(V2) ∩ T −k(V1)) �= ∅}.

Since (Y, T ) is transitive and T is a homeomorphism, there is an open ∅ �= V ⊂ T −k(V1)

and r ∈ N such that T −r (V ) ⊂ T −(n0+k)(V2). Thus

N(U1 × V1, U2 × V2) ⊃ n0 +N(U × V,U × T −r (V )).

As supp(µ) = Y , we have µ(V ) > 1/q > 0 for some q ∈ N. For U, r, q using the
assumption we get p1, . . . , pq > r such that for any 1 � i1 � j1 � q, pi1,j1 − r ∈ N(U,U),
where pi1,j1 = ∑j1

l=i1 pl .
If V, T −p1(V ), · · · , T −(p1+···+pq)(V ) are pairwise disjoint, then we have

µ(V ∪ T −p1(V ) ∪ · · · ∪ T −(p1+···+pq)(V )) > 1.
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This means that there are 1 � i1 � j1 � q such that V ∩ T −pi1 ,j1 (V ) �= ∅. Hence
pi1,j1 − r ∈ N(U × V,U × T −r (V )). Thus

pi1,j1 − r + n0 ∈ N(U1 × V1, U2 × V2).

Now assume that (Y, T ) is an E-system, (Y1, T1) is the natural extension of (Y, T ) and
πi : Y1 → Y is the projection to the ith coordinate. As

{π−1
i (V ) : i ∈ N and V is open in Y }

is a basis for the topology of Y1, it is easy to see that (Y1, T1) is transitive. Letµ be an invariant
measure of T with full support. For each i, let νi be an invariant measure of T1 with πiνi = µ
(see [DGS]) and ν = ∑∞

i=1(1/2
i )νi . For each non-empty open subset V1 of Y1, there are i ∈ N

and an open subset V of Y such that V1 ⊃ π−1
i (V ) and hence ν(V1) > 0. That is, (Y1, T1) is

anE-system. Then by what we have proved, (X×Y1, S×T1) is transitive. As (X×Y, S×T )
is a factor of (X × Y1, S × T1), (X × Y, S × T ) is transitive. This completes the proof. �

3. The construction

The main purpose of this section is to construct a strongly scattering, not weakly mixing system.
To do so, we use lemma 2.2 and the characterization of weak mixing [F1], i.e. a system is
weakly mixing iff N(U, V ) is thick. Recall that a subset of Z+ is thick if it contains arbitrary
long intervals. Now we are going to show the following theorem.

Theorem 3.1. There is a strongly scattering, not weakly mixing system.

Proof. We will construct the system in the one-sided shift on two symbols (�, S) and the
system is the closure of the orbit of a recurrent point x = (x0, x1, . . .) ∈ �. To do so, we
construct inductively infinitely many finite words Ci such that Ci+1 begins with Ci and x is
just the limit of Ci .

To begin with, let {φ(i)} be a sequence of Z+ such that for each i ∈ Z+, there are infinitely
many j ∈ Z+ with φ(j) = i and let

C0 = (0), C1 = (0, 0, 1, 0, 0) = (x0, . . . , x4) and k1 = 5.

Set

W 0
1 = {2} = {i : xi = 1, i � k1 − 1},
W 1

1 = {0} = {j : xj . . . xj+k1−1 = C1},
B0

1 = W 0
1 −W 0

1 = {0}, B1
1 = W 1

1 −W 1
1 = {0},

where A− B = {a − b � 0 : a ∈ A, b ∈ B}. Inductively we construct Cl . If kl is the length
of Cl , then we define

W 0
l = {i : xi = 1, i � kl − 1} for 1 � i � l,
W i
l = {0 � j � kl − ki : xj . . . xj+ki−1 = Ci},
Bil = Wi

l −Wi
l .

(3.1)

Moreover, B0
l satisfies:

(1)l 1 �∈ B0
l and there is no s ∈ N such that s, s − 1 ∈ B0

l .
(2)l Cl begins with Cl−1.
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For l = 1, (1)1 and (2)1 are satisfied. Assume that we have constructed Cn for 1 � n � l
with (1)n and (2)n. We build Cl+1 as follows. Assume that pl1, p

l
2, . . . , p

l
l , p

l
i,j � kl

(1 � i < j � l + 1) are positive integers to be defined later and set

qli,j = pli + · · · + plj−1 + (j − (i + 1))kl − φ(l + 1) (3.2)

(which will be positive) for 1 � i < j � l + 1. Let Ali,j = Cl0qli,j Cl , 1 � i < j � l + 1, and

Cl+1 = Al1,20p
l
1,2Al1,30p

l
1,3Al1,40p

l
1,4 · · ·Al1,l+10p

l
1,l+1

Al2,30p
l
2,3Al2,40p

l
2,4 · · ·All,l+10p

l
l,l+1 .

By the construction of Cl+1 and (3.1) we get

W 0
l+1 = W 0

l ∪ (W 0
l + (ql1,2 + kl)) ∪ (W 0

l + (ql1,2 + kl) + (pl1,2 + kl))

∪ · · · ∪ (W 0
l + (ql1,2 + kl) + (pl1,2 + kl) + · · · + (qll,l+1 + kl)).

For 1 � i � l

W i
l+1 = Wi

l ∪ (W i
l + (ql1,2 + kl)) ∪ (W i

l + (ql1,2 + kl) + (pl1,2 + kl))

∪ · · · ∪ (W i
l + (ql1,2 + kl) + (pl1,2 + kl) + · · · + (qll,l+1 + kl)),

W l+1
l+1 = {0}.

Denote

(ql1,2 + kl, p
l
1,2 + kl, q

l
1,3 + kl, p

l
1,3 + kl, . . . , q

l
l,l+1 + kl, p

l
l,l+1 + kl)

by

(al1, a
l
2, a

l
3, . . . , a

l
l(l+1)−1, a

l
l(l+1)). (3.3)

Then for 0 � i � l,

Bil+1 = Wi
l+1 −Wi

l+1 = Bil ∪
( ⋃

1�j1�j2�l(l+1)−1

((alj1 + · · · + alj2)± Bil )
)
,

Bl+1
l+1 = {0}.

(3.4)

We can take pl1, p
l
2, . . . , p

l
l , p

l
i,j (1 � i < j � l + 1) such that B0

l+1 satisfies (1)l+1. We
do this at the end of the proof.

Let x = limCl andX be the orbit closure of x under the shift S. We now prove that (X, S)
is strongly scattering and not weakly mixing.

Let U = {y ∈ X : y0 = 1}. Then

N(x,U) =
∞⋃
l=1

W 0
l and N(U,U) =

∞⋃
l=1

B0
l .

As B0
1 ⊂ B0

2 ⊂ B0
3 . . . and (1)l , is satisfied by all l, we know that N(U,U) is not thick, and

consequently that (X, S) is not weakly mixing.
We now check that (X, S) satisfies property (∗), and then by lemma 2.2 (X, T ) is strongly

scattering. For each neighbourhoodV of x, there is l ∈ N such that the cylinderVl = [Cl] ⊂ V .
It is easy to see that

N(x, Vl) =
∞⋃
i=l
W l
i and N(Vl, Vl) =

∞⋃
i=l
Bli . (3.5)
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For r ∈ Z+ and k ∈ N there are infinitely many s with φ(s + 1) = r (see lemma 2.2 for
the role of r and k). Thus we may take s � k + l such that φ(s + 1) = r . Then by (3.5) and
(3.4)

N(Vl, Vl) ⊃ Bls+1

⊃
⋃

1�i�j�s(s+1)−1

{asi + · · · + asj } (as 0 ∈ Bls)

⊃
⋃

1�i<j�s+1

{qsi,j + ks} (as qsi,j + ks = ast for some t (3.3)).

Recall that (see (3.2))

qsi,j = psi + · · · + psj−1 + (j − (i + 1))ks − φ(s + 1) = psi + · · · + psj−1 + (j − (i + 1))ks − r.
Let pi = psi + ks . Then

qsi,j + ks = pi + · · · + pj−1 − r
for 1 � i < j � s +1. Set pi,j = ∑j

l=i pl , 1 � i � j � s. Then we have pi,j −r ∈ N(Vl, Vl)
and hence (X, S) is strongly scattering by lemma 2.2.

To finish the proof we must choose pl1, p
l
2, . . . , p

l
l , p

l
i,j (1 � i < j � l + 1) such that B0

l+1

satisfies (1)l+1. There are many ways to do this; for example, we take pl1 = 2kl + 2 + φ(l + 1)
and inductively we take pli �

∑i−1
j=1(p

l
j + kl) + 2kl + 2 for 2 � i � l. At the same time we let

pl1,2 �
( ∑

1�i<j�l+1

(qli,j + kl)

)
+ 2kl + 2.

For 1 � i < j � l + 1 let

pli,j �
∑

1�i1<i

l+1∑
j1=i1+1

(pli1,j1 + kl) +
∑
i<j1<j

(pli,j1 + kl) +
∑

1�i<j�l+1

(qli,j + kl) + 2kl + 2. (3.6)

The reason we take pli,j in the above form is that we hope (3.8) holds, i.e. if 1 � i1 �
j1 � l(l + 1), 1 � i2 � j2 � l(l + 1) and {i1, j1} �= {i2, j2} then the four intervals

[(ali1 + · · · + alj1)± Bil ] and [(ali2 + · · · + alj2)± Bil ]
are disjoint with the gaps � 2 (see (3.4)) as maxBil � kl , where [A] is the convex hull of a
finite set A of Z+ in Z+.

Now we check that B0
l+1 satisfies (1)l+1.

By the choosing of pl1, . . . , p
l
l , we know that if {i1, j1} �= {i2, j2}, where i1 < j1 and

i2 < j2,

|qli1,j1 − qli2,j2 | � 2kl + 2. (3.7)

We claim that if 1 � i1 � j1 � l(l + 1), 1 � i2 � j2 � l(l + 1) and {i1, j1} �= {i2, j2}, then

|(ali1 + · · · + alj1)− (ali2 + · · · + alj2)| � 2kl + 2. (3.8)

Proof of the claim: Set I1 = {i1, . . . , j1}, I2 = {i2, . . . , j2} and I = (I1*I2) ∩ {2, 4, . . . ,
l(l + 1)}.
Case 1 (I �= ∅). Let 2m = max I ; then by (3.2), (3.3) and (3.6)

|(ali1 + · · · + alj1)− (ali2 + · · · + alj2)| � al2m −
( ∑

1�i<m
al2i +

∑
1�j�l(l+1)/2

al2j−1

)

= al2m −
( ∑

1�i<m
al2i +

∑
1�i<j�(l+1)

(qli,j + kl)

)
� 2kl + 2.
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Case 2 (I = ∅). If I1 ∩ {2, 4, . . . , l(l + 1)} = ∅, then I1 = {i1}, I2 = {i2} and i1 �= i2 are odd.
From (3.7) we have |ali1 − ali2 | � 2kl + 2.

If I1 ∩ {2, 4, . . . , l(l + 1)} = {2j, 2(j + 1), . . . , 2s}, then I1, I2 ∈ {{2j − 1, 2j, 2j +
1, . . . , 2s}, {2j, . . . , 2s}, {2j − 1, . . . , 2s + 1}, {2j, . . . , 2s + 1}}. Then

|(ali1 + · · · + alj1)− (ali2 + · · · + alj2)| = al2s+1 or |al2s+1 − al2j−1| or al2j−1 � 2kl + 2.

This ends the proof of the claim.
Assume that there is s such that {s, s − 1} ⊂ B0

l+1. By (1)l , s, s − 1 do not belong to B0
l

simultaneously. As maxB0
l � kl and ali � 2kl+2 (1 � i � l(l+1)), for 1 � i � j � l(l+1)−1

min{(ali + · · · + alj )± B0
l } � kl + 2 � maxB0

l + 2,

we have (see (3.4))

{s, s − 1} ⊂
⋃

1�i�j�l(l+1)−1

((ali + · · · + alj )± B0
l ).

By the claim there must exist is, js such that

{s, s − 1} ⊂ (alis + · · · + aljs )± B0
l .

From (1)l there is no s with {s, s − 1} ⊂ B0
l ; we get that

s ∈ (alis + · · · + aljs ) + B0
l and s − 1 ∈ (alis + · · · + aljs )− B0

l . (3.9)

Since

min{(alis + · · · + aljs ) + B0
l } = max{(alis + · · · + aljs )− B0

l } = alis + · · · + aljs ,

(3.9) is impossible as 1 �∈ B0
l . That is, there is no s with {s, s − 1} ⊂ B0

l+1. Hence 1 �∈ B0
l+1

since 0 ∈ B0
l+1. �

4. The relation

In this section, we will introduce several other notions which are comparable to scattering, and
discuss the relationship among them. First we recall a result of Weiss, Akin and Glasner.

A subset F of 2Z+ is called a family when it is hereditary upwards, i.e.F1 ⊂ F2 andF1 ∈ F
imply F2 ∈ F . We say F is proper if F is neither empty nor 2Z+ . If F is a family then its dual

kF = {F : F ∩ F1 �= ∅ for all F1 ∈ F}
is a family and we have k(kF) = F . For i ∈ Z+ let gi : Z+ → Z+ be the translation map
defined by gi(j) = i + j . A family F is called translation invariant if for every i ∈ Z+, F ∈ F
iff g−i (F ) ∈ F . A family F is a thick family if for each F ∈ F and i1, . . . , in ∈ Z+ we have
g−i1(F ) ∩ · · · ∩ g−in (F ) ∈ F . Finally we say a dynamical system (X, T ) is F-transitive if
N(U, V ) ∈ F for each pair of non-empty open subsets U,V of X. For example if F is the
family of thick sets, then kF is the family of syndetic sets. So F-transitive is weakly mixing
and kF-transitive is TE.

The following theorem was first proved by Weiss in some special case (F is the family
of thick subsets) and was then generalized by Akin and Glasner [AG, theorem 4.15] in the
present form.

W-AG theorem. Let F be a proper, translation-invariant, thick family of subsets of Z+.
A dynamical system (X, T ) is kF-transitive iff it is weakly disjoint from any F-transitive
system.
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Before further discussions, we make several observations. Let WM and TE denote weakly
mixing and topologically ergodic, respectively. It is easy to see that the properties of extreme,
strong and weak scattering are preserved by factor maps. For the product we have the following
proposition.

Proposition 4.1.

(1) For a TE system extreme scattering implies WM.
(2) For an E-system strong scattering implies WM.
(3) For a minimal system weak scattering implies WM.
(4) If (X, T ) is WM and (Y, S) is WM ∩ TE, then T × S is WM. If (X, T ) is TE, and (Y, S) is

WM ∩ TE, then T × S is TE. Thus, if both (X, T ) and (Y, S) are WM ∩ TE, so is T × S.
(5) If (X, T ) is extremely scattering and (Y, S) is extremely scattering which is also TE, then
T × S is extremely scattering.

(6) If (X, T ) is strongly scattering and (Y, S) is strongly scattering which is also anE-system,
then T × S is strongly scattering.

(7) If (X, T ) is scattering and (Y, S) is scattering with dense set of minimal points, then T ×S
is scattering.

Proof. (1) and (2) are obvious. Now we assume that (X, T ) is a minimal weakly scattering
system and (Y, S) is the maximal equicontinuous factor of (X, T ). As T × S is transitive and
(Y, S) is a factor of (X, T ), we have that S × S is transitive. Thus (Y, S) is trivial. Hence T
is WM. This proves (3).

To prove (4) we suppose (X, T ) is WM and (Y, S) is WM ∩ TE.
First we note that S × S is WM ∩ TE. As S is WM, S × S is transitive. Let U and V

be two non-empty open subsets of Y . Assume n > 0 such that V1 = S−nU ∩ V �= ∅. Then
N(V1, V1) ⊂ N(U,U). Thus, N(U × V,U × V ) = N(U,U) ∩ N(V, V ) ⊃ N(V1, V1) is
syndetic.

As T × T is WM, S × S is TE we have that (T × T ) × (S × S) is transitive. That is,
T × S is WM.

Now assume (X, T ) is TE, (Y, S) is WM ∩ TE. We want to show that T × S has this
property. Let (X′, T ′) be WM. Then T ′ × (S × T ) = (T ′ × S)× T is transitive, as T ′ × S is
WM and T is TE. By the W-AG theorem, S × T is TE and so is T × S.

(5) can be proved in the same fashion. (6) follows from the fact that (Y, S) is weakly
mixing, and its product with any E-system is also an E-system. To prove (7) we use the
following facts: (a) if (Y ′, S ′) and (Y, S) are two systems having a dense set of minimal points,
so is S ′ × S; (b) if a system is scattering, then it is weakly disjoint from any transitive system
with a dense set of minimal points (see [AG]). �

We do not know how to prove a similar result for a weakly scattering system. Note that
one can find (4) and (7) in [A] and [AG], respectively.

In the measure theoretical setting, the product of an ergodic system with a WM system is
ergodic and the product of a WM system with a WM system is WM. The facts are not valid in
topological setting. However, we have the following corollary.

Corollary 4.2. Let (Y, S) be a dynamical system. Then:

(a) The product of (Y, S) with any WM system is WM iff (Y, S) is WM ∩ TE.
(b) The product of (Y, S) with any TE system is TE iff (Y, S) is WM ∩ TE.
(c) The product of (Y, S) with any WM ∩ TE system is WM ∩ TE iff (Y, S) is WM ∩ TE.



An explicit scattering, non-weakly mixing example 857

Proof. (a) follows from proposition 4.1(4) and the W-AG theorem. (b) follows from
proposition 4.1(4) and the fact that the topological ergodicity is preserved by factor maps.
(c) follows from proposition 4.1(4) and the fact that both TE and WM are preserved by
factor maps. �

Motivated by the above corollary, we have the following definition. Let P be a dynamical
property stronger than transitivity and stable under factor maps. We use λ(P ) to denote the
property such that a dynamical system having λ(P ) iff its product with any system having P
has P . Let λ2(P ) = λλ(P ). We have the following theorem.

Theorem 4.3. LetP be a dynamical property stronger than transitivity and stable under factor
maps. Then:

(1) P � λ(P ) and λ(P ) is stable under factor maps.
(2) λ(P )× λ(P ) ⊂ λ(P ). Particularly, λ(P ) � WM.
(3) λ2(P ) = λ(P ).

Proof. (1) is obvious. To show (2) we note that P × (λ(P )× λ(P )) ⊂ P × λ(P ) ⊂ P . That
is, λ(P ) × λ(P ) ⊂ λ(P ). By (1), λ2(P ) � λ(P ), and by (2), λ(P ) ⊂ λ2(P ) (as (X, T ) has
λ2(P ) iff λ(P )× (X, T ) ⊂ λ(P )), i.e. λ2(P ) � λ(P ). Thus, λ2(P ) = λ(P ) and (3) is proved.
�

A dynamical system is almost equicontinuous if it is transitive and there is a transitive point
x such that for each ε > 0 there is δ > 0 such that if d(y, x) < δ then d(T i(y), T i(x)) < ε
for each i ∈ Z+ (see [AAB]). Moreover, the set of almost equicontinuous points is the set of
transitive points. We first show that a dynamical system satisfying property (∗) (see lemma 2.2)
cannot be almost equicontinuous. We start with the following lemma.

Lemma 4.4. Suppose that (X, T ) is almost equicontinuous (non-trivial) with an
equicontinuous pointx. Assume for each i,Ui is an open neighbourhood ofx with

⋂
i Ui = {x}.

Then there is i such that for any p, q ∈ N, N(Ui, Ui) ⊃ {p − 1, q − 1, p + q − 1} does not
hold.

Proof. Assume that for each i there arepi, qi such thatN(Ui, Ui) ⊃ {pi−1, qi−1, pi+qi−1}.
Take an open neighbourhhod U of x such that diam(U) < ε, diam(T (U)) < ε and

4ε < d(U, T (U)) for some ε > 0. As x is an equicontinuous point we can assume that
diam(T n(U)) < ε for each n ∈ N. LetV = T (U). Then T n(U)∩U �= ∅ and T n(U)∩V �= ∅
cannot hold at the same time.

It is easy to see that there is i such that N(x,U) ⊃ N(Ui, Ui). Thus

N(U,U) = N(x,U)−N(x,U) ⊃ N(Ui, Ui)−N(Ui, Ui) ⊃ {pi, pi − 1}.
This implies that T pi (U) ∩ U �= ∅ and T pi (U) ∩ V ⊃ T (T pi−1(U) ∩ U) �= ∅,
a contradiction. �

Corollary 4.5. A dynamical system satisfying property (∗) cannot be almost equicontinuous.

Let S be a subset of Z+. The upper Banach density of S is

BD∗(S) = lim sup
|I |→+∞

|S ∩ I |
|I | ,
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where I ranges over intervals of Z+. The upper density of S is

D∗(S) = lim sup
n→∞

|S ∩ [0, n− 1]|
n

.

We say that the lower Banach density of S is one if for each a < 1 there is N such that for any
subinterval I of Z+ with |I | � N we have |S ∩ I | � a|I |.

A dynamical system is D-transitive if the lower Banach density of N(U, V ) is one for
each pair of non-empty open subsetsU,V ofX, and it is Banach-transitive if the upper Banach
density of N(U, V ) is positive for each pair of non-empty open subsets U,V of X.

In [GW1, Y] the authors prove that an almost equicontinuous system satisfying that the
upper density of N(U, V ) is positive should be minimal. In fact, we have the following
theorem.

Theorem 4.6. If (X, T ) is almost equicontinuous and is Banach-transitive, then it is minimal.

Proof. As (X, T ) is almost equicontinuous, there is an equicontinuous point p which
is a transitive point. For ε > 0 let U = Bε(p). Then, there is δ > 0 such that
N(p,U) ⊃ N(Uδ, Uδ), where Uδ = Bδ(p). For example, we take 0 < δ < ε/2 such
that diam(T n(Uδ)) < ε/2 for n ∈ Z+. At the same time, there is δ1 > 0 such that
N(p,Uδ) ⊃ N(Uδ1 , Uδ1), where Uδ1 = Bδ1(p). Thus, we have

N(p,U) ⊃ N(Uδ, Uδ) ⊃ N(Uδ1 , Uδ1)−N(Uδ1 , Uδ1).
By [F2, proposition 3.19] N(p,U) is syndetic, and thus p is an almost periodic point. This
implies that (X, T ) is minimal. �

A subset S ⊂ Z+ is thickly syndetic if g−i1(S) ∩ · · · ∩ g−in (S) is syndetic for each
i1, . . . , in ∈ Z+, and piecewise syndetic if it is the intersection of a thick set and a syndetic
set. We remark that S is thickly syndetic iff for each n ∈ N there is a syndetic subset
Sn = {sn1 < sn2 < · · ·} such that {snj , snj + 1, . . . , snj + n} ⊂ S for each j . Recall that
two dynamical properties P1 and P2 are symmetrically dual if P�

1 = P2 and P�
2 = P1. By

theorem 2.1 for a propertyP stronger than transitivityP� andP�� are symmetrically dual. In
the following theorem, we determine a property for which both P� and P�� can be described
explicitly using family notion (this is the first property we know). We remark that (1)–(3) are
due to Glasner by personal communications.

Theorem 4.7.

(1) The class WM ∩ TE = F-transitive, with F being the family of thickly syndetic subsets of
Z+.

(2) kF-transitive = piecewise-syndetic-transitive = (F-transitive)� = (WM ∩ TE)�.
(3) Extremely scattering system is piecewise-syndetic-transitive.
(4) (piecewise-syndetic-transitive)� = WM ∩ TE.

Consequently there is no non-trivial almost equicontinuous extremely scattering system.

Proof. (1) F-transitive implies WM ∩ TE by definition. For the other direction, observe
that for (X, T ) ∈ WM ∩ TE, by (4) of proposition 4.1, it follows that for each n ∈ N,
(Xn, T ) ∈ WM ∩ TE. This implies thatN(U, V ) is thickly syndetic for each non-empty open
set U,V of X.

(2) It is easy to see that F is a translation-invariant, thick family. Thus by the W-AG
theorem, the result follows.
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(3) By definition extremely scattering = (TE)�. According to (2), (TE)� ⊂ (WM ∩
TE)� = piecewise-syndetic-transitive.

(4) LetP = piecewise-syndetic-transitive. As WM ⊂ P , we have (by the W-AG theorem)

(P )� ⊂ (WM)� = TE ⊂ P.
This implies that if (X, T ) ∈ P�, then (X, T ) is TE and (X ×X, T × T ) is transitive. Thus,
(X, T ) ∈ WM ∩ TE.

Now assume that (X, T ) is extremely scattering. If (X, T ) is minimal, then it is WM
by proposition 4.1(3). If it is also almost equicontinuous, then it is equicontinuous [AAB], a
contradiction as it is well known that the maximal equicontinuous factor of a minimal WM
system is trivial.

If (X, T ) is not minimal, then it cannot be almost equicontinuous as there is no non-
minimal almost equicontinuous system which is Banach transitive by what we just proved and
lemma 4.6. �

Corollary 4.8. There is a strongly scattering and not extremely scattering system.

Proof. In the construction of theorem 3.1, it is clear that we can choose N(U, V ) to have
zero upper Banach density for some non-empty open sets U,V . By theorem 4.7 (X, T ) is not
extremely scattering. �

Definition. W ⊂ Z+ is called a Poincaré sequence if for any m.p.s. (X,B, µ, T ) and A ∈ B
with µ(A) > 0, we have µ(A ∩ T −n(A)) > 0 for some n ∈ W, n �= 0.

A subsetW ⊂ Z+ is called a recurrence set if for any dynamical system (Y, ρ, T ) and any
ε > 0 there are y0 ∈ Y and d ∈ W (d �= 0) with ρ(T d(y0), y0) < ε.

The following facts are known [F1, W].

Facts. (X, T ) is WM iff N(U, V ) ∩ S �= ∅ for each syndetic S ⊂ Z+.
W is a Poincaré sequence iff for each S ⊂ Z+ with positive upper Banach density,

W ∩ (S − S) �= ∅.
W is a recurrence set iff for each syndetic S ⊂ Z+,W ∩ (S − S) �= ∅.

Theorem 4.9. (X, T ) is strongly scattering iffN(U, V )∩(S−S) �= ∅ for each S with positive
upper Banach density and each pair of non-empty open subsets U and V of X iff N(U, V ) is
a Poincaré set.

Proof. Assume that N(U, V ) ∩ (S − S) �= ∅ for each S with positive upper Banach density
and each pair of non-empty open subsets U and V of X. It is clear that N(U, V ) is infinite
and thus (X, T ) is transitive.

Let (Y,W) be an E-system and U1, V1 be non-empty open subsets of Y . Assume that
y is a transitive point in V1. Then there is n0 ∈ N such that y ∈ V1 and Wn0(y) ∈ U1.
Thus there is an open neighbourhood Q of y contained in V1 with Wn0(Q) ⊂ U1. This
implies that N(V1, U1) ⊃ N(Q,Q) + n0 and N(Q,Q) = N(y,Q) − N(y,Q). We show
now that N(y,Q) has positive upper Banach density. Let µ be an invariant measure with full
support. Then µ(Q) > 0 and thus there is an ergodic measure ν with ν(Q) > 0. As y is a
quasi-generic point for ν [F2, proposition 3.9], we see easily that N(y,Q) has positive upper
Banach density. Thus we haveN(U, T −n0(V ))∩N(Q,Q) �= ∅ by our assumption, and hence
(n0 + N(U, T −n0(V ))) ∩ (n0 + N(Q,Q)) �= ∅. Since N(U, T −n0(V )) ⊂ N(U, V )− n0, we
have N(U, V ) ∩ N(U1, V1) �= ∅. Then N(U × U1, V × V1) = N(U, V ) ∩ N(U1, V1) �= ∅.
That is, (X, T ) is strongly scattering.
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Now assume that (X, T ) is strongly scattering. Then if (Y,W) is an E-system, we have
N(U × B,V × B) = N(U, V ) ∩ N(B,B) �= ∅, where U,V are non-empty open subsets of
X and B is a non-empty open subset of Y .

For a given S with positive upper Banach density, define a sequence x ∈ � = {0, 1}N

such that xi = 1 iff i ∈ S. Let Y1 be the orbit closure of x under the shift σ and
A(1) = {y ∈ Y1 : y(0) = 1}. Then by lemma 3.17 of [F2], there is an invariant measure µ
with µ(A(1)) > 0. By the ergodic decomposition we know that there is an ergodic measure ν
such that ν(A(1)) > 0. Let Y be the support of ν and B = Y ∩ A(1). Note that B is open in
Y . We have

S − S ⊃ {n ∈ Z+ : ν(σ−n(B) ∩ B) > 0} ⊃ N(B,B).
As (Y, σ ) is an E-system, we have N(U, V ) ∩ N(B,B) �= ∅, and hence N(U, V )∩
(S − S) �= ∅. �

Similarly to theorem 4.9 we have the following result which gives another characterization
of scattering.

Theorem 4.10. For a dynamical system (X, T ) the following statements are equivalent:

(1) (X, T ) is scattering.
(2) N(U, V )∩(S−S) �= ∅ for any syndetic subset S and each pair of non-empty open subsets
U and V of X.

(3) N(U, V ) is a recurrence set.
(4) For any finite open cover U by non-dense open subsets N(

∨n−1
i=0 T

−iU) → ∞, where
N(α) is the minimal cardinality of subcovers of α.

Proof. (1) and (4) are equivalent by [BHM], and (2) and (3) are equivalent by the facts stated
before.

AssumeN(U, V )∩(S−S) �= ∅ for any syndetic subset S of N and each pair of non-empty
open subsets U and V of X.

Let (Y,W) be a minimal system. It is well known that if y ∈ Y and Q is an open
neighbourhood of y, then N(y,Q) is syndetic. Thus following the proof of the first part of
theorem 4.9, we have that N(U × U1, V × V1) �= ∅ for any pair of non-empty open subsets
U,V of X and any pair of non-empty open subsets U1, V1 of Y . That is, (X, T ) is scattering.

Now assume that (X, T ) is scattering. Then if (Y,W) is a minimal system, we have
N(U × B,V × B) = N(U, V ) ∩ N(B,B) �= ∅, where U,V are non-empty open subsets of
X and B is a non-empty open subset of Y .

Let S be a syndetic subset of N and let x denote the indicator function of S in {0, 1}N, then
if Y is any minimal set in the orbit closure of x under the shift σ , and B = {y ∈ Y : y(0) = 1},
the fact that S is syndetic implies that B is not empty and N(B,B) ⊂ S − S. As (Y, σ ) is
minimal, we have N(U, V ) ∩N(B,B) �= ∅, and hence N(U, V ) ∩ (S − S) �= ∅. �

We know that any weakly scattering system is totally transitive as it is weakly disjoint
from any periodic system. Two dynamical systems (X, T ) and (Y, S) are disjoint if the only
non-empty closed invariant subset of X × Y which projects onto both X and Y is X × Y .
Moreover, we have the following theorem.

Theorem 4.11. For an E-system weak scattering is equivalent to scattering.

Proof. Let (X, T ) be a weakly scattering E-system. By [AG, theorem 3.7] (X, T ) is disjoint
from each minimal equicontinuous system. Then following proposition A.1 of [BHM], (X, T )
is scattering. �

For weak scattering we have the following theorem.
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Theorem 4.12. (X, T ) is weakly scattering iff N(U, V ) ∩ (S1 − S1) �= ∅, where U,V are
non-empty open sets of X and S1 has the form of N(y0, B), where (Y, S) is minimal and
equicontinuous, y0 ∈ Y and B ⊂ Y is open.

Proof. A direct consequence of the definition. �

It is an open problem if for each syndetic set S, S − S contains S1 − S1 for some S1,
which has the form of N(y0, B) in some minimal equicontinuous system. If this problem
has an affirmative answer, then by theorems 4.10 and 4.12, weak scattering and scattering are
the same properties. Thus, if weak scattering and scattering are different properties, then the
above problem will have a negative answer.

Remark 4.13. It is known that there is a recurrence set which is not a Poincaré set [W]. This
fact implies that there is S ⊂ Z having positive upper Banach density and there is no syndetic
setR withR−R ⊂ S−S. A subset S ⊂ Z is a dynamical Poincaré set (resp. recurrence set) if
it has the form N(U, V ), where U, V are non-empty open sets of some system (X, T ). Thus
if strong scattering and scattering are different properties, then there is a dynamical recurrence
set which is not a Poincaré set.

Before stating some open questions we summarize the results obtained in this paper
using figure 1. The entries in the diagram appear as names of classes with their E-transitive
characterization below (when one is available). A� denotes the class of systems which are
weakly disjoint from the class A, −−⊂ is just ⊂, and → means taking � of a class. The k
above an arrow means that in addition passage is to a dual family (by the W-AG theorem).

The following questions remain open:

Question 1. Is there an almost equicontinuous system which is strongly scattering?

Remark. We know that extreme scattering cannot be almost equicontinuous. If (X, T ) is
strongly scattering and almost equicontinuous (not minimal), then every invariant measure is
supported on a minimal set which is a fixed point. The proof is almost the same as the proof
that almost equicontinuous scattering system implies that each minimal set is trivial [BHM,
remark 4.5]. If the above question has a negative answer, then strongly scattering and scattering
are different properties.

Question 2. We know that strong scattering, extreme scattering and weak mixing are different
properties. What about weak scattering, scattering and strong scattering?

Question 3. Is it true that (X, T ) is extremely scattering iff (S − S) ∩N(U, V ) �= ∅ for each
S with S − S syndetic?

Figure 1. Results of this paper.



862 W Huang and X Ye

Question 4. Is it true that weak scattering implies that the regionally proximal relation is the
Cartesian square?

Remark. If (X, T ) is 2-scattering (see [BHM]), then (X, T ) is disjoint from all equicontinuous
minimal systems. Thus 2-scattering implies weak scattering. It is known [HY] that if (X, T )
is 2-scattering then the regionally proximal relation is the Cartesian square.

Let (X, T ) be a weakly scattering system and (Y, S) be its maximal equicontinuous factor.
Then (Y, S) is weakly disjoint from any equicontinuous system and hence is trivial. That is,
the smallest closed invariant equivalence relation generated by the regionally proximal relation
is the Cartesian square. If question 4 has a positive answer then the weakly scattering system
will be chaotic in many senses; see [HY, theorem 3.5] and [BGKM, theorem 2.1].
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