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Abstract. The energy-equation approach used to prove the existence of the global attractor by
establishing the so-called asymptotic compactness property of the semigroup is considered, and
a general formulation that can handle a number of weakly damped hyperbolic equations and
parabolic equations on either bounded or unbounded spatial domains is presented. As examples,
three specific and physically relevant problems are considered, namely the flows of a second-
grade fluid, the flows of a Newtonian fluid in an infinite channel past an obstacle, and a weakly
damped, forced Korteweg—de Vries equation on the whole line.
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1. Introduction

Various physical phenomena, ranging from celestial mechanics to quantum mechanics, can
be modelled by nonlinear evolutionary differential equations. Most of those equations are
well posed and thus may be considered as dynamical systems on some appropriate phase
space. If the ‘permanent regime’ is of interest, it is customary (and necessary) to take into
account various kinds of dissipation mechanisms (such as friction, thermal diffusion, etc),
which usually leads, if the system is autonomous, to the existence of an absorbing ball in
the phase space and further leads to the existence @fiabeal attractor (see section 2 for
the definitions), which attracts all the orbits of the dynamical system. Then, the long time
behaviour of the system is characterized by its behaviour on the global attractor, if it exists,
so that from the point of view of either an analytical or numerical study and even for a
possible control of the system, it is of great interest to study the existence and the properties
of this global attractor for various kinds of equations arising in physical and mechanical
applications.

There are many references on this topic; let us only mention the books
[BV,Ha, He, Hr,La2, SY, T1].

There are essentially three apparently distinct properties that a semigroup may possess
and such that each of them together with the existence of a bounded absorbing set leads to the
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existence of the global attractor. They are twmpactnes$BV, Ha, Hr, La2, SY, T1], the
asymptotic smoothnegbia, Hr], and theasymptotic compactnegka2, SY, T1] properties.

The first condition is that a semigroy§(s)},>o is such thatS(s) is a compact operator for
somery > 0; the second one is that for any closed, bounded, positively invariat tetre

exists a compact s&t = K (B) which attractsB; and the third one is the precompactness

of the sequencgS(#;)u;};en for every bounded sequende;};cy in the phase space and
every sequencé;};cn Of positive numbers with; — oo. The first condition is stronger

than the other two, but the last two are, in fact, quite related (see section 2 for more details).
The major difference lies in the methods used in the applications in order to establish any
one of those conditions. The choice of the proper method depends on the nature of each
problem.

The compactness condition was the first one to be used. If the dynamical system is
finite dimensional (corresponding to ordinary differential equations), this condition is a
trivial consequence of the existence of an absorbing ball in the phase space, while for
parabolic equations on bounded spatial domains this compactness property follows from a
regularization of the solutions and some compact Sobolev embedding (i.e. one can obtain
the existence of @ompactabsorbing set). However, the solution semigroup fails to be
compact for most of the infinite-dimensional dynamical systems arising from weakly damped
hyperbolic equations or parabolic equations on unbounded domains, even if there is an
absorbing ball in the phase space. Thus, this method breaks down here.

The asymptotic smoothness and the asymptotic compactness properties are needed to
handle those non-compact cases. One approach is to prove the sofalbedraction
property of the semigroup, which implies the asymptotic smoothness. This condition has
been successfully exploited by Hale [Ha] and many other authors. Another approach is to
decompose the solution semigroup into two parts: a (uniformly) compact part and a part
which decays (uniformly) to zero as time goes to infinite (see, for instance, [Ha, Hr, T1],
among many other references). Then, the proof of the existence of the global attractor
using this splitting amounts to (either essentially or explicitly) proving either the asymptotic
smoothness or the asymptotic compactness of the semigroup.

A more recent approach, which is the one we want to address here, is the use of energy
equations to prove the asymptotic compactness property. For many physical systems there
are energy equations (or their analogues) in the sense that the changing rate of energy
equals the rate that energy is pumped into the system minus the energy dissipation rate due
to various dissipation mechanisms. To our knowledge, it was first observed by Ball [B]
(for weakly damped, driven semilinear wave equations) that such energy equations may be
used to derive the asymptotic compactness of the solution semigroup. This technique was
then applied to a weakly damped, driven Korteweg—de Vries (KdV) equation by Ghidaglia
[G2]. Later, such technique was put into a systematic formulation suitable for applications
to many weakly damped, driven hyperbolic-type equations by one of the authors [W] with
a specific application to a weakly damped, driven nonlinear &thger equation. Then,
it was observed by another of the authors [R] that the same technique could be applied
to parabolic-type problems, as well, with particular interest in equations on unbounded
domains.

It has recently been observed (see [T1, 2nd edn]) that the splitting of the semigroup
into a (uniformly) compact part and a (uniformly) decaying part mentioned previously is
actually necessary and sufficiefibr the existence of the global attractor in the case where
the phase space is a Hilbert space, and we note that the same equivalence holds if the phase
space is a uniformly convex Banach space. This means that a decomposition of the solution
semigroup must exist if the global attractor exists. However, it may be difficult to find such
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a decomposition in applications. In fact, no suitable decomposition has yet been found for
the KdV equation or for the two-dimensional (2D) Navier—Stokes equations on unbounded
domains when the forcing term does not belong to some weighted Sobolev spaces. The
use of the energy-equation approach is relatively easy if it is not the only solution for those
cases.

The purpose of this paper is to formulate in a systematic way the technique of applying
the energy equation method in deriving the existence of the global attractor and to apply
this formulation to three significant and essentially distinct problems which seem hard to
be handled using other approaches.

The approach is relatively simple in that the assumptions are straightforward and may be
verified directly from the equations. In most applications, the central part lies in establishing
the energy-type equation (this may not be trivial, though, and is open for the Navier—Stokes
equations in space dimension 3). For parabolic-type problems, the typical way is to establish
enough regularity for the solutions, which then imply the energy equation. For hyperbolic-
type problems, the typical way is to use the time reversibility to establish the energy equation.
These techniques will be illustrated in section 4 via several examples.

This paper is organized as follows. In section 2 we give a brief review of some basic
concepts on the dynamical system approach to evolution equations and study the interplay
between those concepts. We recall, in particular, the properties leading to the existence
of the global attractor. In section 3 we state our main theorem on the existence of the
global attractor via energy equations. Finally, in section 4 we present several applications
of our results to a number of physically relevant problems: (1) an equation for fluids of
second grade (one of the simplest models for non-Newtonian fluids); (2) a simplified case of
uniform flows past an obstacle in the plane; and (3) a weakly damped, driven KdV equation
on the whole real line. The first example is hyperbolic, the second is parabolic and the third
is dispersive.

2. Asymptotic compactness

Let E be a complete metric space (called the phase space) afg{dgl., be a semigroup
of continuous (nonlinear) operators B i.e. {S(¢)};>0 Satisfies

S(t +5) = S(@t) o S(s), Vi,5 >0,

o (2.2)
S(0) = I = Identity in E,

and
S(t) is a continuous (nonlinear) operator frafinto itself for anyr > 0. (2.2)

In what follows, a semigroup for us will always mean a semigroup of continuous
operators as defined by (2.1) and (2.2). For aBet E, we define itsw-limit set by

o (B) = Ny=0Ur>:S(t)B. It is easy to prove the following well known characterization of
an o-limit set:

w € w(B) <=3{w;}jen C B, 3t;}jen C R such that

. (2.3)
t; = +oo andS(tj))w; — win E.

A setB C E is called anabsorbing setfor the semigroudS(s)};>o if B ‘absorbs’ all
the bounded sets aof, i.e. for everyB C E bounded, there exists a timé= T(B) > 0
such thatS(r)B C B, for all t > T (B). Theglobal (or universal) attractorof a semigroup
{S(1)}:>0 is defined as the sed C E which is compact inE, invariant for {S(z)};>o, i.€.
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St)A = A, vVt > 0, and which attracts all the bounded setsEqyfi.e. for any bounded

setB C E, distz(S(t)B, A) — 0 ast — +o0. Here dis} is the usual semidistance i
between two sets. One can show that if the global attractor exists, it is unique. Moreover,
the global attractor is minimal (with respect to the inclusion relatioBJramong the closed

sets that attract all the bounded sets and is maximal (idem) among the bounded, invariant
sets.

For the concepts described above, as well as for the results stated below, we refer the
reader to the works of [BV, Ha, Hr, La2, Sell, SY, T1].

In order to prove the existence of the global attractor one needs some kind of
compactness of the semigroup together with the existence of a bounded absorbing set. For
instance, if there exists a bounded absorbingZeind S(¢p) is compact for somey > 0,
then A = w(B) is the global attractor. This condition is typical for parabolic equations
on bounded spatial domains where the compactness follows from a regularization of the
solutions and some compact Sobolev embedding. In those cases, one actually obtains the
existence of a compact absorbing set.

However, many equations do not generate a compact semigroup in the above sense,
so the compactness needed must be achieved in a different, weaker sense. We say that
a semigroup{S(1)};>o is asymptotically smoothor possesses thesymptotic smoothness
property, if for any non-empty, closed, bounded suliset E for which S(z)B C B, Vt >
0, there exists a compact s€t= K (B) C B which attractsB (see, e.g. Hale [Ha], and see
also Babin and Vishik [BV] for a similar definition). iS(¢)},>0 is asymptotically smooth
and possesses a bounded absorbing3séhen A = o (B) can be shown to be the global
attractor, where3 = Uy, S(2)B for to such thatS(r)B C B for any ¢ > t.

A related concept is that of asymptotic compactness [La2, T1, SY]. One says that
{S(t)};>0 is asymptotically compadh E if the following condition holds:

If {u;};en C E is bounded andtj}jey C RT, #; — o0

. . (2.4)

then {S(#))u;};en is precompact ink.

This condition, together with the existence of a bounded absorbing set, implies the existence
of the global attractor. Since this is the result we will be using in the rest of this work, we
state it below in the form of a theorem.

Theorem 2.1.Let E be a complete metric space and Igf(r)},~0 be a semigroup of
continuous (nonlinear) operators i&. If {S()};>0 possesses a bounded absorbing set
B in E and is asymptotically compact i, then{S(1)},>o possesses the global attractor
A = w(B). Moreover, ift — S(t)ug is continuous fronR™ into E, for anyug € E, and B

is connected irk, then A is also connected ik .

The proof of theorem 2.1 can be essentially found in [La2, theorem 3.4].

One can see from the characterization (2.3) that condition (2.4) of asymptotic
compactness is a natural assumption associated te-thmit sets. In fact,the asymptotic
compactness property alone implies that thdimit set of any non-empty, bounded set is
non-empty, compact, invariant, and attracts the corresponding boundedkist is a very
important point which we want to stress and that shows the significance of this condition.
The further existence of a bounded absorbing set implies then that-tineit set of this
absorbing set attractny bounded set.

Showing that a semigroup defined by an evolutionary equation is asymptotically smooth
or asymptotically compact depends on the general properties of the equation. One way is
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to show in the casé& is a Banach space that one has a splitiitg = S1(¢) + S2(¢), where
S1(¢) is uniformly compact, i.e.

VB C E bounded 37,(B) > 0 such thatU S.(1)B is compact inE, (2.5)

t>ty
while S>(¢) : E — E is continuous for each > 0 and satisfies:
tlim supl|S2(t)ullg = 0O, VB C E bounded. (2.6)
— 00

ueB
This splitting together with the existence of a bounded absorbing set leads directly to the
existence of the global attractor, but the proof, actually, amounts essentially to showing
either the asymptotic smoothness or the asymptotic compactness properties. This approach is
typical for hyperbolic equations of second order in time on bounded spatial domains, where
there is usually a regularization effect of the solution of the linear part of the equation with
respect to the non-homogeneous term. It has also been used for some parabolic equations on
unbounded domains by means of weighted functional spaces to recover some appropriate
compact embeddings (see, e.g. [FLST]). We should also mention that a splitting of the
semigroup involving the low- and high-frequency components of the solution has been used
in order to prove a regularity result for the global attractor in the case of a weakly damped
Schibdinger equation [Go] and a weakly damped KdV equation [MR].

There is also the notion of g&-contraction semigroup, given in [Ha]: we say that
{S(t)};>0 is a B-contraction with respect to a measure of non-compactngsen the
metric spaceE, which is assumed to be complete, if there exists a continuous function
k : Rt — R with k(t) - 0 ast — +oo and such that for every > 0 and every
bounded subsek C E the setUp,<,S(s)B is bounded inE and8(S(t)B) < k(1)B(B) as
t — 4oo. If {S()};>0 Is aB-contraction and there exists a bounded absorbing set, then the
global attractor exists. We recall here that a measure of non-compag@rass complete
metric spacek is a functiong from the bounded sets d@f into R™ such that:

(i) B(A) =0 if and only if A is precompact;

(i) B(AU B) =maxp(A), B(B)}; and

(i) B(A+ B) < B(A) + B(B).

For example, the Kuratowski measure of non-compactnesss given bya(B) =
inf{d > 0; B has a finite cover by sets of diameter less tlddn For this measure, if
S(t) = T(t) + L(t) with T(¢r) compact forr > 0, but not necessarily uniformly compact,
andL(t) linear with norm||L(z)|| continuous irr and vanishing for — +oo, then{S(¢)},>0
is an a-contraction withk(z) = ||L(¢)||. Many wave equations can also be put into this
form (see e.g. [Ha]; see also [EK] for a recent survey article on the existence of the global
attractor for a class of nonlinear wave equations). One can also exploit the existence of
an absorbing set and obtain thecontraction property wittk = kg(¢) depending on the
bounded sei3, or else only for subsets of the absorbing set; either one is enough for the
existence of the global attractor every iE— k(¢) is not continuous.

Another way which has recently been exploited is the energy equation approach [B, G2]
described in more details (and extended to other cases) in section 3. It leads easily to the
asymptotic compactness property. It essentially amounts to using the existence of a bounded
absorbing set for extracting a weakly convergent sequé¢fige)u)};; and then deducing
from the energy equation that this weakly convergent sequence is also norm-convergent.
The strong convergence and, hence, the precompactngsg;ofi;}; follow then from these
two convergences provided the space is a uniformly convex Banach space.

Returning to the two concepts of asymptotic smoothness and asymptotic compactness,
we remark that these two properties are actually quite related. It is not difficult to see
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that if {S(r)};>0 is asymptotically compact, then it is also asymptotically smooth with
K(B) = w(B). But the converse is not true. In particular, if the semigroup is asymptotically
smooth, then in general only a non-empty, bounded Bethich is further closed and
positively invariant is such that its-limit set is non-empty, compact, invariant, and attracts

B. However, the two concepts do bear a close relationship. Indeed, one can show that the
asymptotic compactness property is equivalent to the property that for every non-empty,
bounded setB (not necessarily closed or positively invariant) there exists a compact set
K = K(B) which attractsB.

Now, if one assumes the existence a of bounded absorbing set, then many of the concepts
above turn out to be equivalent. For instance, both properties of asymptotic compactness
and asymptotic smoothness become equivalent. They also turn out to be equivalent to
the existence of the global attractor itself, as it can be easily checked. In fact, in the
caseE is a Hilbert space, Goubet and Moise (see remark 1.1.5 of the second edition of
[T1] remarked that even the splitting (2.5), (2.6) is equivalent to the existence of the global
attractor (again, assuming the existence of a bounded absorbing set). This can be attained by
writing S1(¢) = PS(t) andS,(¢) = S(t) — PS(¢), whereP is the projection onto the closed
convex hull of the global attractor. Of course, this can also be achievdsifa uniformly
convex Banach space. Moreover, if one relaxes the continuity condition (which is actually
not necessary in the proof) & (¢) (but not onS(z) itself), then a similar splitting can be
obtained on an arbitrary Banach spaceavith P being one of the possibly many projections
onto the global attractad itself (Pu is such thatd(u, Pu) = distg (u, A), Vu € E, which
exists by the compactness df# ¢ and the Zorn lemma). This same decomposition shows
that {S(#)},>0 iS ana-contraction withk depending on the bounded set and not necessarily
continuous.

The major difference then turns out to be in the applications. Whether we use the
splitting of the semigroup, thg-contraction property, the energy-equation approach, or
some other method, the proper choice remains intimately related to the nature of each
problem. In section 4 we present three examples for which the energy equation method
discussed in section 3 is either the most suitable one or the only one available at the present
moment.

3. Abstract energy equations

In this section we consider semigroups possessing a bounded absorbing set and satisfying
some general abstract energy equation. We study under which conditions on the energy
equation we can obtain the asymptotic compactness needed for the existence of the global
attractor. The use of energy equations to prove the existence of the global attractor for
weakly dissipative semigroups was first explored in [B], then followed by a number of
other authors. The earliest works would first obtain the existence of a bounded ‘weak’
attractor (i.e. attracting the bounded sets in the weak topology) and then use the energy
equation to show the actual attraction in the strong topology and the compactness of the
attractor. Later [R], it was realized that the asymptotic compactness would follow directly
from the energy equation and the global attractor could be obtained without mention to the
weak attractor; this way would also avoid the assumption of the separability of the phase
space needed for the existence of the weak attractor.

We present below some slight generalizations of the previous results of
[B,G2,W, R, Go, MR, GM].

Let the phase spacg be a reflexive Banach space, so that bounded sequences are
weakly precompact. Let als@(¢)},~0 be a semigroup of continuous (nonlinear) operators
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in E. Assume thafS(¢) is weakly continuous irt for eachs > 0, and that the trajectories
of {S(#)},>0 are continuous irE, i.e.

t — S(t)uo € CRT, E), Vug € E. (3.1)

The continuity condition (3.1) actually follows from the integral form of the energy equation,
which is the form used in the proof of the asymptotic compactness, but we might very well
assume, equivalently, (3.1) and the differential form of the energy equation. We also assume
the existence of a bounded absorbing8eh E. For the energy equation, we assume that

d
E(CD(S(t)Mo) + J(S@®uo)) + y (@ (S(H)uo) + J(S(#)uo)) + L(S(t)uo)
= K(S(t)uo) Vug € E (3.2)

in the distribution sense iiR*, wherey is a positive constant and, J, K, and L are
functionals satisfying the following hypotheses.
e ®: E — R, ®is continuous, is bounded on bounded subsetg aind

if {u;}; is bounded inE, {t;} C R*, #; - oo, S(t;)u; — w weakly inE,
and limsupd(S(tj)u;) < ¢(w), thenS(t)u; — w strongly inE. (3.3)

j—o0
e J : E — R is ‘asymptotically weakly continuous’ in the sense that

if {u;}; is bounded inE, {t;} C RY, t; - oo, andS(t;)u; — w weakly in E,
thenJ (S(t)u;) — J (w). (3.4

e K :U;-0S(t)E — R is ‘asymptotically weakly continuous’ in the sense that

if {u;}; is bounded inE, {t;} C RY, #; - oo, andS(t;)u; — w weakly in E,

t t
then _Iim/ e VUK (S(s +1;)u;) ds =/ e 7IIK(S(s)w) ds, vt > 0,
J—>00 0 O
where it is assumed that—> K (S(s)u) belongs toL*(0, ¢),Vs > 0,Vu € E. (3.5

e L :U,-0S)E — R is ‘asymptotically weakly lower semicontinuous’ in the sense
that if {u;}; is bounded inE, {r;} C R*, 1; — oo, andS(t;)u; — w weakly in E,

t t
then / e 7 IL(S(s)w)ds < liminf [ e 7O L(S(s + £;)u;) ds, vt > 0,
0 J= Jo
where it is assumed that—> L(S(s)u) belongs toL1(0, ), V > 0, Yu € E. (3.6)

Note that we could have included the functioélin L, but for the sake of clarity in the
applications, we keep them separate.

Usually, in applications,®(u) is just the square of the norm of in E, so that
(3.3) follows if E is uniformly convex, since in such spaces weak convergence plus
norm convergence implies strong convergence (see e.g. [W]). It is also common to find
in applications that/ and K are weakly continuous it with K bounded on bounded
subsets off, so that (3.4) and (3.5) follow.

For L = 0 andJ andK satisfying assumptions slightly stronger than (3.4) and (3.5), the
proof that the asymptotic compactness follows under the assumptions above was essentially
done by Wang [W, lemma A]. Also a specific case in whicl 0 was considered by Rosa
[R]. By putting those two cases together one can easily obtain the asymptotic compactness
in the case above. For the sake of exposition, we outline this derivation below.
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Let then{u,}, C E be bounded and lef,}, ¢ R*, ¢, — +o0o. We need to show
that{S(z,)u,}, is precompact inE. Since{S(t,)u,}, is bounded (due to the existence of a
bounded absorbing s#) and the spacé is reflexive, it follows that

S(ty)u,y — w weakly inE. (3.7)

for somew € coBB, the closed convex hull oB, and some subsequeng€}. Similarly,

{S(ty — T)u,/} has a weakly convergent subsequence for dach0, so that if we restrict

T to the countable sé¥, we can obtain by a diagonalization process a further subsequence
(still denoted{n'}) for which

Sty — THu,y — wr weakly in E, VT € N, (3.8)
with wr € coB. Note then by the weak continuity ¢f(7’) that
w=ST)wr, VT € N. (3.9

Now, since the trajectories diS(z)},>0 are continuous, we obtain by integrating the
energy equation (3.2) from 0 t6 with ug = S(¢,, — T)u,, that

T
D(Sty)un) + J(St)uw) + ¥ / e 7T IL(S(s)S(tw — Tuy) ds
0
=[Sty — Tuw) + J(S(tw — Tuy)]le ¥’
T
+/ e 7T=9K(S(s)S(ty — T)u,y) ds, VT €N, Vg >T.
0

(3.10)

From (3.7), (3.8) and the assumptions ArK and L, we can pass to the limit sup in (3.10)
to find

T
Iimsup(CD(S(tn/)un/))+J(w)+/ e 7T=9L(S(s)wy) ds
n 0

T
<[ep + J(wp)]e?T + / e 7T K (S(s)wr) ds, VT €N, (3.11)
0
wherecg = sup® (v); v € coB} < oo.
By using again the energy equation now with= wr, we find using (3.9) that

T
®(w) + J(w) + f e 7T L(S(s)wr) ds = [ (wy) + J (wr)]e
0

T
+ [ e 7T=9K (S(s)wr) ds, VT € N. (3.12)
0

Subtract (3.12) from (3.11) we find
lim sup(® (S(ty)un)) — P(w) < (cg + D (wr))e’T < 2cpe77T, VT € N. (3.13)

By letting T — oo we see that limsyp® (S, )u,y) < ®(w), which together with the
weak convergence (3.7) and assumption (3.3) implies Sii@t)u,, converges strongly to
w, which proves the asymptotic compactness{8ft)};~o. From theorem 2.1 we then
deduce the existence of the global attractor.

Clearly, the same result follows £ is a closed convex subset of a reflexive Banach
space, in which case the result could be applied to reaction—diffusion equations with invariant
regions (see [S, T1]).

We have then the following result.
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Theorem 3.1.Let E be a reflexive Banach space or a closed, convex subset of such a space.
Let{S(¢)};>0 be a semigroup of continuous (nonlinear) operator&iwhich are also weakly
continuous iNE. Assume tha{S(r)},>0 possesses a bounded absorbing set and that its
trajectories are continuous. Assume also that the energy equation (3.2) holds wlere

a positive constant ane, J, K, and L are functionals satisfying the hypotheses (3.3)—
(3.6), respectively. Thef{S(s)},>0 possesses a global attractor which is connectes ik
connected.

The claim about the connectedness of the global attractor in theorem 3.1 is obvious.

In some applications, for example in equations in higher-order Sobolev spaces on
unbounded domains, where the Sobolev embeddings are not compact, the funcfionals
and K in the energy equation (3.2) might not be weakly continuous. This is the case,
for instance, with the weakly dissipative KdV equation on the whole line considered in
section 4.3, for which the phase spaceH$(R). In this case however, we can use one
more energy equality to deduce first the asymptotic compactness with respect/it(e
strong topology, which is then used to show the ‘asymptotic weak continuity’ (see (3.4)
and (3.6)) ofJ and K with respect to theZ?(R) topology.

In view of such applications, we assume that we are given another reflexive Banach
spaceF, F D E with continuous injection § as before). We assume thgf(r)};>o is a
semigroup of continuous (nonlinear) operatorskinvhich are also weakly continuous in
E. We assume also that the energy equation (3.2) holds for a positive copsfant/, K,
and L as before, and fo® satisfying now the following assumption.

e &: E — R* @ is continuous, is bounded on bounded subsetg aind

if {u;}; is bounded inE, {t;} C R*, 1; - oo, S(tj)u; — w weakly inE,
and limsupd(S(tj)u;) < &(w), thenS(t)u; — w strongly inF.  (3.14)
j—o0
Then we can state the following lemma, whose proof is essentially the same as that for
theorem 3.1 above.

Lemma 3.2. Under the assumptions of theorem 3.1 except with (3.3) replaced by (3.14) with
a reflexive Banach spade D E with continuous injection, it follows that {:;}; is bounded

in E and{t;}; C R*, t; — oo, thenS(s;)u;; — w strongly in F for somew € E and some
subsequencgj’}.

4. Applications

4.1. Fluids of second grade

The evolution of a second-grade incompressible fluid filling a bounded dofairR? is
described by the following equations:

0 .
E(M —aAu) —vAu+ curl (u —aAu) xu=f+Vp in Q, 4.1.1)
divu=0 in Q.

Hereu = u(x, t) is the velocity andp = p(x, t) is the modified pressure given by

1
p=—p—Slul+ou-Au+t % tr((Vu) + (Vi) ")2.
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f is the external body force, the density of the fluigpis= 1 and the parametersandax are
given positive constants. We assume that the fluid adheres to the bouwrfdacpndition
expressed by

M|BQ = 0, (412)
and we also consider that
u(x,0) = up(x), x € Q. (4.1.3)

We also assume tha® is a simply connected, bounded, open set with smgath and
connected boundary.

For a deeper understanding of the model of a second-grade fluid we refer the reader to
[DF]1. Here we limit ourselves to continuing the mathematical study done by Cioranescu
and Ouazar [CO] (see also [CG, CA]). We recall the mathematical setting of the problem.
We consider the following functional spaces :

V= {u € [CF(Q)]? divu =0}, V = the closure ofy in [H3 ()]
We set

(f.8) = /Q fogdufl= (N2 VfgellA)%

((f.8) = /Q gradyf - gradg dr, Ifll= W/ OY2 VfigeV.
The spacéV is a Hilbert space with the scalar product

(u,v)y = (u,v) +a((u, v)). (4.1.4)

We also consider the Hilbert space
W={ueV, curl(u—adu) e L3%(Q)},
endowed with the scalar product
(u, V)w = (u, v)y + (curl (u — aAu), curl (v — aAv)), Yu,v e Ww. (4.1.5)

The assumption o allows us to prove thaW = {u € [H3(Q) N HI(2)]?, div u = 0}
and that there exists a constaite) such that

lu| gz < C(a)| curl (u — aAu)|, Yu e W. (4.1.6)

(For the proof see [CG].) If we identify’ with its dual spacé/’, we haveW Cc V =V’ C
W’, with continuous injections and each space being dense in the following one.
The weak formulation of the problem (4.1.1)—(4.1.3) is the following.
For ug and f given, findu such that

W', v)y +v((u,v)) +b(u, u,v) —ab(u, Au, v) +ab(v, Au, u)=(f,v), YveV,
u(0) = uo,
(4.1.7)
where

2
v
b(u,v,w) = E /uia—?wjdx.
Q i

i,j=1

1 Although some authors criticize the physical interest of this model, it is not our intention here to judge its
validity; we are only interested in studying its mathematical aspects.
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A compilation of the previous results from [CO, CG, CA] implies that figre W and
f e (HY(R))? given, there exists a unique solutianof (4.1.7) satisfying

ue LR W), u' € L°(RY; V). (4.1.8)

The proof of the existence relies on the Faedo—Galerkin method implemented with a special
basis inV, namely the spectral basjs;};>1 which satisfies

(U)j, U)W = kj(wj, U)v, Yv e W, V] > 1, (419)

where O< A1 < A2 < ..., andiA; — oo asj — oo. Let us remark thafw;};>1 is also an
orthogonal basis iW. Moreover, ifQ is of classC3, thenw; € H*($2)2. The approximate
solutionsu,, satisfy

{tty}m iS bounded inL>®(R*; W), {u),}n is bounded INL®(R™; V), (4.1.10)
and we have the following energy equationsVirand W respectively:
1d
Sl A+ vlunl? = (f ), (4.1.11)
1d v 1
éalumliv + Elumlév = 5K (), (4.1.12)
where
1
—K(u,) = K|um|2 + (f, um) + (Kcurlum + curlf, curl (u,, — aAum)) . (4.1.13)
2 o o

We deduce from (4.1.10) that there exists a subsequenge, df(still denoted{u,,}) such
that

Uy — u star-weakly inL>®(@®R"; W),

u, X star-weakly inL®(RT; V),

u, — u strongly inL2(0, T; V N H?), VYT > 0.
The convergences above allow the passage to the limit whgoes to infinity to find that
u is the solution of (4.1.7) (the uniqueness proof is standard).

Sinceu € L®(R*™; W) andu’ € L*®°(R"; V) we deduce that: is a.e. equal to a
continuous function from [0r'] into V for all T > 0. Moreover,u € L¥[R"; W) N
C([0,T],V),VT > 0, implies

u € Cy([0, T]; W), (4.1.14)
lu(H)lw < |ulp=©,1;w) vt el0,T]. (4.1.15)
(For details, see, e.g. [T2,ch3]). Note that (4.1.14) and (4.1.15) also hold,forThe

results above are known and we now want to establish some new results. We first show
thatu € C(J0, T], W), VT > 0. Let us start by proving the following lemma.

Lemma 4.1.1.u,,(r) — u(t) weakly inW, for all ¢t > O.

Proof. Sinceu,, — u strongly inL2(0, T; V N H?), VT > 0, we deduce that there exists
a subsequencg:,,} such that

u, (1) — u(t) strongly inV, for a.e.t € [0, T1, VT > 0. (4.1.16)
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For0<rt<t+a < T we have
t+a
Uy (t+a) — U (t) = / u,,(s)ds, inV,
t
and thus

g (t 4+ @) — up (D)]y < fm lu!,(s)|y ds < (using (4.1.10) < ca, vm' > 1.
[ (4.1.17)
Using (4.1.16), (4.1.17), and the fact thgt andu are inC([0, T], V), we deduce that
Uy (t) — u(t) strongly inV, for all r € [0, T]. (4.1.18)

From the previous convergence and using the spectral basis adfined by (4.1.9), we
obtain

(p (1), w)w — (@), wj)w, Vj>1Vtel0,T], (4.1.19)
and by the density ofw;} in W, we have

Uy (t) — u(®) weakly inw, vt e|0,T]. (4.1.20)
Then, by a contradiction argument, we deduce that the whole seqlienge},, converges

to u(¢r) weakly in W for everyt € [0, T]. O

We now prove an energy inequality Wi for the solutior:. Integrating (4.1.12) between
0 andr we obtain

t
|t (D)3 = |u0m|€ve*%’+/ K (i, (s))e e =9 ds, vt el0,T]. (4.1.21)
0

Sinceug,, — ug strongly inW, u,, Zuin L>®(R*; W), andK is weakly continuous on
W, we can pass to the limit in (4.1.21) using the Lebesgue-dominated convergence theorem
to find

t
im |u, ()2 = |u0|$ve—%“f+/ K (u(s)e" =9 ds, Vielo,T]. (4.1.22)
m— o0 0

From lemma 4.1.1 we have that

(@) < liminf fu,, (1)1, vt €[0, T].

Thus, we conclude that

lu(®)|3, < |Mo|%/e_2;’+/0’K(u(s))e_iw(’_“) ds, Vi el0,T]. (4.1.23)
By reversing the time in equation (4.1.1) we find the following problem:
%(v—aAu)+vAv— curl (v —aAv) xv=—f + Vg in Q,
divv=20 in Q, (4.1.24)
vlae =0,

v(x, 0) = vo(x), x € Q.
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We obtain in a similar way the finite time estimates Wnand W for v, as well as the
following energy inequality inW:

O3 < [vO)3 e’ — /OZK(v(s))ei"“” ds, vt € [0, T]. (4.1.25)
If v(0) = u(;) € W for somert; € [0, T] (we recall from (4.1.14) that(r) € W for
t € [0, T]), then by the uniqueness of the solutions we deduceuthat= u(t; —t) for ¢ €
[0, #1]. Thus, we obtain from (4.1.25) far= 1, that
(), < |u(ty))? ec — /Otl K (u(ty — s))e« =) ds, vt € [0, T], (4.1.26)
which gives

()13 < lu(r)[3e" — /O CKuenettds, v e[0.7]
or, equivalently,
()3 > u()3 e« + /Otl K (u(s))e « 1= ds, vr € [0, T]. (4.1.27)
From (4.1.23) and (4.1.27) we conclude the following.

Theorem 4.1.2.For ug € W and f € [H'(R)]? given, the solutiom of the problem (4.1.7)
satisfies the following energy equality:

t
)2, = luol3,e " +/ K(u(s))e « = ds, vt > 0. (4.1.28)
0

Moreover,
ue C@R, W). (4.1.29)

The second statement of theorem 2 is obvious. Indeed, from (4.1.28) we deduce that
lu(t)|lw — |u(to)|lw ast — to, which together withu € C,,(R*, W) implies (4.1.29).
Thanks to theorem 4.1.2 we can define the semigidip},>o in W by

S(Hug = u(t), Vi > 0. (4.1.30)

We now state further properties of the semigrdsir)},~o0. More precisely, we prove the
following.

Proposition 4.1.3. The operatorsS(¢) are continuous and weakly continuous Bhfor all
t > 0.

Proof. Let us consider a sequengg, € W such thatug, — ug weakly in W. We set

u,(t) = S()uon, u(t) = S(t)uo, vt > 0.
From thea priori estimates inV and W we find that
{1}, is bounded inL®(R™; W), {u}, is bounded inL*(R™"; V), (4.1.31)

and from theorem 4.1.2,

u,u, € C(J0, T, W), VT > 0. (4.1.32)
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From (4.1.31) and (4.1.32) and with a reasoning as in lemma 4.1.1, we can extract a
subsequencéu,} such that
Uy -~ i weakly star inL>®°R*; W),
’ _*\ ~, H o0 M+
u,, — u’ weakly star inL=(R™; V), (4.1.33)
uy — i strongly inL20, T; H>N'V), VT > 0,
uy (t) — u(t) weakly in W, vt € [0, T],

for someu € L¥(R*; W) N C, ([0, T], W), VT > 0, with &’ € L®°(R™*; V).

The convergences (4.1.33) allow us to pass to the limit in the equatiom,fa@o find
thatz is a solution of (4.1.7) withi(0) = ug. Then by the uniqueness of the solutions we
obtainz = u. Again, by a contradiction argument we deduce that the whole seqdence
converges ta: in the sense of (4.1.33). In particular, we have

S(H)ug, — St)ug weakly in W, vt > 0. (4.1.34)

Now we considet:g, — ug strongly inW. The energy equation (4.1.28) foy, reads
t

SO uonl? = |uonl3, e 5" +f K (S(s)uo,) € %= ds, vt > 0. (4.1.35)
0

The weak convergence (4.1.34), the boundedneds§ oh bounded subsets &F, and
the weak continuity oK on W allow us to pass to the limit in (4.1.35) to find that

t
lim [S(t)uonl?y = luoly e =" +f K(S(s)ug)e «ds Vi >0, (4.1.36)

n—oo 0
But from the energy equation far, the right-hand side term in (4.1.36)[iS(t)uol%,. Thus,
lim |S(t)uon% = 1S(H)uol3, (4.1.37)

which together with (4.1.34) yields

S(t)ug, — S(t)ug strongly inW asn — oo, vt > 0. (4.1.38)
O

Using the a priori estimates inV and W, we obtain the existence of bounded
absorbing sets iV and, respectivelyWw. Combining theorem 4.1.2 (energy equation),
proposition 4.1.3 (weak and strong continuity) and theorem 3.1, we deduce the existence of
the global attractor:

Theorem 4.1.4.LetQ C R? be a simply connected, bounded, open set with sm@5thand
connected boundary, and let> 0, « > 0, and f € [H(2)]? be given. Then the semigroup
{S()};>0 (which is actually a group) i associated to the problem (4.1.1)—(4.1.3) possesses
a global attractor inW.

Remark. A similar model called the Navier—Stokes—\oigt system has been considered by
Kalantarov [K], who proved the existence of the global attractor using a decomposition of
the semigroup solution. We notice that the Navier—Stokes—\oigt system features a milder
nonlinearity than that of the second-grade fluid model. As a consequence, the decomposition
used in [K] cannot be transported to the present example, and this is because for the second-
grade fluid model there is no regularization effect of the solution of the linear part of the
system with respect to the non-homogeneous term, in opposition to the case of the Navier—
Stokes—\Voigt model.
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4.2. Flows past an obstacle

In this section we study the long time behaviour of a uniform flow past an infinite long
cylindrical obstacle. We will assume that the flow is uniform in the direction of the axis of
the cylindrical obstacle and the flow approacligése, farther away from the obstacle. In
this respect we can consider a two-dimensional flow and assume the obstacle is a disk with
radiusr (more general obstacle can be treated in exactly the same way).

A further simplification is to observe that since the flow is uniform at infinity, we may
assume that the flow is in an infinitely long channel with widftY 2 > r) and the obstacle
is located at the centre, while the flow at the boundary of the channel is almost the uniform
flow at infinity.

More precisely we assume that the flow is governed by the following Navier—Stokes
equations inQ = R x (=L, L) \ B,(0)(L > r):

B] .
a—b:—vAu—l—(wV)u—i—Vp:f in Q, (4.2.18)
divu=0 in Q, (4.2.1)
U =ug atr =0, (4.2.1c)
u=20 atoaB,, u=q aty = +L, (4.2.1d)

with

div uo =0 in g, upe =0 atoqQ, uo — Usse, € LA(Q), (4.2.29)

¢ — Usey € H2R! x (=L} UR! x {L}), 02 =0, (4.2.7)

div f =0, fo=0 atoqQ, f e LA(Q). (4.2.x)

Remark 4.2.1. The simplest and physically interesting casefiss 0 andg = Uye,.

The first simplification is to introduce the new variables
U =u— Uye,, @ =@ — Ugey, o = ug — Usoly. (4.2.3)

Thenu satisfies the equations

.
8—’: — VAGL + (ii - V)i + Usodyii + Vp = f, (4.2.4)
divi =0, (4.2.%)
i =g atr =0, (4.2.4)
i = —Use, atdB,, i=¢ aty ==+L. (4.2.4])
We observe that
¢ € H2(R! x {£L}). (4.2.5)

Note thatii, iig andg decay nicely near infinity. However, the boundary condition is not
homogeneous and thus we apply a modified Hopf's technique (see [TW, T1]) to homogenize
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the boundary condition. More specifically we choose

pi € C*([0, 1]), suppp; C [0, 3], (4.2.69)
1
/ pi(s)ds =0, p1(0) =1, (4.2.6)
0
/ v , Vv
p2(0) =1, 02(0) =0, [sp2(s)| < 1001~ lspa(s)| < Wv (4.2.6)
and we define, for < 1,
L—y s
—¢ = L
Pa(x, L)/O pl(Le) ds, for 3 <y<L,
Ul(x,y) = Lty 427
x. ) ¢1(x, —L)/ 01 (Li) ds, for—L <y < -L ( )
0 &
0, otherwise.

/2 12
—Usop2 (%ﬂ — 1) v, for r < /x24y2 < 2r,

W(x, y) = (4.2.8)
0, otherwise.
We then define
¢ (x,y) = curl W' = 3,¥', -3, ¥'). (4.2.9)
Observe that® matchesp at y = +L and$? matches—Uy.e, atdB,. If we set
H={vel?Q)), dvv=0, v- 7 =0 atdQ}, (4.2.10)
V ={veH}R), divv=0, v=0atiQ}, (4.2.11)
V' = the dual ofV, (4.2.12)
where 7 denotes the unit outward normal @&, we have that
v=1i — ¢t — ¢? (4.2.13)
satisfies the equation
aa—l; —VAV+ (V- V)V + (V- V)P + (V- V)% + (91 - VIV + (% - V)V + Usdyv + Vp
= [+ VAPt + VAP — (@ +¢7) - V)@ +67) = Ui (¢” + ¢7)
=F(e,v,Ux, 1, L), (4.2.1%)
veV fort > O, v = v atr =0, (4.2.1%)
where
Vo = g — Usoey — ¢ — p% € H. (4.2.1%)

It is easy to check that for fixed, v, Uy, r, and L, the right-hand side of (4.2.14a),
namely F, belongs tdl.?(2) thanks to our construction @f' and ¢2.
We say that is a weak solution of (4.2.14) if

ve L®0,T; HYNL*0,T; V), (4.2.1%)
%(v, w) + v(Vv, Vw) + b(v, v, w) + b(v, p* + ¢2, w) + b(Pp* + ¢2, v, w)
+b(Usey, v, w) = (F, w), Yw eV, (4.2.1%)
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in the distributional sense, and
v(0) = vo, (4.2.1%)

where the trilinear termd : H} x H} x H — R is defined by

2 .
b(u, v, w) = Z / ui%wj dx. (4.2.19)
Q i

i,j=1
The well posedness of (4.2.15) can be derived using a standard Faedo—Galerkin approach
(see for instance [T2,ch 3]) and we may view it as a dynamical system of the form

d

d—’t’ + VAV + B(v, v) + B(v, ¢* + ¢?) + B¢ + ¢2, v)
+B(Uxey,v) = PF in V', fort >0, (4.2.16)
v(0) = vo, (4.2.1%)

whereA : V — V’ is the Stokes operator defined by

(Av, w) = (Vv, Vw), Yo,weV, (4.2.1&)
and B(u, v) is a bilinear operatoH} x H — V' defined by

(B(u, v), w) = b(u, v, w), Yu,v e Hy, Vw € V, (4.2.16))

and P is the Leray—Hopf projection fror.?(2) onto H.

Our goal in this section is to show that (4.2.16) possesses a global attra¢iousmg
theorem 3.1. Although dimension estimates can be obtained in the usual fashion using the
global Lyapunov exponent technique (see for instance [T1]), we will refrain ourself from
this topic as it is not our main concern here. In the special cagé o0& 0, ¢ = 0, such a
problem was studied by Abergel [A] and Babin [Ba] for the case where the body force lies
in some weighted Sobolev space, and by Rosa [R] for more general forces and domains.

Denoting the solution semigroup &%r), it is easily verified tha{S(),r > 0} is a
strongly continuous semigroup di, andS(¢) is a continuous operator frol into H for
eachr > 0. Moreover, forvg € H andT > 0, there exists a constant> 0, such that for
v(t) = S(t)vg we have

[lvllz=©,1;0) < K, lvll2,7:v) < K, V']l r200,7,v7) < K, ve CR"; H),
(4.2.17)

wherex =k (v, T, &, [vol, | f1, @l z3@ixzry, 7> L Uso)-
This immediately implies that we have the following energy equation:

}E|v|2—l—v|Vv|2+/(v~V)(¢l+¢2)-v = (F,v). (4.2.18)
2dr Q

A closer investigation into the well-posedness proof reveals that the solution set is
compact in the sense that {i,,n > 1} is a family of solutions on [0T] satisfying
estimates (4.2.17) for & independent of:, then there exists a subsequerjog, n’ > 1}
andvgs € H, Voo = S(f)voso, Such that
Uy — Vs Weakly star inL*°(0, T'; H) and weakly inL?(0, T; V), (4.2.1%)

v, — vl weakly in L%(0, T; V). (4.2.1D)

n

For a proof the reader is referred to [T2, ch 3,remark 3.2] or to [R] for more details. This
actually implies the weak continuity ¢f(z), v > 0. Indeed, lety, be a weakly convergent



1386 | Moise et al

subsequence i/, thenv, (t) = S(t)vg, satisfies (4.2.17) with a constantindependent of

n. Let vg be the weak limit ofvg,. Then each subsequence {of,, » > 1} contains a

sub-subsequence which converges to sogen the sense of (4.2.19). It is easy to check

that v, (0) = vge. Since this is true for each subsequence, we conclude that the whole

sequence converges tQ,(t) = S(t) Voo, i-€. S(t)vg, = v, (1) = Voo (t) = S(f)vos, Weakly

in V" and then inH by density and (4.2.17). This completes the weak continuity proof.
Before we apply theorem 3.1, we need to verify the existence of a bounded absorbing

set in H. This can be done via an appropriate choice @i (4.2.7) and using (4.2.18).
Observe that

/(v~V)¢2~v = f(v~V)v-¢2
Q Q
v x2 4+ y2
<rl7mmm—— |VU|’<7—1 ¢°
VXS Y =T 2y L*(By\pr)

< 4r|Vol? - Usol (Isp2(8)| e + 4ls05(s)] L)
(thanks to Hardy’s inequality and (4.2.6)—(4.2.9))

< £|W|2 (thanks to (4.2.6) (4.2.2()

U(v-vwl-v =‘/(U-V)v-¢l
Q Q
v

< ‘ V|
L—y L2(—1<) <—1+e)

X((L = 0 rvae<i<t) + (L + Y o123 < 14e) (4.2.2@)
. 1 _ Y B y
(smce the support ap™ is in {1 £ < 3 <1}U{ 1< T < l+£})

(4.2.20)

v

+ ’
L2(1—e<7<1) L+ y

< kIV2((Le)2 @1l o mixizry) + Lelgr — UsolmomixizLy)
(by (4.2.7) and (4.2.9)

< 2|W|2 (4.2.2G1)
provided we choose small enough:
. 1
¢ < min Y = e . (4.2.21)
8kLlpr — Usolr~®ix(zLy L /8kl@rcliomixiiry
Combining (4.2.20) and (4.2.18) we deduce that

1d v
Sq P SIVelP < (R, (4.2.22)

which leads to the existence of a bounded absorbing ball in the usual way.
Now we rewrite (4.2.18) as

d AV AV
3!5Owol + %lS(I)Uolz + 20| V(S()vo) % — %IS(I)Uolz

+2b(S(1)vo, ¢* + ¢, S(t)vo) = 2(F, S(t)vo) (4.2.23)
wherel is the first eigenvalue of the Stokes operato€nnin the notation used in section 3,
we identify the separable reflexive Banach spaceith H, {S(7)};>0 as above,
)\.l‘)

d(v) = [, J(v) =0, y="5" (4.2.24)
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L(v) = 20|V — %”MZ + 2b(v, ¢ + @2, v), K (v) = 2(F, v). (4.2.25)

Thus, all assumptions of theorem 3.1 are satisfied except we need to verify the
asymptotic weak lower semicontinuity df. For this purpose we first notice that is
a quadratic form inV and thatV containsU,.oS(¢) H. Then, thanks to (4.2.20),

A1V
2

t 1/2
(f e 7L ds>
0

is a norm inL2(0,t; V) equivalent to the usual one, so that its square is weakly lower
semicontinuous inL?(0, ¢; V), which together with the weak continuity ¢f(r) gives in
particular the desired asymptotic weak lower semicontinuity. of the sense of (3.6).

Hence, the existence of the global attractor follows from theorem 3.1 and we have the
following result.

L(v) > v|Vv]? = = |v® > g|w|2 (by Poincaé inequality. (4.2.25)

Thus

Theorem 4.2.1. Under the assumptions above, in particular (4.2.2) and (4.2.21), the
semigroup{S(¢)},;>0 associated to (4.2.16) possesses a connected global attractr in

4.3. Weakly damped, forced Korteweg—de Vries equation
We consider the KdV equation with weak damping and an external time independent force:
Ur + ulty + ey + yu = f, (4.3.1)

whereu = u(x,t),y > 0 and f = f(x). This equation was proposed by Ott and Sudan
[OS] as a model for the propagation of ion-sound waves damped by ion-neutral collisions.
We take E = H?(R) to be the phase space of this equation and supplement it with the
initial condition

u(x, 0) = uo(x), (4.3.2)

for up € H>(R). We assume thaf is in H3(R).

Equation (4.3.1) with space periodicify and a time-independent forgé e szer(O, L)
generates a group ierzer(O, L) for which the existence of the global attractor has
been proved by Ghidaglia [G1,G2]. The same holdsH(L (0, L),m > 3, provided
f € Hie(0, L),k > m, in which case the global attractor is compact/#f(0, L), as
proved by Moise and Rosa [MR]. The whole space case has been treated by, ba{irgnc
who also used the energy equation approach but with the drawback of using a splitting of the
group and weighted spaces in a complicated intermediate step. We avoid this intermediate
step by using a second energy equation, namely th@f({iR) besides the one i ?(R),
which makes the proof much simpler. TEE (R)-case can also be treated by this approach
and will be presented in a forthcoming paper.

For the well posedness, we have the following result.

Theorem 4.3.1. Lety € R and f € H?(R) be given. Then, for eveny, € H2(R) there
exists a unique solutiom = u(r) of (4.3.1), (4.3.2) satisfying

u € C([0, T], H*(R)), VT > 0. (4.3.3)
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Moreover, the following energy equations hold in the distribution sens@,01):

%Im w@®) + 2y 1L, (u@t)) = K,,(u(2)), m=20,1,2, (4.3.4)
where
Io(u) = /uzdx, Ko(u) =/2fudx, (4.3.5)
Ii(n) = / I:uf - %u3:| dx, Ki(u) = / [%u3+ 2fu, — fuz] dx, (4.3.6)

5 5
L) = / |:qu - :—%u)zc + 3—6u4:| dx,
5 5 5 10 5
Ko(u) = / [%uui - 1—2144 + 2 fruix + :—Suff + Euumf + §u3fi| dx,

with all the integrals oveR. Finally for everyR, T > QOthere exists a constait = C(R, T)
such that

(4.3.7)

supllu®|lgew), 0 <t < T, |uoll ey < R} < C(R, T). (4.3.8)

The proof of theorem 4.3.1 follows as in the caseyot 0 and f = 0. The existence
of solutions iINL>®((0, T); H2(R)) N C([0, T], L3(R)) and an inequality<) in (4.3.4) can
be obtained by parabolic regularization [T3, BS, MR]. The uniqueness is straightforward.
The equality in (4.3.4) and, as a consequence, the regulaityC ([0, 7], H3(R)) can be
obtained by using the time reversibility of the solutions as done in section 4.3.1 for the
second-grade fluids.

Thanks to theorem 4.3.1, one can define foe 0, which is the case of interest for
us, the semigroupS(t)},>o0 in H?(R) by S(*)ug = u(t), whereu = u(t) is the solution of
(4.3.1), (4.3.2). The continuity of the trajectories> S(#)uo follows from (4.3.3). Thus,
most of the conditions of theorem 3.1 hold, and we need to verify the remaining conditions.
We have the following.

Lemma 4.3.2. The semigrougS(¢)};o possesses a bounded absorbing self#{R).

Proof. The existence of a bounded absorbing set can be obtained just like in the autonomous
space periodic case treated by Ghidaglia [G1], the differences being that the Agmon
inequality has a different constant. We do not develop any details here. O

Lemma 4.3.3. {S(¢)};>0 iS @ semigroup of continuous and weakly continuous operators in
H2(R).

Proof. For the weak continuity, leg; — uo weakly in H2R). We fix T and and we
setu;(t) = S(t)ug; for 0 < ¢ < T. Note that{ug;}; is bounded iNH2(R) since it has a
weak limit in that space. Then, thanks to the long time estimates given by the existence of
a uniformly absorbing set (lemma 4.3.2) and thanks to the local in time estimates given by
(4.3.8), it follows that

{u;}; is bounded inL>(0, T; H%(R)). (4.3.9)
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Then, from equation (4.3.1) itself, we deduce that
{u}}; is bounded inL>(0, T; H *(R)), (4.3.10)

where H~1(R) is the dual ofH1(R) when we identifyL?(R) with its dual. From (4.3.10)
it follows that for 0< a < T andv € HX(R), the following estimate holds:

t+a
Wit +a)—ujt),vV)egr = / (; (), V) 1wy, 11 (R) O
t
< allufllz=©.7:m2@y V]| H2w)» VO<t<T —a,

where (-, -) 1w, m1ry denotes the duality product between the two spaes(R) and
H'(R). By takingv = u;(t +a) —u;(t) for eachr € [0, T — a], which is possible since
u; € C([0, T], H?(R)), we find that

[lu;j(t +a) — Mj(l)”Ez(R) < ZaHMj/'HLOC(O,T;H*l(]R)) ]| Lo, 7; HL(R)) » vVt [0, T —a].
Taking (4.3.9) and (4.3.10) into account, we obtain
lluj(t + a) — uj ()| 2wy < cra®?, Vt € [0, T —a], Va € (0, T). (4.3.11)

Now, for eachr > 0, consider the sequende;,};, whereu;.(t) = p,u;(t), for

pr = pr(x) = p(x/r), with p € C*[R),p > 0,p(§) = 1 for [§] < 1, andp(§) =0

for || > 2. Thus, from (4.3.9) and (4.3.11), it follows that for each> O, the
sequencdu; . }; is equibounded and equicontinuousdrig[o, 77, L%(—2r, 2r)). Moreover,
from (4.3.9) and the fact that eaeh is continuous from [0T] to H2(R), it follows that

for eacht < [0, T], the set{u;,(#)}; is bounded inHOZ(—Zr, 2r), hence precompact in
L2(—2r, 2r). Therefore, we can apply the Arzela-Ascoli theorenitg, }; to deduce that
this sequence is precompactdn[0, T], L?(—2r, 2r)). It is then clear that for each, the
sequenceu;|—.~}; is precompact irC ([0, T1], L%(—r, 1)), whereu; | is the restriction

of u; in space to(—r,r). Then, by a diagonalization process, we can find a subsequence
{uj}; and an elemeni e C([0, T1, L%C(R)) such that{u; |, }; converges tai|

in C([0, T], L?(—r, r)), which is to say tha{u;};, converges tai in the topology of the
Frechet space ([0, T1], Lﬁ)C(R)). On the other hand, from (4.3.9) one can also assume
that (passing to a further subsequence if necesdary)): converges ta: weakly star in

L>(0, T; H%(R)), which gives in particular thai € L>(0, T; H?(R)). Thus we have that
up — ii weakly star inL>(0, T; H3(R))
and strongly inC([0, T], L2 _(R)).

loc

(4.3.12)

The convergence (4.3.12) allows us to pass to the limit in the weak form of the equation
for u; (the weak form of (4.3.1), (4.3.2) withg = ug;) to find thati solves (the weak and

the strong form of) the equations (4.3.1), (4.3.2). By the uniqueness of the solutions, we
must havei(r) = S(¢#)ug. Then, by a contradiction argument, one can deduce that in fact
the whole sequencg;} converges ta: in the sense of (4.3.12), and hence that

S(Huo; — S(r)ug weakly star inL>®(0, T; H*(R
(B)ug; — S(H)uo y | ( 2( ) (4.3.13)
and strongly inC ([0, T1, Li,.(R)).

Now, from the strong convergence in (4.3.13), we find that for evesych that 0< ¢t < T
and for everyv € C>°(R), the space o> functions with compact support,

(S@uoj, VImzwy = (SOuoj, Lv) 2wy = (S(O)uo, Lv) 2wy = (S()uo, v) p2w),
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whereLv = v — vy + Vypr € CE(R). Then from (4.3.9) and the density 6E°(R) in
H?(R), it follows that for everyr, 0 < r < T and hence for every > 0 since7T was
arbitrary,

(S(tuoj, V) gewy — (S(Duo, V) p2w), Vv e H3(R),Vt >0, (4.3.14)

which proves the weak continuity &f(r) in H?(R).

For the strong continuity, assume thaj; — uo strongly in H(R). In particular
uo; — uo weakly in H?(R), so that the above convergences (4.3.13) and (4.3.14) hold.
From the energy equation (4.3.4) far= 0 it follows that

t

i ()72, = luoj|72z € 2" + 2/ e 2 (f,ui(s)) 2w ds, Vi >0, (4.3.15)

0

whereu;(t) = S(t)ug; and u(t) = S(t)ug. From the weak continuity (4.3.14), and the
uniform boundedness (4.3.9), together with the strong convergepnce ug in H2(R), we
can pass to the limit in (4.3.15) to find that for any 0

t

jlin;o ()13 2y = |0l 72,6 +2/ e 2 (f, u(s)) o) ds = [u(®)|?,. (4.3.16)
- 0

From the weak continuity (4.3.14) and tfié-norm convergence (4.3.16) it follows, since
L?(R) is a Hilbert space, that

uj(t) — u(z) strongly in L%(R), Vi > 0. (4.3.17)
Using interpolation, it follows from (4.3.17) and (4.3.14) that
uj(t) — u(z) strongly in H*(R), Vi > 0. (4.3.18)

Now, from the energy equation (4.3.4) far= 2, we have

t
L(u; (1) = Ip(ug))e 2" + / e 2Ky (u;(s)) ds, vt > 0. (4.3.19)
0

As above, using also (4.3.18), we can pass to the limit in (4.3.19) to find that
Iim Lu;(t)) = Lu(@)), vt > 0. (4.3.20)
] o0

Using (4.3.18) again, it follows from (4.3.20) and the definition/pfyiven by (4.3.7) that
luj (O 2wy = O 2wy Vi 2 0. (4.3.21)
Then, (4.3.21) together with the weak continuity (4.3.14) implies finally that
S(t)uo; — S(t)ug strongly in H3(R), vVt >0 (4.3.22)
which proves the strong continuity ¢f() in H?(R). O
In order to apply theorem 3.1, it remains to verify the corresponding conditions (3.3),

(3.4) and (3.5) for the energy equation with= 2. In order to do that, we first need the
following result.

Lemma 4.3.4. Let {u;}; be bounded irH?(R) and {#;}; C R* witht; — co. Then there
existw € H(R) and a subsequendg’} such thatS(t; )u; — w strongly in HX(R).
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Proof. We apply lemma 3.2 with the energy equation (4.3.4)#0& 0. In the notations
of lemma 3.2, the terms of this energy equation are

®(u) = Io(u) = |ul2, J(u) =0, K(u) = Ko(u) = 2/ Judx L(u) =0,

and obviouslyF = L?(R). The hypothesis (3.14) is trivially satisfied. In order to verify
(3.5), let{u;}; be bounded irF/%(R), {t;}; C R*, #; — oo such thatS(#;)u; — w weakly

in H2(R). Since the operatorS(s) are weakly continuous (from lemma 4.3.3), we deduce
that

S(s)S(tj)u; — S(s)w weakly in H3(R), Vs > 0. (4.3.23)

The maps — Ko(S(s)u) belongs toL1(0,r), Vr > 0, Yu € H?(R). Taking into account
(4.3.23) and the definition ako, we have thaiKo(S(s)S(#j)u;) — Ko(S(s)w) asj — oo,
for s € (0,1). Moreover,s — Ko(S(s)S(tj)u;) is uniformly bounded orR* thanks to
the existence of a bounded absorbing set{fi)},~o. Then, by the Lebesgue dominated
convergence theorem,
t t

lim / eI Ko(S(s) S(t))u;) ds = / e 1= Ko(S(s)w) ds, Vi > 0,
J= Jo 0
so that (3.5) holds true.

Consider now{u;}; bounded inH?(R), and {t;}; C R* with ; — oo. Since the
semigroup{S(t)};>o has a bounded absorbing set##f(R), we deduce that there exists a
subsequencgj’} such that

S(tj)u; — w weakly in H2(R), (4.3.24)

for somew € H?(R). Now, we apply lemma 3.2 to deduce (passing to a further subsequence
and then using a contradiction argument) that

S(tj)u; — w strongly in L?(R). (4.3.25)
By interpolation, we finally deduce from (4.3.24) and (4.3.25) that

S(tj)u; — w strongly in H*(R), (4.3.26)
which completes the proof of the lemma. O

We now apply theorem 3.1 with the energy equation (4.3.4) witk 2. In the notation
of theorem 3.1, the terms of the energy equation are

O (u) = /u)zcx dx, J(u) = f[—%uf + 3—56144] dx, K@) = Ky(u), L(u) =0.

Consider agair{u;}; bounded inH2(R) and{#;}; C R*, #; — oo such thatS(;)u; — w

weakly in H?(R). Then using lemma 4.3.4 there exists a subsequéiigsuch that
S(tj)u; — w strongly in HX(R),

and, by a contradiction argument, the whole sequence convergeneestrangly in H1(R).

Then, (3.3) and (3.4) are trivially satisfied, and for (3.5) we use the same arguments as in
lemma 4.3.4. Thus, we can apply theorem 3.1 to conclude{#{a}},~o0 possesses a global
attractor inH2(R).

Theorem 4.3.5. Lety > O and f in H?(R). Then the semigroufpS(s)},~o possesses a
global attractor.A in H?(R).
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