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Abstract. The energy-equation approach used to prove the existence of the global attractor by
establishing the so-called asymptotic compactness property of the semigroup is considered, and
a general formulation that can handle a number of weakly damped hyperbolic equations and
parabolic equations on either bounded or unbounded spatial domains is presented. As examples,
three specific and physically relevant problems are considered, namely the flows of a second-
grade fluid, the flows of a Newtonian fluid in an infinite channel past an obstacle, and a weakly
damped, forced Korteweg–de Vries equation on the whole line.

AMS classification scheme numbers: 35B40, 35Q30, 35Q53, 76A05, 76D05

1. Introduction

Various physical phenomena, ranging from celestial mechanics to quantum mechanics, can
be modelled by nonlinear evolutionary differential equations. Most of those equations are
well posed and thus may be considered as dynamical systems on some appropriate phase
space. If the ‘permanent regime’ is of interest, it is customary (and necessary) to take into
account various kinds of dissipation mechanisms (such as friction, thermal diffusion, etc),
which usually leads, if the system is autonomous, to the existence of an absorbing ball in
the phase space and further leads to the existence of theglobal attractor (see section 2 for
the definitions), which attracts all the orbits of the dynamical system. Then, the long time
behaviour of the system is characterized by its behaviour on the global attractor, if it exists,
so that from the point of view of either an analytical or numerical study and even for a
possible control of the system, it is of great interest to study the existence and the properties
of this global attractor for various kinds of equations arising in physical and mechanical
applications.

There are many references on this topic; let us only mention the books
[BV, Ha, He, Hr, La2, SY, T1].

There are essentially three apparently distinct properties that a semigroup may possess
and such that each of them together with the existence of a bounded absorbing set leads to the
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existence of the global attractor. They are thecompactness[BV, Ha, Hr, La2, SY, T1], the
asymptotic smoothness[Ha, Hr], and theasymptotic compactness[La2, SY, T1] properties.
The first condition is that a semigroup{S(t)}t>0 is such thatS(t0) is a compact operator for
somet0 > 0; the second one is that for any closed, bounded, positively invariant setB there
exists a compact setK = K(B) which attractsB; and the third one is the precompactness
of the sequence{S(tj )uj }j∈N for every bounded sequence{uj }j∈N in the phase space and
every sequence{tj }j∈N of positive numbers withtj → ∞. The first condition is stronger
than the other two, but the last two are, in fact, quite related (see section 2 for more details).
The major difference lies in the methods used in the applications in order to establish any
one of those conditions. The choice of the proper method depends on the nature of each
problem.

The compactness condition was the first one to be used. If the dynamical system is
finite dimensional (corresponding to ordinary differential equations), this condition is a
trivial consequence of the existence of an absorbing ball in the phase space, while for
parabolic equations on bounded spatial domains this compactness property follows from a
regularization of the solutions and some compact Sobolev embedding (i.e. one can obtain
the existence of acompact absorbing set). However, the solution semigroup fails to be
compact for most of the infinite-dimensional dynamical systems arising from weakly damped
hyperbolic equations or parabolic equations on unbounded domains, even if there is an
absorbing ball in the phase space. Thus, this method breaks down here.

The asymptotic smoothness and the asymptotic compactness properties are needed to
handle those non-compact cases. One approach is to prove the so-calledβ-contraction
property of the semigroup, which implies the asymptotic smoothness. This condition has
been successfully exploited by Hale [Ha] and many other authors. Another approach is to
decompose the solution semigroup into two parts: a (uniformly) compact part and a part
which decays (uniformly) to zero as time goes to infinite (see, for instance, [Ha, Hr, T1],
among many other references). Then, the proof of the existence of the global attractor
using this splitting amounts to (either essentially or explicitly) proving either the asymptotic
smoothness or the asymptotic compactness of the semigroup.

A more recent approach, which is the one we want to address here, is the use of energy
equations to prove the asymptotic compactness property. For many physical systems there
are energy equations (or their analogues) in the sense that the changing rate of energy
equals the rate that energy is pumped into the system minus the energy dissipation rate due
to various dissipation mechanisms. To our knowledge, it was first observed by Ball [B]
(for weakly damped, driven semilinear wave equations) that such energy equations may be
used to derive the asymptotic compactness of the solution semigroup. This technique was
then applied to a weakly damped, driven Korteweg–de Vries (KdV) equation by Ghidaglia
[G2]. Later, such technique was put into a systematic formulation suitable for applications
to many weakly damped, driven hyperbolic-type equations by one of the authors [W] with
a specific application to a weakly damped, driven nonlinear Schrödinger equation. Then,
it was observed by another of the authors [R] that the same technique could be applied
to parabolic-type problems, as well, with particular interest in equations on unbounded
domains.

It has recently been observed (see [T1, 2nd edn]) that the splitting of the semigroup
into a (uniformly) compact part and a (uniformly) decaying part mentioned previously is
actuallynecessary and sufficientfor the existence of the global attractor in the case where
the phase space is a Hilbert space, and we note that the same equivalence holds if the phase
space is a uniformly convex Banach space. This means that a decomposition of the solution
semigroup must exist if the global attractor exists. However, it may be difficult to find such
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a decomposition in applications. In fact, no suitable decomposition has yet been found for
the KdV equation or for the two-dimensional (2D) Navier–Stokes equations on unbounded
domains when the forcing term does not belong to some weighted Sobolev spaces. The
use of the energy-equation approach is relatively easy if it is not the only solution for those
cases.

The purpose of this paper is to formulate in a systematic way the technique of applying
the energy equation method in deriving the existence of the global attractor and to apply
this formulation to three significant and essentially distinct problems which seem hard to
be handled using other approaches.

The approach is relatively simple in that the assumptions are straightforward and may be
verified directly from the equations. In most applications, the central part lies in establishing
the energy-type equation (this may not be trivial, though, and is open for the Navier–Stokes
equations in space dimension 3). For parabolic-type problems, the typical way is to establish
enough regularity for the solutions, which then imply the energy equation. For hyperbolic-
type problems, the typical way is to use the time reversibility to establish the energy equation.
These techniques will be illustrated in section 4 via several examples.

This paper is organized as follows. In section 2 we give a brief review of some basic
concepts on the dynamical system approach to evolution equations and study the interplay
between those concepts. We recall, in particular, the properties leading to the existence
of the global attractor. In section 3 we state our main theorem on the existence of the
global attractor via energy equations. Finally, in section 4 we present several applications
of our results to a number of physically relevant problems: (1) an equation for fluids of
second grade (one of the simplest models for non-Newtonian fluids); (2) a simplified case of
uniform flows past an obstacle in the plane; and (3) a weakly damped, driven KdV equation
on the whole real line. The first example is hyperbolic, the second is parabolic and the third
is dispersive.

2. Asymptotic compactness

Let E be a complete metric space (called the phase space) and let{S(t)}t>0 be a semigroup
of continuous (nonlinear) operators inE, i.e. {S(t)}t>0 satisfies{

S(t + s) = S(t) ◦ S(s), ∀t, s > 0,

S(0) = I = Identity in E,
(2.1)

and

S(t) is a continuous (nonlinear) operator fromE into itself for anyt > 0. (2.2)

In what follows, a semigroup for us will always mean a semigroup of continuous
operators as defined by (2.1) and (2.2). For a setB ⊂ E, we define itsω-limit set by
ω(B) = ∩s>0∪t>sS(t)B. It is easy to prove the following well known characterization of
anω-limit set:

w ∈ ω(B)⇐⇒∃{wj }j∈N ⊂ B, ∃{tj }j∈N ⊂ R+ such that

tj →+∞ andS(tj )wj → w in E.
(2.3)

A setB ⊂ E is called anabsorbing set for the semigroup{S(t)}t>0 if B ‘absorbs’ all
the bounded sets ofE, i.e. for everyB ⊂ E bounded, there exists a timeT = T (B) > 0
such thatS(t)B ⊂ B, for all t > T (B). The global (or universal) attractorof a semigroup
{S(t)}t>0 is defined as the setA ⊂ E which is compact inE, invariant for {S(t)}t>0, i.e.
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S(t)A = A, ∀t > 0, and which attracts all the bounded sets ofE, i.e. for any bounded
setB ⊂ E, distE(S(t)B,A)→ 0 ast → +∞. Here distE is the usual semidistance inE
between two sets. One can show that if the global attractor exists, it is unique. Moreover,
the global attractor is minimal (with respect to the inclusion relation inE) among the closed
sets that attract all the bounded sets and is maximal (idem) among the bounded, invariant
sets.

For the concepts described above, as well as for the results stated below, we refer the
reader to the works of [BV, Ha, Hr, La2, Sell, SY, T1].

In order to prove the existence of the global attractor one needs some kind of
compactness of the semigroup together with the existence of a bounded absorbing set. For
instance, if there exists a bounded absorbing setB andS(t0) is compact for somet0 > 0,
thenA = ω(B) is the global attractor. This condition is typical for parabolic equations
on bounded spatial domains where the compactness follows from a regularization of the
solutions and some compact Sobolev embedding. In those cases, one actually obtains the
existence of a compact absorbing set.

However, many equations do not generate a compact semigroup in the above sense,
so the compactness needed must be achieved in a different, weaker sense. We say that
a semigroup{S(t)}t>0 is asymptotically smooth, or possesses theasymptotic smoothness
property, if for any non-empty, closed, bounded subsetB ⊂ E for which S(t)B ⊂ B, ∀t >
0, there exists a compact setK = K(B) ⊂ B which attractsB (see, e.g. Hale [Ha], and see
also Babin and Vishik [BV] for a similar definition). If{S(t)}t>0 is asymptotically smooth
and possesses a bounded absorbing setB, thenA = ω(B̃) can be shown to be the global
attractor, whereB̃ = ∪t>t0S(t)B for t0 such thatS(t)B ⊂ B for any t > t0.

A related concept is that of asymptotic compactness [La2, T1, SY]. One says that
{S(t)}t>0 is asymptotically compactin E if the following condition holds:{

If {uj }j∈N ⊂ E is bounded and{tj }j∈N ⊂ R+, tj →∞
then{S(tj )uj }j∈N is precompact inE.

(2.4)

This condition, together with the existence of a bounded absorbing set, implies the existence
of the global attractor. Since this is the result we will be using in the rest of this work, we
state it below in the form of a theorem.

Theorem 2.1.Let E be a complete metric space and let{S(t)}t>0 be a semigroup of
continuous (nonlinear) operators inE. If {S(t)}t>0 possesses a bounded absorbing set
B in E and is asymptotically compact inE, then {S(t)}t>0 possesses the global attractor
A = ω(B). Moreover, ift 7→ S(t)u0 is continuous fromR+ into E, for anyu0 ∈ E, andB
is connected inE, thenA is also connected inE.

The proof of theorem 2.1 can be essentially found in [La2, theorem 3.4].
One can see from the characterization (2.3) that condition (2.4) of asymptotic

compactness is a natural assumption associated to theω-limit sets. In fact,the asymptotic
compactness property alone implies that theω-limit set of any non-empty, bounded set is
non-empty, compact, invariant, and attracts the corresponding bounded set. This is a very
important point which we want to stress and that shows the significance of this condition.
The further existence of a bounded absorbing set implies then that theω-limit set of this
absorbing set attractsany bounded set.

Showing that a semigroup defined by an evolutionary equation is asymptotically smooth
or asymptotically compact depends on the general properties of the equation. One way is
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to show in the caseE is a Banach space that one has a splittingS(t) = S1(t)+S2(t), where
S1(t) is uniformly compact, i.e.

∀B ⊂ E bounded ∃ t0(B) > 0 such that
⋃
t>t0

S1(t)B is compact inE, (2.5)

while S2(t) : E→ E is continuous for eacht > 0 and satisfies:

lim
t→∞ sup

u∈B
||S2(t)u||E = 0, ∀B ⊂ E bounded. (2.6)

This splitting together with the existence of a bounded absorbing set leads directly to the
existence of the global attractor, but the proof, actually, amounts essentially to showing
either the asymptotic smoothness or the asymptotic compactness properties. This approach is
typical for hyperbolic equations of second order in time on bounded spatial domains, where
there is usually a regularization effect of the solution of the linear part of the equation with
respect to the non-homogeneous term. It has also been used for some parabolic equations on
unbounded domains by means of weighted functional spaces to recover some appropriate
compact embeddings (see, e.g. [FLST]). We should also mention that a splitting of the
semigroup involving the low- and high-frequency components of the solution has been used
in order to prove a regularity result for the global attractor in the case of a weakly damped
Schr̈odinger equation [Go] and a weakly damped KdV equation [MR].

There is also the notion of aβ-contraction semigroup, given in [Ha]: we say that
{S(t)}t>0 is a β-contraction with respect to a measure of non-compactnessβ on the
metric spaceE, which is assumed to be complete, if there exists a continuous function
k : R+ → R+ with k(t) → 0 as t → +∞ and such that for everyt > 0 and every
bounded subsetB ⊂ E the set∪06s6t S(s)B is bounded inE andβ(S(t)B) 6 k(t)β(B) as
t →+∞. If {S(t)}t>0 is aβ-contraction and there exists a bounded absorbing set, then the
global attractor exists. We recall here that a measure of non-compactnessβ on a complete
metric spaceE is a functionβ from the bounded sets ofE into R+ such that:

(i) β(A) = 0 if and only if A is precompact;
(ii) β(A ∪ B) = max{β(A), β(B)}; and
(iii) β(A+ B) 6 β(A)+ β(B).
For example, the Kuratowski measure of non-compactness,α, is given byα(B) =

inf{d > 0;B has a finite cover by sets of diameter less thand}. For this measure, if
S(t) = T (t) + L(t) with T (t) compact fort > 0, but not necessarily uniformly compact,
andL(t) linear with norm||L(t)|| continuous int and vanishing fort →+∞, then{S(t)}t>0

is an α-contraction withk(t) = ||L(t)||. Many wave equations can also be put into this
form (see e.g. [Ha]; see also [EK] for a recent survey article on the existence of the global
attractor for a class of nonlinear wave equations). One can also exploit the existence of
an absorbing set and obtain theα-contraction property withk = kB(t) depending on the
bounded setB, or else only for subsets of the absorbing set; either one is enough for the
existence of the global attractor even ift 7−→ k(t) is not continuous.

Another way which has recently been exploited is the energy equation approach [B, G2]
described in more details (and extended to other cases) in section 3. It leads easily to the
asymptotic compactness property. It essentially amounts to using the existence of a bounded
absorbing set for extracting a weakly convergent sequence{S(tj ′)u)}j ′ and then deducing
from the energy equation that this weakly convergent sequence is also norm-convergent.
The strong convergence and, hence, the precompactness of{S(tj )uj }j follow then from these
two convergences provided the space is a uniformly convex Banach space.

Returning to the two concepts of asymptotic smoothness and asymptotic compactness,
we remark that these two properties are actually quite related. It is not difficult to see
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that if {S(t)}t>0 is asymptotically compact, then it is also asymptotically smooth with
K(B) = ω(B). But the converse is not true. In particular, if the semigroup is asymptotically
smooth, then in general only a non-empty, bounded setB which is further closed and
positively invariant is such that itsω-limit set is non-empty, compact, invariant, and attracts
B. However, the two concepts do bear a close relationship. Indeed, one can show that the
asymptotic compactness property is equivalent to the property that for every non-empty,
bounded setB (not necessarily closed or positively invariant) there exists a compact set
K = K(B) which attractsB.

Now, if one assumes the existence a of bounded absorbing set, then many of the concepts
above turn out to be equivalent. For instance, both properties of asymptotic compactness
and asymptotic smoothness become equivalent. They also turn out to be equivalent to
the existence of the global attractor itself, as it can be easily checked. In fact, in the
caseE is a Hilbert space, Goubet and Moise (see remark I.1.5 of the second edition of
[T1] remarked that even the splitting (2.5), (2.6) is equivalent to the existence of the global
attractor (again, assuming the existence of a bounded absorbing set). This can be attained by
writing S1(t) = PS(t) andS2(t) = S(t)−PS(t), whereP is the projection onto the closed
convex hull of the global attractor. Of course, this can also be achieved ifE is a uniformly
convex Banach space. Moreover, if one relaxes the continuity condition (which is actually
not necessary in the proof) onS2(t) (but not onS(t) itself), then a similar splitting can be
obtained on an arbitrary Banach spaceE with P being one of the possibly many projections
onto the global attractorA itself (Pu is such thatd(u, Pu) = distE(u,A), ∀u ∈ E, which
exists by the compactness ofA 6= ∅ and the Zorn lemma). This same decomposition shows
that {S(t)}t>0 is anα-contraction withk depending on the bounded set and not necessarily
continuous.

The major difference then turns out to be in the applications. Whether we use the
splitting of the semigroup, theβ-contraction property, the energy-equation approach, or
some other method, the proper choice remains intimately related to the nature of each
problem. In section 4 we present three examples for which the energy equation method
discussed in section 3 is either the most suitable one or the only one available at the present
moment.

3. Abstract energy equations

In this section we consider semigroups possessing a bounded absorbing set and satisfying
some general abstract energy equation. We study under which conditions on the energy
equation we can obtain the asymptotic compactness needed for the existence of the global
attractor. The use of energy equations to prove the existence of the global attractor for
weakly dissipative semigroups was first explored in [B], then followed by a number of
other authors. The earliest works would first obtain the existence of a bounded ‘weak’
attractor (i.e. attracting the bounded sets in the weak topology) and then use the energy
equation to show the actual attraction in the strong topology and the compactness of the
attractor. Later [R], it was realized that the asymptotic compactness would follow directly
from the energy equation and the global attractor could be obtained without mention to the
weak attractor; this way would also avoid the assumption of the separability of the phase
space needed for the existence of the weak attractor.

We present below some slight generalizations of the previous results of
[B, G2, W, R, Go, MR, GM].

Let the phase spaceE be a reflexive Banach space, so that bounded sequences are
weakly precompact. Let also{S(t)}t>0 be a semigroup of continuous (nonlinear) operators
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in E. Assume thatS(t) is weakly continuous inE for eacht > 0, and that the trajectories
of {S(t)}t>0 are continuous inE, i.e.

t → S(t)u0 ∈ C(R+, E), ∀u0 ∈ E. (3.1)

The continuity condition (3.1) actually follows from the integral form of the energy equation,
which is the form used in the proof of the asymptotic compactness, but we might very well
assume, equivalently, (3.1) and the differential form of the energy equation. We also assume
the existence of a bounded absorbing setB in E. For the energy equation, we assume that

d

dt
(8(S(t)u0)+ J (S(t)u0))+ γ (8(S(t)u0)+ J (S(t)u0))+ L(S(t)u0)

= K(S(t)u0) ∀u0 ∈ E (3.2)

in the distribution sense inR+, whereγ is a positive constant and8, J,K, andL are
functionals satisfying the following hypotheses.
• 8 : E→ R+, 8 is continuous, is bounded on bounded subsets ofE and

if {uj }j is bounded inE, {tj } ⊂ R+, tj →∞, S(tj )uj ⇀ w weakly inE,

and lim sup
j→∞

8(S(tj )uj ) 6 8(w), thenS(tj )uj → w strongly inE. (3.3)

• J : E→ R is ‘asymptotically weakly continuous’ in the sense that

if {uj }j is bounded inE, {tj } ⊂ R+, tj →∞, andS(tj )uj ⇀ w weakly inE,

thenJ (S(tj )uj )→ J (w). (3.4)

• K : ∪t>0S(t)E→ R is ‘asymptotically weakly continuous’ in the sense that

if {uj }j is bounded inE, {tj } ⊂ R+, tj →∞, andS(tj )uj ⇀ w weakly inE,

then lim
j→∞

∫ t

0
e−γ (t−s)K(S(s + tj )uj ) ds =

∫ t

0
e−γ (t−s)K(S(s)w) ds, ∀t > 0,

where it is assumed thats 7−→ K(S(s)u) belongs toL1(0, t),∀t > 0, ∀u ∈ E. (3.5)

• L : ∪t>0S(t)E → R is ‘asymptotically weakly lower semicontinuous’ in the sense
that if {uj }j is bounded inE, {tj } ⊂ R+, tj →∞, andS(tj )uj ⇀ w weakly in E,

then
∫ t

0
e−γ (t−s)L(S(s)w) ds 6 lim inf

j→∞

∫ t

0
e−γ (t−s)L(S(s + tj )uj ) ds, ∀t > 0,

where it is assumed thats 7−→ L(S(s)u) belongs toL1(0, t), ∀t > 0, ∀u ∈ E. (3.6)

Note that we could have included the functionalK in L, but for the sake of clarity in the
applications, we keep them separate.

Usually, in applications,8(u) is just the square of the norm ofu in E, so that
(3.3) follows if E is uniformly convex, since in such spaces weak convergence plus
norm convergence implies strong convergence (see e.g. [W]). It is also common to find
in applications thatJ andK are weakly continuous inE with K bounded on bounded
subsets ofE, so that (3.4) and (3.5) follow.

ForL ≡ 0 andJ andK satisfying assumptions slightly stronger than (3.4) and (3.5), the
proof that the asymptotic compactness follows under the assumptions above was essentially
done by Wang [W, lemma A]. Also a specific case in whichL 6≡ 0 was considered by Rosa
[R]. By putting those two cases together one can easily obtain the asymptotic compactness
in the case above. For the sake of exposition, we outline this derivation below.
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Let then {un}n ⊂ E be bounded and let{tn}n ⊂ R+, tn → +∞. We need to show
that {S(tn)un}n is precompact inE. Since{S(tn)un}n is bounded (due to the existence of a
bounded absorbing setB) and the spaceE is reflexive, it follows that

S(tn′)un′ ⇀ w weakly inE. (3.7)

for somew ∈ c̄oB, the closed convex hull ofB, and some subsequence{n′}. Similarly,
{S(tn′ − T )un′ } has a weakly convergent subsequence for eachT > 0, so that if we restrict
T to the countable setN, we can obtain by a diagonalization process a further subsequence
(still denoted{n′}) for which

S(tn′ − T )un′ ⇀ wT weakly inE, ∀T ∈ N, (3.8)

with wT ∈ c̄oB. Note then by the weak continuity ofS(T ) that

w = S(T )wT , ∀T ∈ N. (3.9)

Now, since the trajectories of{S(t)}t>0 are continuous, we obtain by integrating the
energy equation (3.2) from 0 toT with u0 = S(tn′ − T )un′ that

8(S(tn′)un′)+ J (S(tn′)un′)+ γ
∫ T

0
e−γ (T−s)L(S(s)S(tn′ − T )un′) ds

= [8(S(tn′ − T )un′)+ J (S(tn′ − T )un′)]e−γ T

+
∫ T

0
e−γ (T−s)K(S(s)S(tn′ − T )un′) ds, ∀T ∈ N, ∀tn′ > T .

(3.10)

From (3.7), (3.8) and the assumptions onJ,K andL, we can pass to the limit sup in (3.10)
to find

lim sup
n′

(8(S(tn′)un′))+ J (w)+
∫ T

0
e−γ (T−s)L(S(s)wT ) ds

6 [cB + J (wT )]e−γ T +
∫ T

0
e−γ (T−s)K(S(s)wT ) ds, ∀T ∈ N, (3.11)

wherecB = sup{8(v); v ∈ c̄oB} <∞.
By using again the energy equation now withu0 = wT , we find using (3.9) that

8(w)+ J (w)+
∫ T

0
e−γ (T−s)L(S(s)wT ) ds = [8(wT )+ J (wT )]e−γ T

+
∫ T

0
e−γ (T−s)K(S(s)wT ) ds, ∀T ∈ N. (3.12)

Subtract (3.12) from (3.11) we find

lim sup
n′

(8(S(tn′)un′))−8(w) 6 (cB +8(wT ))e−γ T 6 2cBe−γ T , ∀T ∈ N. (3.13)

By letting T → ∞ we see that lim supn′ 8(S(tn′)un′) 6 8(w), which together with the
weak convergence (3.7) and assumption (3.3) implies thatS(tn′)un′ converges strongly to
w, which proves the asymptotic compactness of{S(t)}t>0. From theorem 2.1 we then
deduce the existence of the global attractor.

Clearly, the same result follows ifE is a closed convex subset of a reflexive Banach
space, in which case the result could be applied to reaction–diffusion equations with invariant
regions (see [S, T1]).

We have then the following result.
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Theorem 3.1.LetE be a reflexive Banach space or a closed, convex subset of such a space.
Let {S(t)}t>0 be a semigroup of continuous (nonlinear) operators inE which are also weakly
continuous inE. Assume that{S(t)}t>0 possesses a bounded absorbing set and that its
trajectories are continuous. Assume also that the energy equation (3.2) holds whereγ is
a positive constant and8, J , K, and L are functionals satisfying the hypotheses (3.3)–
(3.6), respectively. Then{S(t)}t>0 possesses a global attractor which is connected ifE is
connected.

The claim about the connectedness of the global attractor in theorem 3.1 is obvious.
In some applications, for example in equations in higher-order Sobolev spaces on

unbounded domains, where the Sobolev embeddings are not compact, the functionalsJ

andK in the energy equation (3.2) might not be weakly continuous. This is the case,
for instance, with the weakly dissipative KdV equation on the whole line considered in
section 4.3, for which the phase space isH 2(R). In this case however, we can use one
more energy equality to deduce first the asymptotic compactness with respect to theL2(R)
strong topology, which is then used to show the ‘asymptotic weak continuity’ (see (3.4)
and (3.6)) ofJ andK with respect to theH 2(R) topology.

In view of such applications, we assume that we are given another reflexive Banach
spaceF , F ⊃ E with continuous injection (E as before). We assume that{S(t)}t>0 is a
semigroup of continuous (nonlinear) operators inE which are also weakly continuous in
E. We assume also that the energy equation (3.2) holds for a positive constantγ , for J,K,
andL as before, and for8 satisfying now the following assumption.
• 8 : E→ R+, 8 is continuous, is bounded on bounded subsets ofE and

if {uj }j is bounded inE, {tj } ⊂ R+, tj →∞, S(tj )uj ⇀ w weakly inE,

and lim sup
j→∞

8(S(tj )uj ) 6 8(w), thenS(tj )uj → w strongly inF. (3.14)

Then we can state the following lemma, whose proof is essentially the same as that for
theorem 3.1 above.

Lemma 3.2. Under the assumptions of theorem 3.1 except with (3.3) replaced by (3.14) with
a reflexive Banach spaceF ⊃ E with continuous injection, it follows that if{uj }j is bounded
in E and {tj }j ⊂ R+, tj →∞, thenS(tj ′)uj ′ → w strongly inF for somew ∈ E and some
subsequence{j ′}.

4. Applications

4.1. Fluids of second grade

The evolution of a second-grade incompressible fluid filling a bounded domain� ⊂ R2 is
described by the following equations:
∂

∂t
(u− α1u)− ν1u+ curl (u− α1u)× u = f +∇p in �,

div u = 0 in �.
(4.1.1)

Hereu = u(x, t) is the velocity andp = p(x, t) is the modified pressure given by

p = −p̃ − 1

2
|u|2+ αu ·1u+ α

4
tr((∇u)+ (∇u)T )2.
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f is the external body force, the density of the fluid isρ = 1 and the parametersν andα are
given positive constants. We assume that the fluid adheres to the boundary∂�, condition
expressed by

u|∂� = 0, (4.1.2)

and we also consider that

u(x, 0) = u0(x), x ∈ �. (4.1.3)

We also assume that� is a simply connected, bounded, open set with smooth(C3) and
connected boundary.

For a deeper understanding of the model of a second-grade fluid we refer the reader to
[DF]†. Here we limit ourselves to continuing the mathematical study done by Cioranescu
and Ouazar [CO] (see also [CG, CA]). We recall the mathematical setting of the problem.
We consider the following functional spaces :

V = {u ∈ [C∞0 (�)]
2, div u = 0}, V = the closure ofV in [H 1

0 (�)]
2.

We set

(f, g) =
∫
�

f · g dx, |f | = (f, f )1/2, ∀f, g ∈ [L2(�)]2;

((f, g)) =
∫
�

gradf · gradg dx, ||f || = ((f, f ))1/2, ∀f, g ∈ V.

The spaceV is a Hilbert space with the scalar product

(u, v)V = (u, v)+ α((u, v)). (4.1.4)

We also consider the Hilbert space

W = {u ∈ V, curl (u− α1u) ∈ L2(�)},
endowed with the scalar product

(u, v)W = (u, v)V + (curl (u− α1u), curl (v − α1v)), ∀u, v ∈ W. (4.1.5)

The assumption on� allows us to prove thatW = {u ∈ [H 3(�) ∩ H 1
0 (�)]

2, div u = 0}
and that there exists a constantC(α) such that

|u|H 3 6 C(α)| curl(u− α1u)|, ∀u ∈ W. (4.1.6)

(For the proof see [CG].) If we identifyV with its dual spaceV ′, we haveW ⊂ V ≡ V ′ ⊂
W ′, with continuous injections and each space being dense in the following one.

The weak formulation of the problem (4.1.1)–(4.1.3) is the following.
For u0 andf given, findu such that{

(u′, v)V + ν((u, v))+ b(u, u, v)− αb(u,1u, v)+ αb(v,1u, u)=(f, v), ∀v ∈ V,
u(0) = u0,

(4.1.7)

where

b(u, v,w) =
2∑

i,j=1

∫
�

ui
∂vj

∂xi
wj dx.

† Although some authors criticize the physical interest of this model, it is not our intention here to judge its
validity; we are only interested in studying its mathematical aspects.
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A compilation of the previous results from [CO, CG, CA] implies that foru0 ∈ W and
f ∈ (H 1(�))2 given, there exists a unique solutionu of (4.1.7) satisfying

u ∈ L∞(R+;W), u′ ∈ L∞(R+;V ). (4.1.8)

The proof of the existence relies on the Faedo–Galerkin method implemented with a special
basis inV , namely the spectral basis{wj }j>1 which satisfies

(wj , v)W = λj (wj , v)V , ∀v ∈ W, ∀j > 1, (4.1.9)

where 0< λ1 6 λ2 6 . . ., andλj →∞ asj →∞. Let us remark that{wj }j>1 is also an
orthogonal basis inW . Moreover, if� is of classC3, thenwj ∈ H 4(�)2. The approximate
solutionsum satisfy

{um}m is bounded inL∞(R+;W), {u′m}m is bounded inL∞(R+;V ), (4.1.10)

and we have the following energy equations inV andW respectively:

1

2

d

dt
|um|2V + ν||um||2 = (f, um), (4.1.11)

1

2

d

dt
|um|2W +

ν

α
|um|2W =

1

2
K(um), (4.1.12)

where

1

2
K(um) = ν

α
|um|2+ (f, um)+

( ν
α

curlum + curlf, curl (um − α1um)
)
. (4.1.13)

We deduce from (4.1.10) that there exists a subsequence of{um} (still denoted{um}) such
that

um
∗
⇀u star-weakly inL∞(R+;W),

u′m
∗
⇀u′ star-weakly inL∞(R+;V ),

um→ u strongly inL2(0, T ;V ∩H 2), ∀T > 0.

The convergences above allow the passage to the limit whenm goes to infinity to find that
u is the solution of (4.1.7) (the uniqueness proof is standard).

Since u ∈ L∞(R+;W) and u′ ∈ L∞(R+;V ) we deduce thatu is a.e. equal to a
continuous function from [0, T ] into V for all T > 0. Moreover,u ∈ L∞(R+;W) ∩
C([0, T ], V ),∀T > 0, implies

u ∈ Cw([0, T ];W), (4.1.14)

|u(t)|W 6 |u|L∞(0,T ;W), ∀ t ∈ [0, T ]. (4.1.15)

(For details, see, e.g. [T2, ch3]). Note that (4.1.14) and (4.1.15) also hold forum. The
results above are known and we now want to establish some new results. We first show
thatu ∈ C([0, T ],W),∀T > 0. Let us start by proving the following lemma.

Lemma 4.1.1.um(t) ⇀ u(t) weakly inW , for all t > 0.

Proof. Sinceum → u strongly inL2(0, T ;V ∩ H 2), ∀T > 0, we deduce that there exists
a subsequence{um′ } such that

um′(t)→ u(t) strongly inV, for a.e. t ∈ [0, T ], ∀ T > 0. (4.1.16)
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For 06 t 6 t + a 6 T we have

um′(t + a)− um′(t) =
∫ t+a

t

u′m′(s) ds, in V,

and thus

|um′(t + a)− um′(t)|V 6
∫ t+a

t

|u′m′(s)|V ds 6 (using (4.1.10)) 6 ca, ∀m′ > 1.

(4.1.17)

Using (4.1.16), (4.1.17), and the fact thatum′ andu are inC([0, T ], V ), we deduce that

um′(t)→ u(t) strongly inV, for all t ∈ [0, T ]. (4.1.18)

From the previous convergence and using the spectral basis ofV defined by (4.1.9), we
obtain

(um′(t), wj )W → (u(t), wj )W , ∀j > 1, ∀ t ∈ [0, T ], (4.1.19)

and by the density of{wj } in W , we have

um′(t) ⇀ u(t) weakly inW, ∀t ∈ [0, T ]. (4.1.20)

Then, by a contradiction argument, we deduce that the whole sequence{um(t)}m converges
to u(t) weakly inW for every t ∈ [0, T ]. �

We now prove an energy inequality inW for the solutionu. Integrating (4.1.12) between
0 andt we obtain

|um(t)|2W = |u0m|2We−
2ν
α
t +

∫ t

0
K(um(s))e

−2ν
α
(t−s) ds, ∀ t ∈ [0, T ]. (4.1.21)

Sinceu0m→ u0 strongly inW, um
∗
⇀u in L∞(R+;W), andK is weakly continuous on

W , we can pass to the limit in (4.1.21) using the Lebesgue-dominated convergence theorem
to find

lim
m→∞ |um(t)|

2
W = |u0|2We−

2ν
α
t +

∫ t

0
K(u(s))e−

2ν
α
(t−s) ds, ∀ t ∈ [0, T ]. (4.1.22)

From lemma 4.1.1 we have that

|u(t)|2W 6 lim inf
m→∞ |um(t)|

2
W, ∀t ∈ [0, T ].

Thus, we conclude that

|u(t)|2W 6 |u0|2We−
2ν
α
t +

∫ t

0
K(u(s))e−

2ν
α
(t−s) ds, ∀ t ∈ [0, T ]. (4.1.23)

By reversing the time in equation (4.1.1) we find the following problem:

∂

∂t
(v − α1u)+ ν1v − curl (v − α1v)× v = −f +∇q in �,

div v = 0 in �,

v|∂� = 0,

v(x, 0) = v0(x), x ∈ �.

(4.1.24)
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We obtain in a similar way the finite time estimates inV andW for v, as well as the
following energy inequality inW :

|v(t)|2W 6 |v(0)|2We
2ν
α
t −

∫ t

0
K(v(s))e

2ν
α
(t−s) ds, ∀t ∈ [0, T ]. (4.1.25)

If v(0) = u(t1) ∈ W for some t1 ∈ [0, T ] (we recall from (4.1.14) thatu(t) ∈ W for
t ∈ [0, T ]), then by the uniqueness of the solutions we deduce thatv(t) = u(t1− t) for t ∈
[0, t1]. Thus, we obtain from (4.1.25) fort = t1 that

|u(0)|2W 6 |u(t1)|2W e
2ν
α
t1 −

∫ t1

0
K(u(t1− s))e2ν

α
(t1−s) ds, ∀t1 ∈ [0, T ], (4.1.26)

which gives

|u(0)|2W 6 |u(t1)|2We
2ν
α
t1 −

∫ t1

0
K(u(s))e

2ν
α
s ds, ∀t1 ∈ [0, T ]

or, equivalently,

|u(t1)|2W > |u(0)|2We−
2ν
α
t1 +

∫ t1

0
K(u(s))e−

2ν
α
(t1−s) ds, ∀t1 ∈ [0, T ]. (4.1.27)

From (4.1.23) and (4.1.27) we conclude the following.

Theorem 4.1.2.For u0 ∈ W andf ∈ [H 1(�)]2 given, the solutionu of the problem (4.1.7)
satisfies the following energy equality:

|u(t)|2W = |u0|2We−
2ν
α
t +

∫ t

0
K(u(s))e−

2ν
α
(t−s) ds, ∀t > 0. (4.1.28)

Moreover,

u ∈ C(R+,W). (4.1.29)

The second statement of theorem 2 is obvious. Indeed, from (4.1.28) we deduce that
|u(t)|W → |u(t0)|W as t → t0, which together withu ∈ Cw(R+,W) implies (4.1.29).

Thanks to theorem 4.1.2 we can define the semigroup{S(t)}t>0 in W by

S(t)u0 = u(t), ∀t > 0. (4.1.30)

We now state further properties of the semigroup{S(t)}t>0. More precisely, we prove the
following.

Proposition 4.1.3. The operatorsS(t) are continuous and weakly continuous onW for all
t > 0.

Proof. Let us consider a sequenceu0n ∈ W such thatu0n ⇀ u0 weakly inW . We set

un(t) = S(t)u0n, u(t) = S(t)u0, ∀t > 0.

From thea priori estimates inV andW we find that

{un}n is bounded inL∞(R+;W), {u′n}n is bounded inL∞(R+;V ), (4.1.31)

and from theorem 4.1.2,

u, un ∈ C([0, T ],W), ∀T > 0. (4.1.32)
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From (4.1.31) and (4.1.32) and with a reasoning as in lemma 4.1.1, we can extract a
subsequence{un′ } such that

un′
∗
⇀ũ weakly star inL∞(R+;W),

u′n′
∗
⇀ũ′ weakly star inL∞(R+;V ),

un′ → ũ strongly inL2(0, T ;H 2 ∩ V ), ∀T > 0,

un′(t)→ ũ(t) weakly inW, ∀t ∈ [0, T ],

(4.1.33)

for someũ ∈ L∞(R+;W) ∩ Cw([0, T ],W), ∀T > 0, with ũ′ ∈ L∞(R+;V ).
The convergences (4.1.33) allow us to pass to the limit in the equation forun′ to find

that ũ is a solution of (4.1.7) with̃u(0) = u0. Then by the uniqueness of the solutions we
obtain ũ = u. Again, by a contradiction argument we deduce that the whole sequence{un}
converges tou in the sense of (4.1.33). In particular, we have

S(t)u0n ⇀ S(t)u0 weakly inW, ∀t > 0. (4.1.34)

Now we consideru0n→ u0 strongly inW . The energy equation (4.1.28) forun reads

S(t)|u0n|2W = |u0n|2W e−
2ν
α
t +

∫ t

0
K(S(s)u0n) e−

2ν
α
(t−s) ds, ∀t > 0. (4.1.35)

The weak convergence (4.1.34), the boundedness ofK on bounded subsets ofW , and
the weak continuity ofK onW allow us to pass to the limit in (4.1.35) to find that

lim
n→∞ |S(t)u0n|2W = |u0|2We−

2ν
α
t +

∫ t

0
K(S(s)u0)e

− 2ν
α
(t−s) ds ∀t > 0. (4.1.36)

But from the energy equation foru, the right-hand side term in (4.1.36) is|S(t)u0|2W . Thus,

lim
n→∞ |S(t)u0n|2W = |S(t)u0|2W, (4.1.37)

which together with (4.1.34) yields

S(t)u0n→ S(t)u0 strongly inW asn→∞, ∀t > 0. (4.1.38)

�

Using the a priori estimates inV and W , we obtain the existence of bounded
absorbing sets inV and, respectively,W . Combining theorem 4.1.2 (energy equation),
proposition 4.1.3 (weak and strong continuity) and theorem 3.1, we deduce the existence of
the global attractor:

Theorem 4.1.4.Let� ⊂ R2 be a simply connected, bounded, open set with smooth(C3) and
connected boundary, and letν > 0, α > 0, andf ∈ [H 1(�)]2 be given. Then the semigroup
{S(t)}t>0 (which is actually a group) inW associated to the problem (4.1.1)–(4.1.3) possesses
a global attractor inW .

Remark. A similar model called the Navier–Stokes–Voigt system has been considered by
Kalantarov [K], who proved the existence of the global attractor using a decomposition of
the semigroup solution. We notice that the Navier–Stokes–Voigt system features a milder
nonlinearity than that of the second-grade fluid model. As a consequence, the decomposition
used in [K] cannot be transported to the present example, and this is because for the second-
grade fluid model there is no regularization effect of the solution of the linear part of the
system with respect to the non-homogeneous term, in opposition to the case of the Navier–
Stokes–Voigt model.
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4.2. Flows past an obstacle

In this section we study the long time behaviour of a uniform flow past an infinite long
cylindrical obstacle. We will assume that the flow is uniform in the direction of the axis of
the cylindrical obstacle and the flow approachesU∞ex farther away from the obstacle. In
this respect we can consider a two-dimensional flow and assume the obstacle is a disk with
radiusr (more general obstacle can be treated in exactly the same way).

A further simplification is to observe that since the flow is uniform at infinity, we may
assume that the flow is in an infinitely long channel with width 2L(L� r) and the obstacle
is located at the centre, while the flow at the boundary of the channel is almost the uniform
flow at infinity.

More precisely we assume that the flow is governed by the following Navier–Stokes
equations in� = R1× (−L,L) \ Br(0)(L� r):

∂u

∂t
− ν1u+ (u · ∇)u+∇p = f in �, (4.2.1a)

div u = 0 in �, (4.2.1b)

u = u0 at t = 0, (4.2.1c)

u = 0 at ∂Br, u = ϕ at y = ±L, (4.2.1d)

with

div u0 = 0 in �, u02 = 0 at ∂�, u0− U∞ex ∈ L2(�), (4.2.2a)

ϕ − U∞ex ∈ H2(R1× {−L} ∪ R1× {L}), ϕ2 ≡ 0, (4.2.2b)

div f = 0, f2 = 0 at ∂�, f ∈ L2(�). (4.2.2c)

Remark 4.2.1. The simplest and physically interesting case isf ≡ 0 andϕ ≡ U∞ex .

The first simplification is to introduce the new variables

ũ = u− U∞ex, ϕ̃ = ϕ − U∞ex, ũ0 = u0− U∞ex. (4.2.3)

Then ũ satisfies the equations

∂ũ

∂t
− ν1ũ+ (ũ · ∇)ũ+ U∞∂xũ+∇p = f, (4.2.4a)

div ũ = 0, (4.2.4b)

ũ = ũ0 at t = 0, (4.2.4c)

ũ = −U∞ex at ∂Br, ũ = ϕ̃ at y = ±L. (4.2.4d)

We observe that

ϕ̃ ∈ H2(R1× {±L}). (4.2.5)

Note that̃u, ũ0 andϕ̃ decay nicely near infinity. However, the boundary condition is not
homogeneous and thus we apply a modified Hopf’s technique (see [TW, T1]) to homogenize
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the boundary condition. More specifically we choose

ρi ∈ C∞([0, 1]), suppρi ⊂ [0, 1
2], (4.2.6a)∫ 1

0
ρ1(s) ds = 0, ρ1(0) = 1, (4.2.6b)

ρ2(0) = 1, ρ ′2(0) = 0, |sρ2(s)| 6 ν

1001U∞
, |sρ ′2(s)| 6

ν

1001U∞
, (4.2.6c)

and we define, forε < 1,

91(x, y) =


−ϕ̃1(x, L)

∫ L−y

0
ρ1

( s
Lε

)
ds, for L

2 < y < L,

ϕ̃1(x,−L)
∫ L+y

0
ρ1

( s
Lε

)
ds, for −L < y < −L

2 ,

0, otherwise.

(4.2.7)

92(x, y) =

−U∞ρ2

(√
x2+ y2

r
− 1

)
y, for r <

√
x2+ y2 < 2r,

0, otherwise.

(4.2.8)

We then define

φi(x, y) = curl 9i = (∂y9i,−∂x9i). (4.2.9)

Observe thatφ1 matchesϕ̃ at y = ±L andφ2 matches−U∞ex at ∂Br . If we set

H = {v ∈ L2(�), div v = 0, v · −→n = 0 at ∂�}, (4.2.10)

V = {v ∈ H1
0(�), div v = 0, v = 0 at ∂�}, (4.2.11)

V ′ = the dual ofV, (4.2.12)

where−→n denotes the unit outward normal at∂�, we have that

v = ũ− φ1− φ2 (4.2.13)

satisfies the equation

∂v

∂t
− ν1v + (v · ∇)v + (v · ∇)φ1+ (v · ∇)φ2+ (φ1 · ∇)v + (φ2 · ∇)v + U∞∂xv +∇p

= f + ν1φ1+ ν1φ2− ((φ1+ φ2) · ∇)(φ1+ φ2)− U∞∂x(φ1+ φ2)

= F(ε, ν, U∞, r, L), (4.2.14a)

v ∈ V for t > 0, v = v0 at t = 0, (4.2.14b)

where

v0 = u0− U∞ex − φ1− φ2 ∈ H. (4.2.14c)

It is easy to check that for fixedε, ν, U∞, r, andL, the right-hand side of (4.2.14a),
namelyF , belongs toL2(�) thanks to our construction ofφ1 andφ2.

We say thatv is a weak solution of (4.2.14) if

v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), (4.2.15a)
d

dt
(v, w)+ ν(∇v,∇w)+ b(v, v,w)+ b(v, φ1+ φ2, w)+ b(φ1+ φ2, v, w)

+b(U∞ex, v, w) = (F,w), ∀w ∈ V, (4.2.15b)
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in the distributional sense, and

v(0) = v0, (4.2.15c)

where the trilinear termb : H1
0×H1

0×H1
0→ R is defined by

b(u, v,w) =
2∑

i,j=1

∫
�

ui
∂vj

∂xi
wj dx. (4.2.15d)

The well posedness of (4.2.15) can be derived using a standard Faedo–Galerkin approach
(see for instance [T2, ch 3]) and we may view it as a dynamical system of the form

dv

dt
+ νAv + B(v, v)+ B(v, φ1+ φ2)+ B(φ1+ φ2, v)

+B(U∞ex, v) = PF in V ′, for t > 0, (4.2.16a)

v(0) = v0, (4.2.16b)

whereA : V → V ′ is the Stokes operator defined by

〈Av,w〉 = (∇v,∇w), ∀v,w ∈ V, (4.2.16c)

andB(u, v) is a bilinear operatorH1
0×H1

0→ V ′ defined by

〈B(u, v), w〉 = b(u, v,w), ∀u, v ∈ H1
0, ∀w ∈ V, (4.2.16d)

andP is the Leray–Hopf projection fromL2(�) ontoH .
Our goal in this section is to show that (4.2.16) possesses a global attractor inH using

theorem 3.1. Although dimension estimates can be obtained in the usual fashion using the
global Lyapunov exponent technique (see for instance [T1]), we will refrain ourself from
this topic as it is not our main concern here. In the special case ofU∞ ≡ 0, ϕ ≡ 0, such a
problem was studied by Abergel [A] and Babin [Ba] for the case where the body force lies
in some weighted Sobolev space, and by Rosa [R] for more general forces and domains.

Denoting the solution semigroup asS(t), it is easily verified that{S(t), t > 0} is a
strongly continuous semigroup onH , andS(t) is a continuous operator fromH into H for
eacht > 0. Moreover, forv0 ∈ H andT > 0, there exists a constantκ > 0, such that for
v(t) = S(t)v0 we have

||v||L∞(0,T ;H) 6 κ, ||v||L2(0,T ;V ) 6 κ, ||v′||L2(0,T ,V ′) 6 κ, v ∈ C(R+;H),
(4.2.17)

whereκ = κ(ν, T , ε, |v0|, |f |, ||ϕ||H 3(R1×{±L}), r, L,U∞).
This immediately implies that we have the following energy equation:

1

2

d

dt
|v|2+ ν|∇v|2+

∫
�

(v · ∇)(φ1+ φ2) · v = (F, v). (4.2.18)

A closer investigation into the well-posedness proof reveals that the solution set is
compact in the sense that if{vn, n > 1} is a family of solutions on [0, T ] satisfying
estimates (4.2.17) for aκ independent ofn, then there exists a subsequence{vn′ , n′ > 1}
andv0∞ ∈ H, v∞ = S(t)v0∞, such that

vn′ ⇀ v∞ weakly star inL∞(0, T ;H) and weakly inL2(0, T ;V ), (4.2.19a)

v′n′ ⇀ v′∞ weakly inL2(0, T ;V ′). (4.2.19b)

For a proof the reader is referred to [T2, ch 3, remark 3.2] or to [R] for more details. This
actually implies the weak continuity ofS(t), ∀t > 0. Indeed, letv0n be a weakly convergent
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subsequence inH , thenvn(t) = S(t)v0n satisfies (4.2.17) with a constantκ independent of
n. Let v0∞ be the weak limit ofv0n. Then each subsequence of{vn, n > 1} contains a
sub-subsequence which converges to somev∞ in the sense of (4.2.19). It is easy to check
that v∞(0) = v0∞. Since this is true for each subsequence, we conclude that the whole
sequence converges tov∞(t) = S(t)v0∞, i.e. S(t)v0n = vn(t)→ v∞(t) = S(t)v0∞, weakly
in V ′ and then inH by density and (4.2.17). This completes the weak continuity proof.

Before we apply theorem 3.1, we need to verify the existence of a bounded absorbing
set inH . This can be done via an appropriate choice ofε in (4.2.7) and using (4.2.18).

Observe that∣∣∣∣ ∫
�

(v · ∇)φ2 · v
∣∣∣∣ = ∣∣∣∣ ∫

�

(v · ∇)v · φ2

∣∣∣∣
6 r

∥∥∥∥∥ v√
x2+ y2− r

∥∥∥∥∥
L2(B2r\Br )

|∇v|
∣∣∣∣∣
(√

x2+ y2

r
− 1

)
φ2

∣∣∣∣∣
L∞(B2r\Br )

6 4r|∇v|2 · |U∞|(|sρ2(s)|L∞ + 4|sρ ′2(s)|L∞)
(thanks to Hardy’s inequality and (4.2.6)–(4.2.9))

6 ν

5
|∇v|2 (thanks to (4.2.6)) (4.2.20a)∣∣∣∣ ∫

�

(v · ∇)φ1 · v
∣∣∣∣ = ∣∣∣∣ ∫

�

(v · ∇)v · φ1

∣∣∣∣ (4.2.20b)

6
(∣∣∣∣ v

L− y
∣∣∣∣
L2(1−ε< y

L
<1)

+
∣∣∣∣ v

L+ y
∣∣∣∣
L2(−1< y

L
<−1+ε)

)
|∇v|

×(|(L− y)φ1|L∞(1−ε< y

L
<1) + |(L+ y)φ1|L∞(−1< y

L
<−1+ε)) (4.2.20c)(

since the support ofφ1 is in
{

1− ε < y

L
< 1

}
∪
{
−1<

y

L
< −1+ ε

})
6 k|∇v|2((Lε)2|ϕ1x |L∞(R1×{±L}) + Lε|ϕ1− U∞|L∞(R1×{±L}))
(by (4.2.7) and (4.2.9))

6 ν

4
|∇v|2 (4.2.20d)

provided we chooseε small enough:

ε 6 min

(
ν

8kL|ϕ1− U∞|L∞(R1×{±L})
,

1

L

ν√
8k|ϕ1x |L∞(R1×{±L})

)
. (4.2.21)

Combining (4.2.20) and (4.2.18) we deduce that

1

2

d

dt
|v|2+ ν

2
|∇v|2 6 (F, v), (4.2.22)

which leads to the existence of a bounded absorbing ball in the usual way.
Now we rewrite (4.2.18) as

d

dt
|S(t)v0|2+ λ1ν

2
|S(t)v0|2+ 2ν|∇(S(t)v0)|2− λ1ν

2
|S(t)v0|2

+2b(S(t)v0, φ
1+ φ2, S(t)v0) = 2(F, S(t)v0) (4.2.23)

whereλ1 is the first eigenvalue of the Stokes operator on�. In the notation used in section 3,
we identify the separable reflexive Banach spaceE with H, {S(t)}t>0 as above,

8(v) = |v|2, J (v) = 0, γ = λ1ν

2
, (4.2.24a)
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L(v) = 2ν|∇v|2− λ1ν

2
|v|2+ 2b(v, φ1+ φ2, v), K(v) = 2(F, v). (4.2.24b)

Thus, all assumptions of theorem 3.1 are satisfied except we need to verify the
asymptotic weak lower semicontinuity ofL. For this purpose we first notice thatL is
a quadratic form inV and thatV contains∪t>0S(t)H . Then, thanks to (4.2.20),

L(v) > ν|∇v|2− λ1ν

2
|v|2 > ν

2
|∇v|2 (by Poincaŕe inequality). (4.2.25)

Thus (∫ t

0
e−γ (t−s)L(·) ds

)1/2

is a norm inL2(0, t;V ) equivalent to the usual one, so that its square is weakly lower
semicontinuous inL2(0, t;V ), which together with the weak continuity ofS(t) gives in
particular the desired asymptotic weak lower semicontinuity ofL in the sense of (3.6).

Hence, the existence of the global attractor follows from theorem 3.1 and we have the
following result.

Theorem 4.2.1. Under the assumptions above, in particular (4.2.2) and (4.2.21), the
semigroup{S(t)}t>0 associated to (4.2.16) possesses a connected global attractor inH .

4.3. Weakly damped, forced Korteweg–de Vries equation

We consider the KdV equation with weak damping and an external time independent force:

ut + uux + uxxx + γ u = f, (4.3.1)

whereu = u(x, t), γ > 0 andf = f (x). This equation was proposed by Ott and Sudan
[OS] as a model for the propagation of ion-sound waves damped by ion-neutral collisions.
We takeE = H 2(R) to be the phase space of this equation and supplement it with the
initial condition

u(x, 0) = u0(x), (4.3.2)

for u0 ∈ H 2(R). We assume thatf is in H 2(R).
Equation (4.3.1) with space periodicityL and a time-independent forcef ∈ H 2

per(0, L)
generates a group inH 2

per(0, L) for which the existence of the global attractor has
been proved by Ghidaglia [G1, G2]. The same holds inHm

per(0, L),m > 3, provided
f ∈ Hk

per(0, L), k > m, in which case the global attractor is compact inHk
per(0, L), as

proved by Moise and Rosa [MR]. The whole space case has been treated by Laurenc¸ot [L],
who also used the energy equation approach but with the drawback of using a splitting of the
group and weighted spaces in a complicated intermediate step. We avoid this intermediate
step by using a second energy equation, namely that inL2(R) besides the one inH 2(R),
which makes the proof much simpler. TheH 1(R)-case can also be treated by this approach
and will be presented in a forthcoming paper.

For the well posedness, we have the following result.

Theorem 4.3.1. Let γ ∈ R and f ∈ H 2(R) be given. Then, for everyu0 ∈ H 2(R) there
exists a unique solutionu = u(t) of (4.3.1), (4.3.2) satisfying

u ∈ C([0, T ], H 2(R)), ∀ T > 0. (4.3.3)
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Moreover, the following energy equations hold in the distribution sense on(0,∞):
d

dt
Im(u(t))+ 2γ Im(u(t)) = Km(u(t)), m = 0, 1, 2, (4.3.4)

where

I0(u) =
∫
u2dx, K0(u) =

∫
2f u dx, (4.3.5)

I1(u) =
∫ [

u2
x −

1

3
u3

]
dx, K1(u) =

∫ [γ
3
u3+ 2fxux − f u2

]
dx, (4.3.6)

I2(u) =
∫ [

u2
xx −

5

3
u2
x +

5

36
u4

]
dx,

K2(u) =
∫ [

5γ

3
uu2

x −
5γ

18
u4+ 2fxxuxx + 5

3
u2
xf +

10

3
uuxxf + 5

9
u3f

]
dx,

(4.3.7)

with all the integrals overR. Finally for everyR, T > 0 there exists a constantC = C(R, T )
such that

sup{||u(t)||H 2(R), 06 t 6 T , ||u0||H 2(R) 6 R} 6 C(R, T ). (4.3.8)

The proof of theorem 4.3.1 follows as in the case ofγ = 0 andf = 0. The existence
of solutions inL∞((0, T );H 2(R)) ∩C([0, T ], L2(R)) and an inequality(6) in (4.3.4) can
be obtained by parabolic regularization [T3, BS, MR]. The uniqueness is straightforward.
The equality in (4.3.4) and, as a consequence, the regularityu ∈ C([0, T ], H 2(R)) can be
obtained by using the time reversibility of the solutions as done in section 4.3.1 for the
second-grade fluids.

Thanks to theorem 4.3.1, one can define forγ > 0, which is the case of interest for
us, the semigroup{S(t)}t>0 in H 2(R) by S(t)u0 = u(t), whereu = u(t) is the solution of
(4.3.1), (4.3.2). The continuity of the trajectoriest → S(t)u0 follows from (4.3.3). Thus,
most of the conditions of theorem 3.1 hold, and we need to verify the remaining conditions.
We have the following.

Lemma 4.3.2. The semigroup{S(t)}t>0 possesses a bounded absorbing set inH 2(R).

Proof. The existence of a bounded absorbing set can be obtained just like in the autonomous
space periodic case treated by Ghidaglia [G1], the differences being that the Agmon
inequality has a different constant. We do not develop any details here. �

Lemma 4.3.3. {S(t)}t>0 is a semigroup of continuous and weakly continuous operators in
H 2(R).

Proof. For the weak continuity, letu0j ⇀ u0 weakly in H 2(R). We fix T and and we
setuj (t) = S(t)u0j for 0 6 t 6 T . Note that{u0j }j is bounded inH 2(R) since it has a
weak limit in that space. Then, thanks to the long time estimates given by the existence of
a uniformly absorbing set (lemma 4.3.2) and thanks to the local in time estimates given by
(4.3.8), it follows that

{uj }j is bounded inL∞(0, T ;H 2(R)). (4.3.9)
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Then, from equation (4.3.1) itself, we deduce that

{u′j }j is bounded inL∞(0, T ;H−1(R)), (4.3.10)

whereH−1(R) is the dual ofH 1(R) when we identifyL2(R) with its dual. From (4.3.10)
it follows that for 0< a < T andv ∈ H 1(R), the following estimate holds:

(uj (t + a)− uj (t), v)L2(R) =
∫ t+a

t

〈u′j (s), v〉H−1(R),H 1(R) ds

6 a||u′j ||L∞(0,T ;H−1(R))||v||H 1(R), ∀06 t 6 T − a,
where 〈·, ·〉H−1(R),H 1(R) denotes the duality product between the two spacesH−1(R) and
H 1(R). By taking v = uj (t + a) − uj (t) for eacht ∈ [0, T − a], which is possible since
uj ∈ C([0, T ], H 2(R)), we find that

||uj (t + a)− uj (t)||2L2(R) 6 2a||u′j ||L∞(0,T ;H−1(R)) ||uj ||L∞(0,T ;H 1(R)), ∀t ∈ [0, T − a].

Taking (4.3.9) and (4.3.10) into account, we obtain

||uj (t + a)− uj (t)||L2(R) 6 cT a1/2, ∀t ∈ [0, T − a], ∀a ∈ (0, T ). (4.3.11)

Now, for each r > 0, consider the sequence{uj,r}j , where uj,r (t) = ρr uj (t), for
ρr = ρr(x) = ρ(x/r), with ρ ∈ C∞(R), ρ > 0, ρ(ξ) = 1 for |ξ | 6 1, andρ(ξ) = 0
for |ξ | > 2. Thus, from (4.3.9) and (4.3.11), it follows that for eachr > 0, the
sequence{uj,r}j is equibounded and equicontinuous inC([0, T ], L2(−2r, 2r)). Moreover,
from (4.3.9) and the fact that eachuj is continuous from [0, T ] to H 2(R), it follows that
for each t ∈ [0, T ], the set{uj,r (t)}j is bounded inH 2

0 (−2r, 2r), hence precompact in
L2(−2r, 2r). Therefore, we can apply the Arzela-Ascoli theorem to{uj,r}j to deduce that
this sequence is precompact inC([0, T ], L2(−2r, 2r)). It is then clear that for eachr, the
sequence{uj |(−r,r)}j is precompact inC([0, T ], L2(−r, r)), whereuj |(−r,r) is the restriction
of uj in space to(−r, r). Then, by a diagonalization process, we can find a subsequence
{uj ′ }j ′ and an element̃u ∈ C([0, T ], L2

loc(R)) such that{uj ′ |(−r,r)}j ′ converges toũ|(−r,r)
in C([0, T ], L2(−r, r)), which is to say that{uj ′ }j ′ converges tõu in the topology of the
Frechet spaceC([0, T ], L2

loc(R)). On the other hand, from (4.3.9) one can also assume
that (passing to a further subsequence if necessary){uj ′ }j ′ converges toũ weakly star in
L∞(0, T ;H 2(R)), which gives in particular that̃u ∈ L∞(0, T ;H 2(R)). Thus we have that{

uj ′ → ũ weakly star inL∞(0, T ;H 2(R))
and strongly inC([0, T ], L2

loc(R)).
(4.3.12)

The convergence (4.3.12) allows us to pass to the limit in the weak form of the equation
for uj (the weak form of (4.3.1), (4.3.2) withu0 = u0j ) to find thatũ solves (the weak and
the strong form of) the equations (4.3.1), (4.3.2). By the uniqueness of the solutions, we
must haveũ(t) = S(t)u0. Then, by a contradiction argument, one can deduce that in fact
the whole sequence{uj } converges tõu in the sense of (4.3.12), and hence that

S(t)u0j → S(t)u0 weakly star inL∞(0, T ;H 2(R))
and strongly inC([0, T ], L2

loc(R)).
(4.3.13)

Now, from the strong convergence in (4.3.13), we find that for everyt such that 06 t 6 T
and for everyv ∈ C∞c (R), the space ofC∞ functions with compact support,

(S(t)u0j , v)H 2(R) = (S(t)u0j , Lv)L2(R)→ (S(t)u0, Lv)L2(R) = (S(t)u0, v)H 2(R),
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whereLv = v − vxx + vxxxx ∈ C∞c (R). Then from (4.3.9) and the density ofC∞c (R) in
H 2(R), it follows that for everyt, 0 6 t 6 T and hence for everyt > 0 sinceT was
arbitrary,

(S(t)u0j , v)H 2(R)→ (S(t)u0, v)H 2(R), ∀v ∈ H 2(R), ∀t > 0, (4.3.14)

which proves the weak continuity ofS(t) in H 2(R).
For the strong continuity, assume thatu0j → u0 strongly in H 2(R). In particular

u0j ⇀ u0 weakly in H 2(R), so that the above convergences (4.3.13) and (4.3.14) hold.
From the energy equation (4.3.4) form = 0 it follows that

|uj (t)|2L2(R) = |u0j |2L2(R)e
−2γ t + 2

∫ t

0
e−2γ (t−s)(f, uj (s))L2(R) ds, ∀t > 0, (4.3.15)

whereuj (t) = S(t)u0j and u(t) = S(t)u0. From the weak continuity (4.3.14), and the
uniform boundedness (4.3.9), together with the strong convergenceu0j → u0 in H 2(R), we
can pass to the limit in (4.3.15) to find that for anyt > 0

lim
j→∞
|uj (t)|2L2(R) = |u0|2L2(R)e

−2γ t + 2
∫ t

0
e−2γ (t−s)(f, u(s))L2(R) ds = |u(t)|2

L2. (4.3.16)

From the weak continuity (4.3.14) and theL2-norm convergence (4.3.16) it follows, since
L2(R) is a Hilbert space, that

uj (t)→ u(t) strongly inL2(R), ∀t > 0. (4.3.17)

Using interpolation, it follows from (4.3.17) and (4.3.14) that

uj (t)→ u(t) strongly inH 1(R), ∀t > 0. (4.3.18)

Now, from the energy equation (4.3.4) form = 2, we have

I2(uj (t)) = I2(u0j )e
−2γ t +

∫ t

0
e−2γ (t−s)K2(uj (s)) ds, ∀t > 0. (4.3.19)

As above, using also (4.3.18), we can pass to the limit in (4.3.19) to find that

lim
j→∞

I2(uj (t)) = I2(u(t)), ∀t > 0. (4.3.20)

Using (4.3.18) again, it follows from (4.3.20) and the definition ofI2 given by (4.3.7) that

||uj (t)||H 2(R)→ ||u(t)||H 2(R), ∀t > 0. (4.3.21)

Then, (4.3.21) together with the weak continuity (4.3.14) implies finally that

S(t)u0j → S(t)u0 strongly inH 2(R), ∀t > 0 (4.3.22)

which proves the strong continuity ofS(t) in H 2(R). �

In order to apply theorem 3.1, it remains to verify the corresponding conditions (3.3),
(3.4) and (3.5) for the energy equation withm = 2. In order to do that, we first need the
following result.

Lemma 4.3.4. Let {uj }j be bounded inH 2(R) and {tj }j ⊂ R+ with tj → ∞. Then there
existw ∈ H 2(R) and a subsequence{j ′} such thatS(tj ′)uj ′ → w strongly inH 1(R).
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Proof. We apply lemma 3.2 with the energy equation (4.3.4) form = 0. In the notations
of lemma 3.2, the terms of this energy equation are

8(u) = I0(u) = |u|2L2, J (u) = 0, K(u) = K0(u) = 2
∫
f u dx L(u) = 0,

and obviouslyF = L2(R). The hypothesis (3.14) is trivially satisfied. In order to verify
(3.5), let {uj }j be bounded inH 2(R), {tj }j ⊂ R+, tj →∞ such thatS(tj )uj ⇀ w weakly
in H 2(R). Since the operatorsS(t) are weakly continuous (from lemma 4.3.3), we deduce
that

S(s)S(tj )uj ⇀ S(s)w weakly inH 2(R), ∀s > 0. (4.3.23)

The maps 7→ K0(S(s)u) belongs toL1(0, t), ∀t > 0, ∀u ∈ H 2(R). Taking into account
(4.3.23) and the definition ofK0, we have thatK0(S(s)S(tj )uj )→ K0(S(s)w) asj →∞,
for s ∈ (0, t). Moreover, s 7→ K0(S(s)S(tj )uj ) is uniformly bounded onR+ thanks to
the existence of a bounded absorbing set for{S(t)}t>0. Then, by the Lebesgue dominated
convergence theorem,

lim
j→∞

∫ t

0
e−2γ (t−s)K0(S(s) S(tj )uj ) ds =

∫ t

0
e−2γ (t−s)K0(S(s)w) ds, ∀t > 0,

so that (3.5) holds true.
Consider now{uj }j bounded inH 2(R), and {tj }j ⊂ R+ with tj → ∞. Since the

semigroup{S(t)}t>0 has a bounded absorbing set inH 2(R), we deduce that there exists a
subsequence{j ′} such that

S(tj ′)uj ′ ⇀ w weakly inH 2(R), (4.3.24)

for somew ∈ H 2(R). Now, we apply lemma 3.2 to deduce (passing to a further subsequence
and then using a contradiction argument) that

S(tj ′)uj ′ → w strongly inL2(R). (4.3.25)

By interpolation, we finally deduce from (4.3.24) and (4.3.25) that

S(tj ′)uj ′ → w strongly inH 1(R), (4.3.26)

which completes the proof of the lemma. �

We now apply theorem 3.1 with the energy equation (4.3.4) withm = 2. In the notation
of theorem 3.1, the terms of the energy equation are

8(u) =
∫
u2
xx dx, J (u) =

∫
[− 5

3u
2
x + 5

36u
4] dx, K(u) = K2(u), L(u) = 0.

Consider again{uj }j bounded inH 2(R) and {tj }j ⊂ R+, tj → ∞ such thatS(tj )uj ⇀ w

weakly inH 2(R). Then using lemma 4.3.4 there exists a subsequence{j ′} such that

S(tj ′)uj ′ → w strongly inH 1(R),

and, by a contradiction argument, the whole sequence convergences tow strongly inH 1(R).
Then, (3.3) and (3.4) are trivially satisfied, and for (3.5) we use the same arguments as in
lemma 4.3.4. Thus, we can apply theorem 3.1 to conclude that{S(t)}t>0 possesses a global
attractor inH 2(R).

Theorem 4.3.5. Let γ > 0 and f in H 2(R). Then the semigroup{S(t)}t>0 possesses a
global attractorA in H 2(R).
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