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Abstract. We introduce horseshoe-type mappings which are geometrically similar to Smale’s
horseshoes. For such mappings we prove by means of the fixed point index the existence of
chaotic dynamics—the semi-conjugacy to the shift on a finite number of symbols. Our theorem
does not require any assumptions concerning derivatives, it is a purely topological result. The
assumptions of our theorem are then rigorously verified by computer assisted computations for
the classical H́enon map and for classical Rössler equations.

AMS classification scheme numbers: 58F13, 58F22, 58G10

Introduction

The aim of the paper is to describe a new technique for obtaining rigorous results concerning
the global dynamics of nonlinear systems. The technique combines abstract existence
results based on topological invariants (the fixed point index) with finite, computer assisted
computations necessary to verify the assumptions of the theorems in a concrete example.

We introduce a class of TS-maps (the topological shifts) which includes as particular
cases the Smale’s horseshoes [S]. For such maps we prove by means of the fixed point
index the existence of chaotic dynamics—the semi-conjugacy to the shift on a finite number
of symbols, with an infinite number of periodic points with unbounded periods. It should
be insisted that our theorem does not require any assumptions concerning derivatives, only
some simple inclusions of images of sets under considerations should be checked.

The assumptions of our theorem are then rigorously verified by computer assisted
computations for the classical Hénon map and for classical Rössler equations. The necessary
computer assisted computations are small enough to be performed on a PC.

We show that the seventh iterate of the Hénon map and a suitably chosen Poincaré
map derived from R̈ossler equation have a horseshoe-type dynamics on the invariant set
embedded in the numerically observed strange attractor, but the very existence of a strange
attractor still remains unproven. At least for the Hénon map (with classical parameter
values) there is a fundamental obstacle to such a proof. Numerical simulation suggests that
the H́enon map has homoclinic tangencies (stable and unstable manifolds of fixed point have
non-transversal intersections). Therefore, the Hénon map can probably be embedded into a
one-parameter family of diffeomorphisms unfolding a homoclinic tangency. It follows from
papers [BC] and [MV] that for such families with some additional generic assumptions the
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parameter set for which there exists a strange attractor (an attracting set with dense orbit, with
positive Lapunov exponent) has a positive Lebesgue measure and the set of parameters for
which there exists attractive periodic orbits is dense. So for any system in a one-parameter
family, to which the theorems from [BC] and [MV] apply, it is imposible to decide rigoursly
using just topological methods whether it has a strange attractor, as all statements obtained
by topological mean hold for all nearby systems. Probably the same holds for the Rössler
equations.

The idea of a computer assisted proof of chaotic dynamics based on topological
invariants appeared first in the work of Mischaikow and Mrozek ([MM1], [MM2]). They
used the discrete Conley index introduced in [M] to prove the existence of chaotic dynamics
for the H́enon map and the Lorenz equations. We believe that our method is considerably
easier to understand and apply—the topological machinery behind the fixed point index is
relatively simple compared to the one involved in the discrete Conley index.

1. Topological theorem

By R, Z, N we will denote the sets of real numbers, integers and natural numbers (including
zero) respectively. Let(X, ρ) be a metric space. LetZ ⊂ X andx ∈ X. By int(Z), cl(Z),
bd(Z) we denote respectively the interior, the closure and the boundary of the setZ.

Let f : X → X be any continous map andN ⊂ X. By f|N we will denote the map
obtained by restricting the domain off to the setN . The maximal invariant part ofN
(with respect tof ) is defined by

Inv(N, f ) =
⋂
i∈Z

f −i
|N (N).

For any setP ⊂ R2, which is union of disjoint rectanglesPk = [ak, bk] × [ck, dk] we
set

L(P ) :=
⋃

{ak} × [ck, dk] (1)

R(P ) :=
⋃

{bk} × [ck, dk] (2)

V (P ) := L(P ) ∪ R(P ) (3)

H(P ) :=
⋃

([ak, bk] × {ck} ∪ [ak, bk] × {dk}). (4)

So L(P ), R(P ), V (P ), H(P ) are equal to the union of left vertical, right vertical, vertical
and horizontal egdes inP respectively. In the remaining part of this section we consider
maps on the planeR2.

Let us fix u, d ∈ R, u > d and a sequencea−1 = −∞ < a0 < a1 < · · · a2K−2 <

a2K−1 < a2K = ∞, whereai ∈ R for i = 0, 1, . . . , 2K − 1. Let

Ni := [a2i , a2i+1] × [d, u] for i = 0, . . . , K − 1 (5)

Ei := (a2i−1, a2i ) × [d, u] for i = 0, . . . , K (6)

N := N0 ∪ N1 ∪ · · · ∪ NK−1 (7)

E := E0 ∪ E1 ∪ · · · ∪ EK−1 ∪ EK. (8)

The setsEi, Ni are contained in the horizontal strip(−∞, ∞)× [d, u] in the following
order (we comparex-coordinates)

E0 < N0 < E1 < N1 < · · · < EK−1 < NK−1 < EK. (9)
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Suppose further that fori = 0, 1, . . . , K we have setsE′
i such that

E′
i ∩ (−∞, ∞) × [d, u] = Ei (10)

cl(E′
i ) ∩ (N \ V (N)) = ∅ (11)

clE′
i ∩ clE′

j = ∅ for i 6= j (12)

and there exist continuous homotopieshi : [0, 1] × E′
i → E′

i such that

hi(0, p) = p for p ∈ E′
i (13)

hi(1, p) ∈ Ei for p ∈ E′
i (14)

hi(t, p) = p for p ∈ Ei and t ∈ [0, 1]. (15)

This means that the setE′
i can be continuously deformed to the set ofEi without any

intersection with the setN . Ei is a deformation retractof E′
i . We set

E′ := E′
0 ∪ E′

1 ∪ . . . E′
K.

Let us remark that from conditions (10)–(11) follows

E′
i ∩ Nj = ∅ for i, j = 0, 1, . . . , K − 1. (16)

Figure 1 presents a schematic drawing of the setsNi , Ei , E′
i for K = 3.

Figure 1. An example of setsNi , Ei , E′
i for K = 3.

Definition 1. Let the setsEi, E
′
i , Ni be as above. LetD be an open set such thatN ⊂ D and

a mapf : D → R2 be continuous. We say thatf is TS-map (topological shift) (relatively
to the setsN , E, E′) if there exist functionsl, r : {0, 1, . . . , K − 1} → {0, 1, . . . , K} such
that the following conditions hold

f (L(Ni)) ⊂ E′
l(i) f (R(Ni)) ⊂ E′

r(i) (17)

f (N) ⊂ E′ ∪ N. (18)

Geometrically, the above conditions mean that the image of the vertical edges does not
intersect the setN and the image ofN is contained in the set which can be continuously
deformed to the horizontal strip without any intersection with horizontal egdes ofN .

We are looking for periodic points of the TS-mapf . We will characterize them by
periodic infinite sequencesc = (ci)i∈N of symbols 0, 1, . . . , K − 1 with the property
f i(x) ∈ Nci

for i ∈ N .
Let 6K := {0, 1, . . . , K − 1}Z , 6+

K := {0, 1, . . . , K − 1}N . 6K , 6+
K are topological

spaces with the Tichonov topology. On6K , 6+
K we have the shift mapσ given by

(σ (c))i = ci+1.
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Let A = [αij ] be aK × K-matrix, αij ∈ R+ ∪ {0}, i, j = 0, 1, . . . , K − 1. We define
6A ⊂ 6K and6+

A ⊂ 6+
K by

6A := {c = (ci)i∈Z |αcici+1 > 0} (19)

6+
A := {c = (ci)i∈N |αcici+1 > 0}. (20)

Obviously6+
A , 6A are invariant underσ .

Let f be a TS-map. To relate the dynamics off on Inv(N, f ) with shift dynamics on
6+

K we introduce thetransition matrix of f denoted byA(f ).
We defineA(f )i,j , wherei, j = 0, 1, . . . , K − 1 by

A(f )ij :=
{

1 if El(i) < Nj < Er(i) or El(i) > Nj > Er(i)

0 otherwise.

It easy easy to see thatA(f )i,j 6= 0, if Nj lies between the images of vertical egdes ofNi

(we deform the image by the homotopiesh if necessary).
For i ∈ N we define a mapπi : Inv(N, f ) → {0, 1, . . . , K} given by πi(x) = j iff

f i(x) ∈ Nj . Now we define a mapπ : Inv(N, f ) → 6+
K by π(x) := (πi(x))i∈N . The map

π assigns to the pointx the indices of rectanglesNi its trajectory goes through. It is easy
to see that we have

π ◦ f = σ ◦ π. (21)

If f is also a homeomorphism, then the definition ofπi can be extended to all integers and
the domain ofπ is 6K .

Obviously the semiconjugacy (21) alone is not a sign of complicated dynamics. It may
happen that the set Inv(N, f ) is finite or even empty. The dynamics will be complicated
if the setπ(Inv(N, f )) is infinite. The following theorem gives the characterization of this
set for TS-maps.

Theorem 1. Letf be a TS-map. Then6+
A(f ) ⊂ π(Inv(N, f )). The pre-image of any periodic

sequence from6+
A(f ) contains periodic points off . If we additionally suppose thatf is a

homeomorphism, then6A(f ) ⊂ π(Inv(N, f )).

The proof of this theorem is postponed to the next section.

2. Proof of the topological theorem

Let N ⊂ Rd be a compact set andf : N → Rd be a continuous map. The setN is called
an isolating neighbourhoodiff Inv (N, f ) ⊂ Int(N).

Let Y ⊂ Rd , cl(Y ) ⊂ Dom(f ) be such thatf (x) 6= x for x ∈ bd(Y ) then we denote
by I (f, Y ) the fixed point index of the mapf relatively to the setY (see [D, ch VII.5]).
In the sequel we will use the following properties of the fixed point index

I (f, Y ) 6= 0 H⇒ ∃y ∈ Y f (y) = y. (22)

Let A be an×n matrix andx0 ∈ Rd . Suppose that the equationAx = x does not have
any non-zero solution andx0 ∈ Int(Y ). Let us denote the identity matrix by Id. Then

I (A(x − x0) + x0, Y ) = sgn(det(Id − A)). (23)

For any mapF : [0, 1] × N → Rd we setFλ(x) := F(λ, x).
The following theorem was obtained by the author in [Z1]
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Theorem 2. Let N = ⋃i=K−1
i=0 Ni , where Ni ⊂ Rd are compact and disjoint. Let

F : [0, 1] × N → Rn be a continuous map, such thatN is an isolating neighbourhood
for Fλ for λ ∈ [0, 1]. Then for every finite sequence(α0, α1, . . . , αn) ∈ {0, 1, . . . , K − 1}n+1

the fixed point indexI (F n+1
λ , Nα0 ∩ F−1

λ (Nα1) ∩ . . . ∩ F−n
λ (Nαn

)) is defined and does not
depend onλ (is equal to a constant independent fromλ).

Proof of theorem 1. First we observe that the conditions (17) and (18) imply that

f −1(N) ∩ N ∩ f (N) ∩ bd(N) = ∅
but this means that Inv(N, f ) ⊂ Int(N), soN is an isolating neighbourhood.

We will now connect the mapf by the appropriate homotopy (N should be an isolating
neighbourhood along this homotopy) with the piecewise affine model mapm for which we
can easily calculate various fixed point indices.

Let us fix s such thatu < s < d. Let us choosebi ∈ R, i = 0, 1, . . . , 2K − 1 such that

b2i ∈ (a2l(i)−1, a2l(i)) b2i+1 ∈ (a2r(i)−1, a2r(i)). (24)

The functionsl, r in this formula are thel, r functions for f from the definition of the
TS-map, and theai are as defined in the last section.

Now we define a model mapm : N → R2 by

m(x, y) :=
(

b2i+1 − b2i

a2i+1 − a2i

(x − a2i ) + b2i , s

)
for (x, y) ∈ Ni. (25)

With this choice ofbi, s it is obvious that the mapm is a TS-map with the same functions
l and r, so it has the same transition matrix as map thef . Obviously N is an isolating
neighbourhood form.

We will now construct the homotopy connectingf andm. First we define a homotopy
H by gluing together the mapshi . H : [0, 1] × (E′ ∪ N) → (E′ ∪ N) given by

H(λ, p) :=
{

p if p ∈ N

hi(λ, p) if p ∈ E′
i .

From (10)–(15) it immediately follows that the mapH is continuous.
Next we defineF(t, p) = H(t, f (p)). For everyλ ∈ [0, 1] Fλ is a TS-map (relatively

to the same setsN , E, ′E′ as the mapf ), with the same functionsl and r as for the map
f . An important point is thatF1(N) ⊂ N ∪ E. Now we connect this map withm by the
homotopy

G(λ, p) := (1 − λ)F1(p) + λm(p). (26)

From the convexity of the setsNi andEi follows that the mapGλ for everyλ ∈ [0, 1] is
a TS-map (relatively to the same setsNi , Ei as a mapf ), with the same functionsl andr

as for the mapf .
So usingF andG we connectf by homotopy with the piecewise affine mapm such

that N is an isolating neighbourhood along this homotopy; so we can apply theorem 2.
Let α = (α0, α1, . . .) ∈ 6+

K be periodic with periodn + 1. Due to the piecewise affine
form of the mapm and the property (23) one can easily show that

I (mn+1, Nα0 ∩ m−1(Nα1) ∩ · · · ∩ m−n(Nαn
)) :=

{ ±1 for α ∈ 6+
A(m)

0 otherwise.

Obviously by construction ofm we haveA(f ) = A(m), so for everyn + 1-periodic
sequenceα ∈ 6+

A(f ) from theorem 2 we get

I (f n+1, Nα0 ∩ f −1(Nα1) ∩ · · · ∩ f −n(Nαn
)) 6= 0.
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From (22) we obtainxα ∈ N such that

f i(xα) ∈ Nαi
for i = 0, 1, . . . , n, f n+1(xα) = xα ∈ Nα0. (27)

This gives us the existence of periodic points from the assertion of our theorem. Since
periodic sequences are dense in6+

A for every matrixA we have6+
A(f ) ⊂ π(Inv(N, f )).

In the homeomorphism case the range of the mapπ is 6K . Let α be ann + 1-periodic
sequence,α ∈ 6A(f ). α can be identified with an element from6+

A(f ) by deleting elements
with negative indices. From the first part of the proof it follows that there existsxα ∈ N such
that (27) holds. Obviouslyπ(xα) = α. This shows that all periodic sequences from6A(f )

are contained inπ(Inv(N, f )). From compactness of Inv(N, f ) and density of periodic
sequences in6A(f ) we get6A(f ) ⊂ π(Inv(N, f )). �

3. Chaos in the R̈ossler equations

The R̈ossler equations are given by [R]

ẋ = −(y + z)

ẏ = x + by

ż = b + z(x − a)

(28)

wherea = 5.7, b = 0.2. These are the parameters values originally considered by Rössler.
The flow generated by (28) exihibits a so-called strange attractor. There are no exact
results concerning the structure of this attracting set. We show here an invariant set with
complicated dynamics apparently contained in the numerically observed attractor.

We will apply theorem 1 to the Poincaré mapP generated by (28) on the section
2 := {(x, y, z)|x = 0, y < 0, ẋ > 0}.

We will considerP as a map(y, z)n → (y, z)n+1 on R2. We will show thatP is a TS-
map with a nontrivial transition matrix. First we need to define constants which describe the
setsNi , Ei . In this case we chooseK = 3, d = −0.02, u = 0.08, a0 = −10.3, a1 = −9.01,
a2 = −9.0, a3 = −7, a4 = −6.4, a5 = −3.8 andE′

i = Ei .
Figure 2 presents the image ofN underP . This figure is then decomposed into figures 3–

5 showing the images of the setsN0, N1 andN2 individually. From these figures one can

–

– –

Figure 2. Image ofN for the R̈ossler Poincaŕe map (dots).
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–

– –

Figure 3. Image ofN0 for the R̈ossler Poincaŕe map (dots). The images of points from left and
right vertical egdes are marked by circles and disks, respectively.

–

–

–

Figure 4. Image ofN1 for the R̈ossler Poincaŕe map (dots). The images of points from left and
right vertical egdes are marked by circles and disks, respectively.

clearly see the difference of scales in they- andz-direction and manifestly strong contraction
in z direction of mapP .

The following lemma is proved rigorously with computer assistance (see [Z3] for details)
(compare figures 3–5).

Lemma 3. For all parameter values in a sufficiently small neighbourhood of(a, b) =
(5.7, 0.2) the following conditions hold

N ⊂ Dom(P ) (29)

P(N) ⊂ E ∪ N (30)

P(L(N0)) ⊂ E3 P(R(N0)) ⊂ E2 (31)

P(L(N1)) ⊂ E2 P(R(N1)) ⊂ E0 (32)

P(L(N2)) ⊂ E0 P(R(N2)) ⊂ E2. (33)

This lemma shows thatP is a TS-map and enables us to calculate the transition matrix
for P . So from theorem 1 we obtain
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Figure 5. Image ofN2 for Rössler Poincaŕe map (dots). The images of points from left and
right vertical egdes are marked by circles and disks, respectively.

Theorem 4. For all parameter values in a sufficiently small neighbourhood of(a, b) =
(5.7, 0.2) there exists a Poincar´e sectionN ⊂ 2 such that the Poincar´e mapP induced by
(28) is well defined and continuous.

There exists a continuous mapπ : Inv(N, P ) → 63, such that

π ◦ P = σ ◦ π.

6A ⊂ π(Inv(N, P )), where

A :=
[ 0 1 1

0 1 1
1 0 0

]
.

The pre-image of any periodic sequence from6A contains periodic points ofP .

As it was mentioned above we prove lemma 3 with computer assistance. Our program
was implemented in Borland C++ 3.1. Rigorous numerical verification of conditions (30)–
(33) required calculation ofP for around one million points. This took around 50 hours on
an IBM PC 486DX 50 MHz computer.

4. Chaos in the H́enon map

In this section we deal with the H̀enon map [H]. The H́enon mapH : R2 → R2 is given
by

Hab(x, y) = (1 + y − ax2, bx).

We investigate this mapping fora = 1.4, b = 0.3—the parameter values considered
originally by Hénon (see [H]). The long time behaviour of (4) is very complicated, one
observes numerically a ‘strange attractor’—an attracting set with fractal nature on which
the dynamics is very complicated and chaotic. We will show here again the existence of
an invariant set with complicated dynamics which is embedded the numerically observed
attractor.

First we introduce new coordinatesx1, y1 given by

x1 := x − 0.5y (34)

y1 := y. (35)
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We will express the setsE, E′, N in these new coordinates. LetK = 2, d = 0.01,u = 0.28,
a0 = 0.455,a1 = 0.551,a2 = 0.583,a3 = 0.615. The setsE′

i are given by

E′
0 = {x1 < a0 andy1 > d} (36)

E′
1 := E1 (37)

E′
2 := {y1 < −0.01} ∪ {x1 > a3 andy1 6 u}. (38)

With computer assistance we have proved the following (see [Z2] for details)

Lemma 5. For all parameter values in a sufficiently small neighbourhood of(a, b) =
(1.4, 0.3) the following conditions are satisfied

H 7
ab(N) ⊂ E′ ∪ N (39)

H 7
ab(L(N0)) ⊂ E′

2 H 7
ab(R(N0)) ⊂ E′

0 (40)

H 7
ab(L(N1)) ⊂ E′

0 H 7
ab(R(N1)) ⊂ E′

2. (41)

Figure 6. The original setsN0 andN1 for the H́enon map, and its seventh iterate (dots). Image
of ‘horizontal’ edges are marked by disks. Images of cornes are marked by circles.

Figure 6 presents the image ofH 7
ab(N) in initial coordinatesx, y. The setsH 7(Ni)

apparently lay along the attractor and are so thin that in this figure they appear as one-
dimensional curves. The images of corners are marked by circles and the images of points
belonging toV (N) are enlarged, so that they form four thick arcs corresponding to the
images of the vertical egdes according with lemma 5.

The above lemma shows thatH 7
ab is a TS-map fora, b in a sufficiently small

neighbourhood of(a, b) = (1.4, 0.3) with the transition matrix

A :=
[

1 1
1 1

]
.

For such a matrixA we have6A = 62. SinceHab is an homeomorphism lemma 5 and
theorem 1 imply

Theorem 6. For all parameter values in a sufficiently small neighbourhood of(a, b) =
(1.4, 0.3) there exists a setN and a continuous surjectionπ : Inv(N, H 7

ab) → 62, such that

π ◦ P = σ ◦ π.

Moreover, the pre-image of any periodic sequence from62 contains periodic points ofH 7
ab.

Rigourous numerical verification of lemma 5 required the calculation ofH 7 for around
60 000 points. This took about 10 seconds on an IBM PC 486 66 MHZ. Our program has
been implemented in Turbo Pascal 7.0.
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5. Conclusion

In this paper we have presented a simple topological method to establish rigoursly the
existence of horseshoe dynamics in typical dynamical systems. We applied this method
to two two-dimensional systems which numerically exhibit a strange attractor, to obtain a
symbolic dynamics on an invariant set. But the existence of a strange attractor still remains
unproven.

Our method can be easily generalized to higher dimensions. The number of ‘vertical
directions’ (in our paper they-direction) can be arbitrary (finite). Also the number of
‘horizontal directions’ (in the paper thex-direction) can be increased, but in this case some
substantial changes are required in the definitions of a transition matrix and of model maps.
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