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Abstract
The predicted H-mode power threshold, PL−H, for ITER is generally estimated
from the international global H-mode threshold database (IGDBTH) by
ordinary least squares log–linear (OLS) regressions. Such fits assume that
errors are uncorrelated and (i) errors in PL−H are much greater than those
in the other parameters, (ii) errors are normally distributed and (iii) relative
errors are equal for all experiments. In this paper, the validity of this statistical
model for the IGDBTH is examined, by use of the more generalized maximum-
likelihood method. Results indicate that all three assumptions bias the resulting
scaling and so need to be relaxed. A fit relaxing all three constraints lies
outside the error bars of the OLS, indicating that the choice of the statistical
model makes a significant contribution to the resulting scaling. A chi-squared
analysis shows that none of the studied models are entirely consistent with the
data, indicating that further refinement of the physical and statistical model is
required. For ITER-like parameters, a maximum-likelihood analysis shows
a predicted threshold of 38.4 MW, compared with 31.1 MW for the OLS,
indicating that OLS tends to under predict and that quoted confidence intervals
tend to be too small. However, further studies of the sources of errors in the
IGDBTH would be required before estimates based on more detailed statistical
models can be given with confidence.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

As ITER, along with several other next step fusion devices, takes the H-mode for its baseline
scenario [1], the power required to access the H-mode on these devices is a key parameter.
The international global H-mode threshold database (IGDBTH) [2] provides data describing
H-mode threshold experiments on 13 machines and predictions of the H-mode power threshold
for next step machines, such as ITER, are made using empirical fits to this database. Such
analyses have been performed using ordinary least squares log–linear regression (OLS) [3]
and, more recently, with errors-in-variables log–linear orthogonal regression (EVOR) [4].
These fits use different statistical models, which result in different predictions from the same
dataset. This paper uses a more general fitting method, based on the maximum-likelihood
(M-L) method [5], to study the impact of statistical models on fits to the IGDBTH. The paper
is structured as follows: section 2 discusses the mathematical formalism used in the paper.
This is then used to produce scaling laws based on differing statistical models in section 3.
Section 4 considers the consistency of the different methods with the data. In section 5, the
results are brought together and conclusions drawn.

2. Mathematical formalism

Several forms of scaling laws and data selection criteria have been applied to the IGDBTH
but, as this paper only considers the impact of statistical models on scalings, only one example
need be considered here. The chosen physics model is a power law fit of the threshold power
in megawatts, P , to the plasma surface area in metres square, S, magnetic field in T, B, and
electron density in 1020 · m−3, n,

P = c1 · Sc2 · Bc3 · nc4 , (1)

where cj , j = 1, . . . , J = 4, are the free parameters to be fit. The dataset used will be
IAEA04R of [3] and [4], which contains I = 1298 observations. The observations of the
dependent variable, power, will be denoted Pi and those of the independent variables by xi,j ,
where j = 1, . . . , J − 1 = 3, xi,1 = Si , xi,2 = Bi and xi,3 = ni .

The M-L method seeks the solution to a fitting problem by finding the combination of free
parameters that result in the maximum probability density for the measured data. Formally, an
expression for the probability density of the data is constructed, using the assumed physics and
statistics models, and then this is maximized. The most general statistical model considered
here is one in which all the measured parameters have a normal distribution with known
standard deviations. The standard deviation for the power is denoted σp,i and those for S, B

and n by σi,j . The likelihood for a given set of measurements can then be expressed as

p (P |x, c) ∝
(

I∏
i=1

σ−1
eff,i

)
· exp

(
−1

2
χ2

)
(2)

where,

χ2 =
I∑

i=1

(Pi − f (xi; c))2

σ 2
eff,i

, σ 2
eff,i = σ 2

p,i +
J∑

j=1

(
∂f (xi; c)

∂xi,j

)2

σ 2
i,j ,

and f (x;c) describes the function being fitted to P . σeff,i represents the error in P together
with the propagated errors from S, B and n. The best fit is derived by minimizing (2) for the
J = 4 free parameters. Equation (2) will be solved numerically in the following sections using
the MINUIT [6] package.
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Table 1. Summary of fits of equation (1) to IAEA04R assuming errors on logged parameters are
normally distributed.

Statistical model c1 · 102 cS cB cn

(1) OLS 7.7 0.80 0.65 0.44
(2) M-L with (i), (ii) and (iii) 7.7 0.80 0.65 0.44
(3) EVOR 7.5 0.85 0.58 0.56
(4) EVOR with mean errors 7.5 0.85 0.58 0.56
(5) M-L with (ii) and (iii) only 7.5 0.85 0.58 0.56
(6) M-L with (iii) only 7.7 0.97 0.32 0.88
(7) OLS adjusted for log bias 7.6 0.80 0.65 0.44

3. Fits to the threshold database

For the fits, the measured parameters are taken from IGDBTH and their standard deviations as
those calculated in [4]. For comparison, the OLS and EVOR fits are also calculated directly
using the SAS package [7]. The errors given in [4], are fractional errors estimated for each
machine: they can be thought of as rough estimates of the true errors. The errors are all assumed
to be uncorrelated and normally distributed and so they are appropriate to the formalism of
section 2.

3.1. Simple OLS fit

OLS fits are based on the statistical model described in section 2 with three further assumptions:

(i) that errors in P are much greater than in the other parameters
(ii) that the relative errors may be taken as equal for all experiments

(iii) that the logs of P , S, B and n are essentially normally distributed

With these further assumptions, P , S, B and n can be replaced in (2) by their log values
and f (x;c) takes on a linear form. The standard deviations are replaced by the relative errors,
sp,i = sp and si,j = 0, and the exponent in equation (2) reduces to a quadratic in c and
equation (2) can be minimized by linear algebra.

The resulting fit of this statistical model to IAEA04R is shown in table 1, where the global
value of the relative error in P is calculated as the square root mean square of the individual
terms, s2

p = (1/I)
∑I

i=1 s2
p,i . Fit 1 represents the SAS OLS fit and Fit 2 a M-L fit with the

assumptions outlined above. As can be seen, the fits are equal demonstrating that OLS fits do
indeed use this model. The validity of each of the assumptions made will now be studied in turn.

3.2. Inclusion of errors on independent variables

Assumption (i), that errors in P are much greater than in the other parameters (σp,i � σi,j ),
has already been shown to be in need of relaxation [4]. The mean relative error of sn ≈ 0.065
is over 40% of that of sP ≈ 0.156, for example. If assumption (i) is relaxed, equation (2) has
a more complicated form, but it can be shown [8] that it can still be solved analytically. This
is the statistical model used in EVOR.

In table 1, Fits 3 and 4 represent SAS EVOR fits and Fit 5 a M-L fit with the assumptions
outlined above. Fit 3 shows the case where sp and sj are calculated as indicated in section 3.1.,
and Fit 4 where they are calculated as sp = (1/I)

∑I
i=1 sp,i , an alternative method also used

in the literature [9]. Fit 3 and Fit 4 are identical to 2 decimal places, indicating that the method
is not sensitive to which of these methods is chosen. Comparing the M-L fit to either of the
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Table 2. Summary of fits of equation (1) to IAEA04R assuming errors on parameters are normally
distributed.

Statistical model c1 · 102 cS cB cn

8. M-L, Errors on P only 5.6 0.86 0.72 0.58
9. M-L 6.0 0.96 0.45 0.80

EVOR fits, it can be seen that the resulting scalings agree, demonstrating that EVOR fits do
indeed use this model. Comparing the EVOR fit with the OLS fit, it can be seen that the
resulting scalings are indeed different. This indicates that assumption (1) does indeed need to
be relaxed as not doing so results in biasing of the scaling.

3.3. Inclusion of machine-to-machine variation in errors

Assumption (ii), that the relative errors may be taken as equal for all experiments (sp,i = sp

and si,j = sj ), is an approximation as the relative errors in all parameters have been shown to
vary from tokamak to tokamak [4] with sp,i = 0.06–0.23, sS,i = 0.01–0.10, sB,i = 0.01–0.03
and sn,i = 0.02–0.10. This assumption can be easily relaxed in the M-L analysis and the
resulting fit, taking the relative errors for each tokamak given in [4], is given as Fit 6 in table 1.
As with assumption (i), the relaxation of this assumption has had a clear effect on the resulting
scaling indicating that assumption (ii) does need to be relaxed as not doing so biases the result
of the scaling. It should be noted at this point that (ii) alone can be relaxed within the OLS
method, but not within the EVOR method. Neither OLS or EVOR can thus relax both (i) and
(ii) together.

3.4. Relaxation of normally distributed logs constraint

Assumption (iii) is that the logs of P , S, B and n are essentially normally distributed. This
is the case for very small relative errors on all parameters (si,j , sp,i � 1) but as these errors
become larger the log distribution becomes strongly asymmetric. The assumption can be easily
relaxed in the M-L analysis, by simply using the P , S, B and n themselves in equation (2)
rather than their logs.

The effect of relaxing this one assumption can be seen by comparing the OLS fit of table 1
(Fit 1) with Fit 8 of table 2. Fit 8 contains the same assumptions, (i) and (ii), as the OLS but
with minimisation performed with P , S, B and n directly. It can be seen that relaxing this
assumption alone has had a marked effect on the scaling.

An example of the effect of log-skewing is indicated in figure 1 which shows the
distribution of the logarithm of a normally distributed variable x = N(x0, σx), with x0 = 1 and
σx = 0.5, where N (x0, σ ) denotes the normal distribution with mean value x0 and standard
deviation, (SD) σ . The distribution of ln x is very different from that derived by simple error
propagation, N

(
ln x0, σ x

/
x0

)
, which is that assumed by OLS. Firstly, the ln x distribution has

a different mean (E (ln x) ≈ ln x0 −σ 2
/

2.x2
0 , where E(X) denotes the expectation value of the

variable (X) and standard deviation, and, secondly, its distribution is skewed. The former can
be corrected for in OLS, simply by replacing the logged variables by their expected values, and
this has been done in the log-shifted fit, Fit 7 of table 1. It can be seen that the resulting scaling
differs little from the standard OLS. This method is akin to taking the logs as being distributed
like N(E[ln x], SD[ln x]) which can be seen from figure 1 to be a poor representation of their
true distribution, due to the large skewing. This demonstrates that it is the skewing of the log
distribution that is the dominant contribution to the biasing of OLS.
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Figure 1. The probability density distribution of (a) a normally distributed variable, x = N (1,0.5)
and (b) its log, both shown as solid black lines. Also shown in (b), the distributions N (0,0.5) as
dotted (red) and an adjusted normal distribution N(E[lnx]SD[lnx]) as dot-dashed (blue).

As a final step, all three assumptions of section 3.1 can be relaxed and a full fit made to
equation (2). The result is given as Fit 9 of table 2. This is the fit for the statistical model
where P , S, B and n are all assumed to have normally distributed uncorrelated errors, which
vary from tokamak to tokamak. When compared with OLS, the M-L fit to equation (2) differs
strongly indicating that the combined effect of the assumptions of section 3.1 is to produce a
biasing in the original fit.

3.5. Further statistical models

In all the above analyses errors were assumed to be uncorrelated and normally distributed.
The M-L method can be easily extended to alternate error distributions, by replacing the
probability distribution in equation (2) with the one appropriate to the chosen statistical model.
Correlations between errors in P , S, B and n, for a given experiment, would be expected
to be weak, but other choices of variables may require such correlations to be addressed.
Correlations between measurements from different experiments on the same machine, due
perhaps to calibration errors, are more likely and could be similarly included. Examples of
non-normal error distributions might derive from power stepped L–H threshold experiments
where the threshold is known only to lie somewhere between two measurements. In such
cases, the M-L would tend towards discriminant analyses [10].

Another area for consideration is the distribution of the independent data. All methods
used in this paper assume that the underlying independent data are drawn randomly. This is
clearly not the case as technical and physical constraints on individual machines, coupled with
the varying amounts of data from each machine, result in correlations of the independent
parameters. An example of this, showing the n–S correlation, can be seen in figure 3.
These effects can be included in M-L analyses by either extended M-L and/or by including
availability in the analysis [5]. Weighting methods have been applied to other plasma physics
databases [11, 12] in an attempt to redress such problems and could equally be applied to
the IGDBTH. Bayesian methods [13], which have been applied to other plasma physics
databases [14, 15], could also be used to include such effects as they naturally include such
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Figure 2. (a) The observed loss power at the L–H threshold, PLOSS, against that predicted from an
OLS fit, POLS, for the IAEA2004R dataset drawn from the IGDBTH. (b) The observed loss power
at the L–H threshold, PLOSS, against that predicted from the full M-L fit, PM-L, for the IAEA2004R
dataset drawn from the IGDBTH.

Table 3. Summary of fits for a selected set of statistical models.

Statistical model c1 · 102 cS cB cn χ2
N PIT ER

OLS 7.7 ± 0.3 0.80 ± 0.01 0.65 ± 0.03 0.44 ± 0.03 7.43 31.1 ± 7.1 %
EVOR 7.5 ± 0.3 0.85 ± 0.02 0.58 ± 0.03 0.56 ± 0.03 7.09 34.3 ± 7.2 %
M-L 6.0 ± 0.3 0.96 ± 0.02 0.45 ± 0.04 0.80 ± 0.05 6.26 38.4 ± 9.8 %

information as a prior distribution. In this context, it should be noted that the M-L method
used here corresponds exactly to a Bayesian method with the model described in section 2,
a uniform prior distribution for the free parameters and independent variables and the power
law linearised about its value for the measured parameters.

4. Errors and confidence

The observed threshold power is plotted against that calculated by the OLS fit (Fit 1) and the
M-L fit (Fit 9) in figures 2(a) and (b), respectively. By eye, the agreement between the data
and both fits is similar. The spread of the data is fairly wide, with the scalings describing
some of the trend in the data from machines such as ASDEX-Upgrade, C-Mod, COMPASS,
DIII-D, JET and JT60-U. Other machines, such as ASDEX and TCV, seem to be less well
described. The observed H-mode power threshold for TUMAN-3M lies systematically above
both scalings. This is believed to be because the TUMAN-3M data are all taken from limiter
discharges, rather than the single null discharges which make up the majority of the dataset.
For a fuller understanding of how well the scalings describe the data, the errors in the scalings
themselves must first be quantified.

The covariance matrix for the free parameters, c, describes the variance of all J = 4 free
parameters along with their covariances. The resulting errors are given for the OLS, EVOR
and M-L in table 3. It should be noted that, as a consistency check, the errors for the OLS fit
were found to agree with those calculated by the standard OLS regression method [5]. All the
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Figure 3. The electron density, n, against the plasma surface area, S, for IAEA2004R dataset
drawn from the IGDBTH. The negative n–s correlation can be clearly seen.

methods differ from the others, in at least one coefficient, by more than the predicted errors.
This is because the errors are calculated assuming that the statistical model used for a particular
fit is correct. The fact that the three fits differ by more than their errors means that the choice
of model has a significant effect on the outcome of the fit. Partly the IGDBTH is sensitive to
the choice of the statistical model because of correlations that exist between the parameters. S

and n have the strongest correlation, ρnS = −0.73, as can be seen in figure 3. This correlation
means that if the exponents of these two parameters are raised or lowered together, then the
predicted power, for points in the database, does not change greatly.

To determine goodness of fit then, a statistical model must be chosen and a measure of
the consistency of the data and fit to it must be determined. This is done here by taking the
value of χ2 in equation (2), which can be shown to have an expected value of I − J = 1294.
The normalized χ2, χ2

N = χ2/(I − J ), thus has an expectation value of 1 and can be shown
to have a standard deviation approximated by 2/

√
I ≈ 0.06 [5]. In this paper, the assumed

statistical model is one with all three assumptions of section 3.1 relaxed. The resulting values
of χ2

N are given in the final column of table 3. It can be seen that the M-L has the lowest
χ2

N , followed by EVOR, with the OLS being the weakest representation of the data, given the
assumption that the chosen statistical model is correct. In each case, the differences between
these methods are significantly larger than the standard deviation of χ2

N .
However, it can also be seen from table 3 that for the M-L fit χ2

N = 6.26, which is
significantly much greater than one. This implies that the combined physical and statistical
model used in this paper does not sufficiently describe the data. This may be because the wrong
form of the physical model has been chosen, important physics variables have been ignored,
the size of the errors in the statistical model have been underestimated and/or a more detailed
statistical model is required. The physical model is clearly very crude, and the statistical
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model is still relatively simple, so it is perhaps not surprising that the resulting χ2
N is so far

from unity. Alternative physical models, including ones with further restrictions on the dataset
or physics-based constraints on the scalings, could be studied within the M-L framework. The
statistical model could be refined as discussed in section 3.5 or by improving the estimates
of the calculated errors for each observation in the dataset. This would involve an analysis
of the sources of errors in each machine to provide a reliable estimate of the error on each
observation of each parameter used in the fits. The facility to store the individual errors on
each parameter would also have to be added to the IGDBTH database.

In the final column of table 3, the power required for a H-mode transition on ITER is
given, assuming S = 683, B = 5.3 and n = 0.5. The results would be for a pure deuterium
ITER plasma, and it should be noted that with the observed P ∝ M−1 scaling [16], where M is
the mean hydrogenic atomic mass, the predict threshold for deuterium–tritium plasmas would
be somewhat lower and that for pure hydrogen plasmas somewhat higher. The error bars are
derived by propagating the errors on the fitted parameters and, again, represent one standard
deviation. 95% confidence intervals, representing two standard deviations, can be calculated
from them. For example, the 95% confidence interval for the M-L fit is P = 30.9–45.9.
There is a clear difference in the predicted power, largely coming from the variation in size
scaling through the parameter S. Thus, the choice of the statistical model has a similarly large
impact on the final scaling. This would suggest that OLS and EVOR scalings do, in general,
underestimate the predicted power threshold for ITER. Perhaps more importantly, these results
suggest that the error bars on the predicted power for the existing scalings are too small. As
uncertainty exists in the choice of the statistical model itself, a conservative procedure would
be to base confidence intervals on results from a set of statistical models rather than on just one.

Comparing the three fits of table 3 with other recent fits to the IGDBTH [3, 17–19], which
are all OLS fits to subsets of the full database, the OLS and EVOR are seen to lie within
the range of the previous fits. In contrast, the M-L fit corresponds to the strongest density
scalings and weakest field scalings previously observed. This could be interpreted as evidence
against the M-L or equally as a demonstration that the previous OLS fits introduced a bias. A
more concerning consistency check for the M-L is that its density and field scalings lie outside
previous fits obtained when taking data from only one machine, with the one exception of the
P ∝ n0.79 · B0.56 observed for ASDEX-Upgrade [17]. For the ITER predictions, the M-L fit
lies towards the high end of the scalings but is not the highest.

5. Conclusion

By using the more general M-L method, the statistical model used in both OLS and EVOR fits
has been assessed. The assumptions that (i) the errors in P are much greater than in the other
parameters, (ii) the relative errors do not vary from experiment to experiment and (iii) the logs
of P , S, B and n are normally distributed have all been shown to be in need of relaxation and
to introduce a significant level of biasing in the resulting fits. For the third assumption, this has
been shown to be due to the skewing effect of taking the logarithm of a normal distribution.

The sensitivity of the fit to the statistical model illustrates the importance of taking care in
its selection. The most sophisticated model used in this paper has a goodness of fit measure of
χ2

N = 6.26, which indicates that there are still important missing details in the physical and/or
statistical model. For ITER this model predicts a threshold power of 38.4 MW, significantly
higher than either OLS, 31.1 MW, or EVOR, 34.3 MW. This indicates that OLS and EVOR
fits tend to underestimate the ITER predicted power threshold. The sensitivity of the M-L fits
to the calculated errors, which are only roughly estimated at present, means that these errors
must be better understood before a single statistical model, and hence a single fitting method,
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can be chosen. For the present, confidence intervals based on a set of statistical models are the
most appropriate.
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