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A .  N .  Davenport and G. W. W. Stevens 

substantially unifoim density over an area of several square 
millimetres can be obtained. In this connexion it is important 
to note a difference in the “geometry” of radiation measure- 
ment by a counter and autoradiography. The volume of 
the ionizable gas in a Geiger-Muller tube and the distance 
between the tube and the sample ensure that the counting 
rate is proportional to the total radioactivity integrated over 
the whole area of the sample. On the other hand, the thin 
sensitive layer and close contact normally used for auto- 
radiography mean that the film records the point-to-point 
distribution of radioactivity over the area of the specimen. 
Straightforward autoradiography will, therefore, only give 
the desired uniformity of density when the specimen itself is 
uniform. More uniform density from uneven specimens 
could, however, be obtained by increasing the distance 
between the a n i  and the source. If a number of sources 
were measured simultaneously in this way it might be neces- 

sary to place a metal plate with suitably positioned apertures 
between the specimens and the film, to reduce the extent to 
which the density opposite one source is influenced by 
“cross-fire” from adjacent sources. 
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The conception of viscosity as action per unit volume is used in the analysis of the flow of a 
suspension or macromolecular solution in a tube. The flow mechanism adduced involves the 
postulation of molecular vortices of which the suspended particles or molecules form the nuclei. 
This mechanism is used as a basis for the derivation of a relationship between the specific 
viscosity of the suspension and the linear dimensions of the vortices. The laws of Einstein, 
Staudinger, Huggins and their co-workers are derived simply and as special cases of this relation- 
ship. The law relating viscosity with concentration is also derived with reference to the same 
mechanism. This law assumes the form vsp = an +- bn2 where a and b are constants and qsp 
and n are respectively the specific viscosity and molecular concentration of the solution. It is 
shown to be in good agreement with typical experimental results. The effect of the aspect 
ratio of the suspended particles or molecules is also considered and it is shown that the longest 
particle dimension rotates in a plane normal to the vortex axis. Although no quantitative 
relationship between viscosity and velocity gradient has been derived the mechanism is observed 

to lead to results in qualitative agreement with the experimental data. 

1.  I N T R O D U C T I O N  

The very extensive use of capillary viscometers in investi- 
gations into the physical characteristics of suspensions, and 
particularly in the indirect determination of macromolecular 
weights, calls for a closer study of the mechanics of flow for 
fluids of this kind than has apparently been attempted hitherto. 
Although an enormous number of so-called viscosity measure- 
ments have been made on such fluids there seem to have been 
but few attempts to interpret these in terms of any clearly- 
conceived flow model. Many empirical relationships have 
been devised but these have in the main yielded no significant 
ideas relevant to the processes involved. 

The well-known equations of Einstein, Staudinger and 
Huggins(I,*, 3, represent perhaps the most successful attempts 
so far to investigate theoretically the relation between the 
apparent viscosity of a solution and the physical constants of 
the solvent and of the particles of solute dispersed in it. 
Although these laws show good agreement with experiment 
in certain cases, they have limited applicability and provide 
no satisfactory basis for correlating viscosity and concen- 
tration where the relation between these is known to be 
non-linear. 

In the present paper an attempt is made to analyse the 
mechanical processes of flow of suspensions and macro- 

molecular solutions of non-electrolytes through tubes. The 
evidence derived from this analysis is employed in the con- 
struction of a flow mechanism and this is in turn used in the 
derivation of fundamental viscosity relationships. These 
are compared with the corresponding experimental relation- 
ships. 

2. T H E  N A T U R E  O F  V I S C O S I T Y  I N  S U S P E N S I O N S  

Consideration of the dimensions of viscosity, as defined 
by Newton’s equation, shows it to be a measure of the action 
per unit volume within a fluid. In the case of a homogeneous 
fluid moving through a tube under laminar flow conditions 
the action results from the relative motion in translation of 
adjacent parts of the fluid. In these circumstances a fluid 
can be regarded as having a continuous structure, and, for 
the purposes of analysis, can be imagined as being made up 
of elementary cylinders of liquid each subject to viscous 
forces resulting from the translational motion relative to it 
of neighbouring elements. The integration of the equation 
representing the dynamic equilibrium of such an elementary 
cylinder under the opposing actions of the force due to the 
applied pressure and the viscous resisting force leads to the 
familiar expression for the velocity along a streamline and 
thence ?o Poisseuille’s formula. This approach, however, 
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breaks down in the case of an inhomogeneous fluid, for here 
the action arises not only through the relative motion in 
translation of adjacent parts of the continuous phase, but 
also to the motion of the solute molecules, or the particles, 
within it. 

It has been shown that, in general, the motion of a viscous 
liquid cannot be irr~tational,(~) and consideration of the 
variation of velocity gradient within a tube, and hence of the 
forces acting on a suspended particle, suggests that under 
these circumstances rotation of the particle certainly occurs. 

The total action involved in the flow of an inhomogeneous 
fluid is thus seen to consist in general of three components. 
These are respectively, the action arising through the relative 
motion in translation of adjacent parts of the continuous 
phase, that due to the rotation within it of the macromolecules 
or other inhomogeneities and the action resulting from the 
translation of these suspended particles relative to the con- 
tinuous phase. This last component, as will be shown later, 
is small compared with the other two except at fairly high 
concentrations. 

3. F L O W  M E C H A N I S M  

The observations made in the last section lead directly to 
the conception of the flow mechanism in the cases under 
consideration as involving the translation of the solvent and 
the simultaneous translation and rotation of the particles of 
solute within it. 

The suggested rotation of solute particles will obviously 
involve the movement with them of some entrained solvent 
2nd for this reason the proposed flow mechanism must be 
modified slightly so as to involve the translation through the 
tube of what may be called “macromolecular vortices” 
rather than of isoiated particles. 

Let us now consider some of the implications of this 
proposed flow mechanism, and, in the first instance, let us 
consider the flow of a suspension involving only a single 
solute particle. 

If qS denotes the coefficient of apparent viscosity of the 
so!ution (that is, the volume-average action per unit volume) 
and 7 the coefficient of viscosity of the solvent, the total 
action, A,, within the tube due to the single vortex is given by: 

A ,  = - 7 )  (1) 
where R and 1 are respectively the radius and length of the 
tube. It should be noted that, since action per unit volume 
varies from point to point, it is necessary to deal with the 
total action within the tube and the total internal volume of 
the tube as a means of arriving at  any relation between 
measured values of viscosity and the constants of the solute 
and solvent. 

Regarding the vortex as an “ideal” vortex of radius a 
and length h, two extreme cases can readily be distinguished, 
e.g. one in which a is negligible compared with h,-a rod- 
like vortex,-and the other in which a is large compared with 
h,-a disk-like vortex. 

(9 h much greater than a. In this case the total action due 
to the rotation of the vortex will arise almost wholly as a 
result of the viscous forces on its curved surface and the 
resisting couple G acting on it will be given by: 

G = 47717ha2w (see Ref. 5) (2) 

AS an isolated vortex no forces tending to produce trans- 
where U is its angular velocity. 

lation relative to the solvent will act on it. 

Hence A, = 4nyha2w212/~2 (3) 

where w is the linear velocity of the solvent on the streamline 
along which the vortex moves. 

The factors appearing on the right-hand side of equation (3) 
can be grouped and equation (3) rewritten as 

A, = k,qF (4) 
where k ,  is a “flow” factor and F a “form” factor of the 
vortex, i.e. F = 4nha2. ( F  is the viscous resisting couple 
‘per unit angular velocity in a fluid of unit viscosity.) 

Assuming that Poisseuille’s law holds in this case v = 
P(R2 - r2)/4$ and hence, in accordance with the require- 
ment of least action, w = dv/dr, i.e. o = Pr/2$, where r 
is the radius of the streamline, P being the applied pressure 
difference. 

Therefore, kl = 412r2/(R2 - r2)2 

Again, for least action A ,  must have its least value and 
therefore the vortex must flow along a streamline adjacent 
to the tube axis. Assuming a k e d  value of r, kl is seen to 
be constant. 

For very dilute solutions in which it can be assumed that 
the motion of any one vortex is unaffected by neighbouring 
vortices, the total action within a tube A ,  when the number 
of particles per unit volume in the solution is n, is nnR21 times 
as great, assuming all vortices to be identical. 

i.e. A = nA,nR21 (5) 
(In view of the “normal” particle size distribution usually 
assumed, the present analysis can only be regarded as appli- 
cable to “average” particles.) Now qs - 7 = A/nR2Z in 
the present case. 

Therefore 17s - 17 = k,n17F (6) 
from equation (4). 

In words, the specific viscosity of a very dilute suspension 
(that is, the fractional change in the viscosity of the solvent 
due to the suspension in it of the solute) is directly propor- 
tional to the number of suspended particles per unit volume 
provided that the “form” factor of the molecular vortices 
remains constant. 

(ii) a much greater than h. In  this case the total action 
due to the rotation of the vortex arises almost wholly as a 
result of the viscous forces acting on the plane vortex surfaces. 
Here G = (32/3)7a3w,(6) and the “form” factor is in this 
case given by F = (3213)~~. 

Subject only to the different value of F i n  this case equation 
(6) can be shown, as previously, to hold. 

(iii) h and a of the same order of magnitude. Subject again 
only to a further different value of the form factor, equation (6) 
can be shown similarly to hold in this case also. 

4. T H E  L A W S  O F  E I N S T E I N ,  S T A U D I X G E R  
A N D  H U G G I N S  

Empirical equations based on the analyses of Einstein, 
Staudinger and others are commonly used in the determina- 
tion of molecular weights from viscosity me8surements. It 
is of interest, therefore, to consider the signXcance of such 
equations in the light of the flow mechanism postulated in 
the last section. 

Previous workers have made no hypothesis in regard to 
the existence of molecular vortices but have dealt with the 
suspended particles themselves and have variously assumed 
that they are spherical (Einstein),(’) cylindrical (Staudinger 
and Hever)(’) or rod-like   hug gin^).(^) 
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By replacing the molecular vortices assumed in the present 
analysis by particles having the shapes referred to, these 
laws can be derived very simply. 

Thus, assuming the particles to be spherical 
G = 8777~~0 (see Ref. 7) 

Now the total volume of the spheres in unit of volume of 
and therefore, P = 8 7 7 ~ ~ .  

the suspension, 4, is given by 4 = n(4/3)za3, 
and therefore, from equation (6), 

17s - rl = k247 (7)  
where k2 is a constant. 

The specific viscosity is therefore directly proportional to 
the volume-concentration as shown by Einstein. 

Next, let us assume that the particles are cylindrical with 
lengths great compared wiih their radii, and rotate about their 
cylindrical axes. Here, as in Section 3(i), F has the value 
477a2h where a is now the radius of the cylindrical particle 
and h its length. 

For particles of constant section the mass M of the particle 
is proportional to h. 

The mass-concentration, c, of the solution is nM and, 
from equation (6), therefore 

7 s  - 7 = k3rlc (8) 
where k,  is a constant. 

That is, the specific viscosity is directly proportional to the 
mass-concentration and independent of the particle size, as 
shown by Staudinger and Hever for solutions of mono- 
saccharides and disaccharides. 

Finally, let us assume that the particles are rod-like and 
rotate about axes normal to their lengths. Here, the mole- 
cules, together with the entrained solvent must be regarded 
as comprising disk-like particles. The molecular weight is 
therefore proportional to the diameter of the disk. 

As in Section 3(ii), F = (32/3)a3. 
But u3 = k4M3, where M is the molecular weight and k,  a 

constant. Therefore F = k5M3, k,  being constant. 
If c is the mass-concentration of the solution, from equa- 

tion (6), we have 

k ,  being constant. 
This agrees with the results of Huggins and other workers, 

who showed that the intrinsic viscosity (that is, the limiting 
value as the concentration approaches zero of the specific 
viscosity per Unit concentration) is proportional to the 
square of the molecular weight. 

The applicability of equations (8) and (9) in certain limited 
cases has led to the general adoption of an empirical mole- 
cular weight equation of the form qbt = kMg where vInt is 
the intrinsic viscosity and k and c( are constants. In the 
light of equation (6) it would appear that cc is a shape factor 
for the suspended particles. Its value, as seen from the two 
extreme cases cited in Sections 3(i) and 3(ii), lies somewhere 
between 0 and 2. 

qs - 7 = k,TcM2 (9) 

5 .  T H E  V I S C O S I T Y - C O N C E N T R A T I O N  L A W  

The mechanisms considered to date all lead to a linear 
relationship between viscosity and concentration. This 
relationship rests on the assumption that individual molecular 
vortices or the individual particles themselves are independent 
of their neighbours; it must therefore be regarded as only an 
approximation and an approximation moreover which 
becomes progressively less valid as concentration is increased. 

Starkey 

Departure, from such a linear relationship is, furthermore, 
clearly indicated by the relevant experimental data; this 
confirms the validity of the straight-line law only as an 
approximation in the case of very dilute solutions. 

In view of this limitation of current theory it becomes 
important to consider whether the proposed moiecular vortex 
theory can be extended so as to take account of the con- 
ditions existing in more concentrated solutions. 

The flow mechanism outlined in Section 3 leads, in accor- 
dance with the principle of least action, to the conclusion 
that an individual particle flowing through a tube would 
follow a path adjacent to the tube axis. The stability of the 
vortices associated with a succession of such particles, 
however, requires the formation about the tube axis of a 
“Karman vortex street.”@) Let us then consider some of 
the main implications of this requirement in the present case. 

According to the theory of vortex streets each vortex has a 
translational velocity, U, impressed on it as a result of the 
combined action of all other vortices, where 

K being the vortex strength and L the distance measured in 
the direction of flow between the vortices in either “lane.”@) 
By definition the vortex strength, K, is given by the equation 

where a is the radius of the “ideal” vortex and w its angular 
velocity. 

Since, in the present case, a and w are both small the 
molecular vortices postulated must in general be “weak’ 
vortices. Even at moderate concentrations of the solutions, 
then, U will be small, but will increase as concentration 
increases under given external conditions. 

An approximate equation relating specific viscosity and 
concentration, applicable at  moderate and even fairly high 
concentrations, can now be derived. 

Let n be the number of solute molecules per unit volume of 
solution. The number emerging from both lanes in the 
vortex street per second is therefore 2(v + U ) / L  

U = K/22/(2)L (10) 

K = 277a20 (1 1) 

Therefore, n = 2(v - U)/LV (12) 
where Vis the volume of solution discharged per second from 
the tube. Neglecting U compared with v, and making use 
of the approximate constancy of c/ V, we have, 

n = k,/L (13) 
or, from equation (lo), n = k8U (14 
In words, the relative velocity of the solute with respect to 
the solvent increases approximately linearly with concen- 
tration. The action, A,, involved as a result of this relative 
trandation, since the resisting force is proportional to 7 U, 
is given by 

Since the action A,, due to rotation, as previously shown, is 
given by 

= klO?n (16) 
the total action, A ,  is 

A ,  = kgqn2 (15) 

A = T(kl,n + k,n2) (17) 
kg and k,,  being constants. 

That is, the specific viscosity of a solution is related para- 
bolically with its concentration. 

As a means of testing equation (17) by experiment the 
typical results of Kendall and Monroe(Io) have been used. 
In the first and third columns of the table the corresponding 
values obtained by them for the molecular concentration 
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and the viscosity of a solution of.naphthalene in benzene at 
25” C are quoted. The values of (concentration)2 and specific 
viscosity given respectively in the second and fourth columns 
were calculated directly from these. Using the co-ordinates 
of two points on the specific viscosity-concentration graph 
the constants k, and k,, of equation (17) were evaluated. 
The specific viscosity-concentration law in the present case 
was hence found to be 

qsP = 1.60.10-2n + 1.08.10-4n2 (18) 
The values of the specific viscosity obtained by substituting 
the values of n and n2, given in the first two columns, in 
equation (18), are recorded in the 8 t h  column, the per- 
centage discrepancies between these calculated values and the 
experimental values of column four being shown in the last 
column. 

Corresponding experimental and theoretical values of specific 
viscosity at various concentrations 

n 
0.00 
5.10 

11.21 
15.38 
19.29 

23.98 
26.93 

€ 
n2 x h 

0.0 0.6048 
26.0 0.6565 

125.7 0.7261 
237.2 0.7707 
372.5 0.8263 
576.0 0.8764 
723.6 0.9178 

?xperimcntai 
Tisp 

0.000 
0.085 
0.200 
0.274 
0.366 
0.449 
0.517 

Calculated 
7;s. 

0.000 
0.085 
0.193 
0.272 
0.349 
0.446 
0.508 

Discuepancy 
% 

0.0 
0.0 
3.5 
0.7 
4.6 
0.6 
1.7 

6 .  E F F E C T  O F  A S P E C T  R A T I O  

In the derivation of equation (6) in Section 3 two extreme 
cases were distinguished, namely (i) that of the rod-like 
vortex in which the length is big compared with the radius 
and (ii) that of the disk-like vortex io which the radius is 
large compared with the length. Equation (6) was shown 
to be equally applicable to both, though it was noted that 
the “form” factor differed in the two cases. 

In view of the considerable use made of viscosdy measure- 
ments in the study of high polymers it is of interest to consider 
whether macromolecules in which one dimension is large 
compared with the others would lead under the flow con- 
ditions under discussion to the formation of rod-like or disk- 
like vortices. That is, would macromolecules of large aspect 
ratio K/d, K being the longest and d the shortest dimension, 
orientate themselves so that K is parallel to or perpendicular 
to the vortex axis? 

Making the assumption that under the circumstances 
visualized entraining of the solvent by the solute molecules 
occurs only to a limited extent, the dimensions K and d can 
be identified approximately and respectively with h and 2a 
in the former case and with 2a and h in the latter. 

The ratios of the actions involved in the two cases is the 
same as the ratio of the form factors and therefore equal to 
3ah/8a. Since K is much greater than d, the action involved 
when the molecule is orientated parallel to the axis of rotation 
is big compared with that for perpendicular rotation. In 
accordance with the principle of least action, therefore, the 
molecule will rotate so that its longest dimension is normal 
to the axis of rotation, the molecular vortex consequently 
being disk-like. 

This conclusion is consistent with the observations of 
Binder.(”) He investigated the relationship between the 
orientations of sections of human hair and their aspect ratios 
and found that for very large values of the latter the specimens 
orientated themselves in the perpendicular position. 
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In  the light of the above it becomes apparent that the direct 
association of specific or intrinsic viscosity with molecular 
weight, M ,  in the manner suggested by the equations of 
Staudinger and Huggins and their co-workers may be 
misleading. 

The index of M in an empirical, formula of the type 
yrnt = kMa must clearly depend upon the form factor of the 
vortices and hence on the aspect ratio of the molecules 
themselves. The index would, however, appear to provide an 
indirect measure of the shape, degree of branching, etc., of 
molecules of given molecular weight. 

7. G E N E R A L  O B S E R V A T I O N S  

The mechanism outlined in the previous sections involves 
the motion of vortices along streamlines adjacent to the tube 
axis, as shown in Section 3. The action per unit volume is 
hence greatest in those regions where the velocity gradient 
is least; that is, the coefficient of viscosity decreases with 
increasing velocity gradient. This qualitative result is con- 
sistent with the variation found experimentally and investi- 
gated quantitatively by Tyler and Richardson,(12) and hence, 
indirectly, with the well-established fact that the volume of 
soliition discharged per second increases with applied pressure 
to a value in excess of that to which simple proportionality 
would lead. 

Further work is necessary to reduce to quantitative terms 
these and other qualitative relationships suggested by the 
analysis. 

8. C O N C L U S I O N S  

The flow mechanism described follows directly from the 
conception of viscosity as action per unit volume. It leads 
simply to the laws of Einstein, Staudinger and Huggins and 
their co-workers as special cases of a general law which is 
derived. The quadratic law connecting specific viscosity with 
concentration, which is also derived, is shown to be in good 
agreement with typical experimental results. The mechanism 
is observed to be qualitatively consistent with other experi- 
mental data. 
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