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Error and Accuracy in Thermocouple Psychrometry 

BY J. L. MONTEITH 
Department of Meteorology, Imperial College, London 

Colniniinacated by B. J. Mason; MS. receiwed 3rd November 1953 

Abstract. The paper discusses the main sources of error in the determination 
of vapour pressure with a thermocouple psychrometer. The  predictions of 
theory and the results of experiment lead to no general agreement on the value 
of the constant in the classical psychrometer equation. A new derivation of the 
equation suggests a reduction of the commonly accepted value by a power of the 
ratio of diEusion coefficients for heat and water vapour. An expression is derived 
for the radiation error due to the difference of temperature between the wet bulb 
and its surrounding;. Conduction of heat along the thermocouple wires and 
extraneous radiation produce errors for which an expression is derived for a 
particular thermocouple model. Finally, wet-bulb temperature errors are 
related to the corresponding vapour pressure errors. 

5 1. INTRODUCTION 
13 E psychrometric determination of humidity, though theoretically simple, 
is subject in practice to a variety of errors. First, there is only empirical T justi5cation for the use of the classical psychrometer equation and the 

so-called ' constant' of the equatioil has never been accurately determined. 
Second, since the wet bulb is almost invariably at a lower temperature than its 
surroundings, it gains heat by radiative exchange, a source which is ignored in 
classici1 thexy .  Further errors may arise from conduction of heat to 
the wet bulb irom its su?pxts  and from extraneous (e.g. solar) radiation. 

Since the thermocouple is an ideal instrument for the measurement of small 
temperature differences, and since the geometry of the system is simple, the 
theory of these errors has been developed with reference to the thermocouple 
psychro:neter. Other sources of error exist which cannot be treated mathe- 
matically and which have been summarized and discussed by Wylie (1949). 

S 2. THE PSYCHROMETER EQUATION 
The  classical wet-and-dry-bulb theory first postulated by august in 1825 

and elaborated by many later workers leads to an equation of the form 

where T is the air temperature ("c), T' the wet-bulb temperature, p the total 
atmosplieric pressure (mm Hg), e the vapour pressure of the air, e,( T ) the 
vapour pressure of air saturated at T' ,  and A is the psychrometer 'constant'. 

e,( T ' )  - e = Ap( T - T' )  . . . . . . (1) 

In  its fully developed form (Whipple 1933) classical theory gives 
C e,( T ' )  A =  L ( T  -(1- )E ?) ... ...( l a )  

where c,, is the specific heat of air at constant pressure, L(T')  is the latent hent 
of condensition of water vapour at T',  and E is the ratio of the densities of water 
vapour and dry air at the same temperature and pressure. 
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Awbery and Griffiths (1932) measured the dry- and wet-bulb temperatures 
of homogeneous air samples with mercury-in-glass thermometers aspirated at 
3 m sec1  and determined the vapour pressure independently from the dew point 
or by an absorption method. From these observations, which were made with 
values of T' between 2 0 " ~  and 70°c, Whipple found a mean value of A = 6.6 x 
with individual values ranging from 2 to 9 x but showing no systematic 
variation with temperature. In  the same temperature range, A calculated from 
eqn (1 a )  varies from 6.38 to 4.79 x On this evidence it seemed possible 
to neglect the term e,( T')/p, which is principally responsible for the temperature 
dependence of A. 

Muller-Cosna and Maier-Leibnitz (195 1) have conducted experiments with 
a fine-wire thermocouple psychrometer producing air of known humidity by 
passage over acid of known concentration and temperature. At 2OOOc they 
found A to be 6.2 x On theoretical grounds they derived the same value 
assuming that the gradients of temperature and humidity were constant across 
the boundary layer and using Polhausen's value of 113 for the ratio of boundary 
layer thicknesses for momentum and heat. This leads to an equation of the form 

e,( T')  - e = (:)'I3 (&)p(T- L( T')E T ' )  . . . . . (2) 

where K and D are the coefficients of diffusion for heat and water vapour in air. 
The  value of KID is discussed later. 

Wylie (1949) has suggested that, in the absence of radiative effects, the 
psychrometer constant should depend simply on the ratio of the heat and water 
vapour transfer coefficients of the wet bulb. Adopting values of these 
coefficients found by McAdams (1933) and Powell (1940), Wylie gives 

0.27 + 0.567( Vd)c'56 
( Vd)O 6o 

. . . . . . (3) Ap = 

where V (cm se@) is the velocity of the air stream normal to a wire of diameter 
d (cm). 

For Vd= 10, 100, and 300 cm2 sec1, A assumes values of 7.7, 6.4, and 
6-1 x (p=760 mm), in apparent agreement with the fact that wet-bulb 
depressions increase to a maximum with increasing aspiration. It will be shown, 
however, that this variation can be ascribed entirely to a radiation effect and 
is therefore not a fundamental property of the wet bulb as (3) suggests. A more 
serious objection to (3) is that for constant aspiration A increases-and hence 
the depression decreases-when d is decreased. In  practice the depression of 
a wet bulb increases to a maximum as the dimensions are decreased. A more 
rigorous application of transfer principles along lines suggested by Jacob (1949) 
has been found to give an equation in which the ' constant' shows a much weaker 
dependence on the Reynolds number of flow. 

3 3. A NEW DERIVATION OF THE PSYCHROMETER EQUATION 
Heat transfer by forced convection in a gas is specified by the Nusselt 

number Nu which, by dimensional analysis, can be expressed as a function of 
the Reynolds and Prandtl numbers of the flow, i.e. 

. . . . (4) 
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where d is a characteristic length, v the dynamic viscosity of air, p the air density, 
h the heat transfer coefficient and C$ is a function which must be determined 
empirically. 

The diffusion of small quantities of vapour in air under the action of a 
concentration field can be similarly represented by a mass transfer coefficient 

. . ( 5 )  

by appeal to  the principle of similarity of heat and vapour transfer. 
The observations of a number of workers for long heated cylinders at right 

angles to the air stream have been summarized by Jacob (1949) and can be 
described by the equation 

Nu = P (y. i-) = Q (y) V d  71 ...... 
where the values of the numerical factors Q and n vary somewhat for different 
workers but  in all cases show a weak dependence on Reynolds number R. The 
following values are due to Hilpert (1933) : 

R 1-4 4-40 40-4000 
0.891 0.821 0.6 15 
0.33 0.39 0.47 

Q 
n 

When heat and mass transfer occur together we have from (4), ( 5 )  and (6) 

i.e. 

..... (’I) 

The simultaneous use of (4) and ( 5 )  implies that the transfers of heat and of 
vapour occur in non-interacting fields, a condition satisfied by the evaporation 
of water from a wet-bulb surface. This assumption resembles the ‘ two-stream ’ 
hypothesis of the classical treatment. In  the first place, density and temperature 
differences are small and separation of the air and water vapour by thermal 
diffusion is therefore negligible. Secondly, since the saturation water-vapour 
content of air at normal temperatures is of the order of 194, the surface gradient 
of vapour does not significantly affect the thermal properties of the air and hence 
the heat transfer process. This corresponds to the classical assumption that the 
heat capacity of the vapour can be neglected compared with that of the air. 

In the absence of radiative and conductive sources, the heat flux normal 
to a thermocouple wire of diameter d can be written 

I+-, H=h(T-T’ )=Nu- (T-T’ )  ...... (S) 
d 

where T‘ is now the obsemed wet-bulb temperature. 

M =  K3, ’7 (x,( T‘)  - x) 

The water vapour flux is 
D 

where 3c is the humidity mixing ratio (gm’gm). 
In the equilibrium state when T‘ is constant 

H = L( T’)-V. 

. . . . . .  (9) 

. . . . . .  (IO) 
P--2 
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Then combining (8), (9) and (lo), and assuming as in the classical derivation 
that x,( T')=ce,( T')/p, 

e,( T') - e  =A'$( T- T')  . . . . . . (11) 

where . .. . . ( l l a )  

Equations (1) and (11) differ only by the factor (K/D)I-", which cannot be 
accurately computed. Montgomery (1947), from independent values of the 
coefficients, gave KID = 0.85. A considerable amount of experimental evidence 
supports a higher value, and Powell (1940) has found KID = 0-90. Combining 
this with Hilpert's values of n and with CJLE = 6-6 x we obtain the following 
values for A' x 104 for thermocouple elements of different diameters at various 
rates of aspiration : 

Y (cm sec-l) 10 50 100 3 00 

0.01 6.15 6.15 6-19 6.19 
0.1 6.19 6.19 6.24 6.24 
0.5 6-19 6-24 6.24 6.24 

d (cm) 

These values are close to the experimental figure of 6.2 found by Muller-Cosna 
and hlaier-Leibnitz. 

arises because the behaviour of the boundary 
layer of the wet bulb, which is completely ignored in the classical derivation, 
is introduced through the function 4. Since K t D  the effect of the boundary 
layer is to give a slightly greater depression under given conditions than that 
predicted by (1). The depression decreases slightly with increasing Reynolds 
number, but in practice such an effect would probably be masked by the opposed 
and much larger radiation effect discussed in the next section. 

The above theory holds only for forced convection when natural convection 
effects are negligible. 

The additional factor 

3 4. INHERENT RADIATION 
In the derivation of (1) and (11) it was assumed that the air flow past the 

bulb provided the only source of heat. If, however, the surroundings of the 
wet bulb are at the free-air temperature, the effect of heat gained by radiation 
may be significant, particularly when the aspiration is slight. Since this effect 
occurs in all normal psychrometer systems it will be termed the 'inherent 
radiation ' effect. 

Following Wylie we may write the flux R of radiant heat normal to the bulb 
as h,(T- T * )  where the effective coefficient of radiative heat transfer is 
h, =40T*3, T* is the observed wet-bulb temperature in OK, p is Stefan's constant, 
and T -  T*< T .  The total transfer of sensible heat can therefore be written 

H +  R = ( h  + h R ) (  T -  T") 

whence e,(T*)-e=A'p 1 + - (T- T").  ( 2) . . . . . . (12) 
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It is convenient to express the effect in terms of the ratio a of the observed 
depression to the depression calculated from (11). Since T'-T* we have 

Q 

090 77 
e,( T*)=e,( T') + (g) T* (T" - T').  ...... (13) 

From (ll), (12) and (13) 
T -  T* 
T -  T' 1 + r  h 

a= - - ...... (14) 

where Y =  ...... (140) A'p 
(deld Y' )T*  * 

Since hR is generally much smaller than h, we may write 

U N 1 -  - y hzl - .... .  .(14b) l i - r  h '  

For a 1 cm diameter bulb, a calculated from (14) and (8) is plotted in figure 1 
with an experimental curve given by Wylie. Wylie chose T' arbitrarily to make 

I I I I I 
IO 20 5 0 1 0 0 2 0 0  

V (cm sec-') 

Variation of n with aspiration rate I/. 

5 

Figure 1. I ,  a'= 1 cm : from Wylie's esperi- 
mental curve, plotted as n/n (300) ; 2 ,  d= 1 cm : from eqn (14), plotted as ( r ,  n (300) ; 
3,  d=0.122 cm : 18 s w.g.; 4, d=O 032 cm : 30 s.w g .  

a = 1 when V =  300 cm sec-1, and if the theoretical values are similarly adjusted 
agreement is close. The inherent radiation errors of IS and 30 s.1v.g. 
thermocouple wires are also plotted and show that a approaches unity only 
slowly as the aspiration rate is increased. 

Powell (1936) found a linear relation between a and l i d  for fine-wire 
thermocouple, in 'still' air. I t  was admitted that the psychrometers were 
mounted in an open-ended wind tunnel in a large room, circumstances not 
incompatible with an air velocity of several centimetres per second. 

From (6), (8) and (14b) we have 
r r  hllV'1 

log(1-a)=( l -n) logd-n log  Y+log llfr I?i;pc,). 
Powell's linear relation with n=0.5 was obtained by drawing a straight line 
through five of the six observed points. If the same observations are plotted 
logarithmically (figure 2) ,  and all are given equal weight, the regression line is 
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log (1 - a) = 0.62 log d -  0.46. This implies that n = 0.38, which compares 
favourably with Hilpert's value of 0.33 for low Reynolds numbers. Furthermore, 
this implies that the mean velocity in Powell's tunnel was 5 cm sec-I-a 
reasonable value consistent with the assumption that (146) is applicable to these 
observations. 

Figure 2. Variation of 1 -a with d (after Powell). 
Regression line : log (1 -a )=0 .62  log d-0 46. 

$ 5 .  CONDUCTION AND EXTRANEOUS RADIATION 
The temperature of a thermocouple wet bulb will be greater than that 

predicted by (12) if the junction receives heat by conduction along the wires or 
If a radiative source exists other than that of the surroundings at air temperature. 
These effects have been discussed in general terms by Robitzsch (1932) and with 
special reference to thermocouples by Kettenacker (1932) who derived an 
expression for a as a function of the properties of the wire and of the air stream. 
No account was taken, however, of the properties of the wet wick surrounding 
the wire-a procedure which cannot be justified a priori. 

The system discussed here consists of a copper-constantan thermocouple 
wound with a water-saturated cotton thread and stretched at right angles to the 
air stream between supports supposed held at air temperature. At 1 8 " ~  the 
conductivities of copper and constantan are 0.92 and 0.054 cal ~ m - ~  sec1  deg-1 
respectively, and it is therefore assumed that the heat conducted by the constantan 
portion of the couple can be neglected if the two portions are of roughly equal 
length. The  wick conductivity is assumed to be 0-0014, the value for water, 
since the conductivity of dry cotton is very much less. Since, in turn, the 
conductivity of the wick is much less than that of copper, the radial temperature 
gradient in the wire can be regarded as negligible compared with that of the wick. 

The  following additional symbols are required : y = distance along copper 
wire from support, I =  length of wire from support to junction, t = thickness of 
wick, T,,, T,=temperatures of wick surface and wire respectively along any 
radius, k', k" =thermal conductivities of water and copper, S =  gain of radiant 
heat excluding ' inherent ' radiation (cal cm-1 sec-l). 

If the heat conducted to the wick surface from the wire is written 
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the heat balance at the surface can be represented by 
H + R + c + s = L( T\\ )M.  

I t  is convenient to absorb the inherent radiation in the psychrometer constant 
by writing A,=A'(l+h,/h). 

. . . . . .  ( 1 5 )  

Then from (S), (12),  etc. and ( 1 5 )  

e,( Tw) - e = A,p( T - T\\) + (C+ S) .  . . . . . .  (16)  

Employing again a modified form of (11) and (13),  

and 
k' - C 

2 ; -  T,  
*= - - ...... d 111 (1 +t,d) 

eqn (17)  can be written 
pT' -+ JIT, + S 

P + +  
T, = 

, (1s  b )  

......( 19) 

The  equation of thermal equilibrium for a cylindrical element of wire of 
length Sy can be obtained by equating the axial flow of heat to the radial flow at 
the surface: d 2  d2T,  

4 dy2 
Solving for d2TJdy2 and substituting for T, from (19)  we find 

- k"g - - Sy = - ndCSy. ...... (20) 

If the slight temperature dependence of p is neglected, the general solution is 

T,=c,exp{- (&$+)'"y} + ~ ~ e x p { ( A $ + ) ' ~ y }  + T I + - .  S . . (22)  
I* 

If the air temperature T is constant or varies only slowly with time it may 
The  second be assumed that T,  = T at y =0, the first boundary condition. 

condition generally adopted in problems of this kind is c,=O. Hence 
4 I.* S 

. T ' )  . g} exp { . . . . . . . . .  
P (- k"d -)' p + 4 y )  + T' + P (22 a )  

When y = l ,  T,, the effective temperature of the junction may be written T*. 
Then by arrangement of terms 

From ( 1 8 a )  and (1Sb)  we see that p is related to the heat exchange between 
the wire and the air stream, i.e. to the aspiration, while II, is related to the 
conduction of heat through the wick. In  the case p $+ (and S=O) we see from 
(19)  that T, = T ' ,  i.e. the wick surface attains the ' t rue '  wet-bulb temperature, 
and from ( 2 2 a )  that 
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The  effective wet-bulb temperature is independent of the aspiration rate but 
may be less than T' since the insulation of the wick may maintain a temperature 
difference between its surface and the thermojunction beneath it. 

I n  the case p 4  $(S=O), (19) shows that T,, <TI, due to the conductior. of 
heat from the wire to the evaporating surface. 

It is obviously important to determine the relative magnitudes of practical 
values of p and $. The parameter $ depends only on t and d :  values are given 
in table 1. 

Table 1. Values of Z,!J = k'/d In (1 + t / d )  

d (cm1 0 122 0.032 0.008 
s.w g. 18 30 44 

t /d=l  0 0 017 0 063 0.25 
t/d=O 1 0.12 0.46 1 .8 
t/d=0.01 1 2  4 4  17 

From (18a) it can be shown that p is only weakly dependent on wick 
thickness when this is a small fraction of the wire diameter. (Powell (1936) has 
demonstrated experimentally that a is only slightly dependent on t in this case.) 
Values of p for various V and d have therefore been computed using an arbitrary 
value of 2t/d=0.1 (table 2). Since p involves also the temperature dependent 
ratio Y ,  this has been chosen arbitrarily as 4 corresponding to T*=18"c. 

Table 2. Values of p = h((1 + l / r (  T,")) + h, 
d (s.w.g ) 18 30 44 
V =  1 cm sec-l 0.0012 0.0027 0 0072 
V =  10cmsec-l 0.0025 0 0056 0 015 
V =  100 c m  sec-l 0.0066 0 015 0 033 
V =  1000 cm sec-' 0.019 0 039 0 085 

In  almost all circumstances, therefore, p< $ and (23)  can be written 

. .  k"d a e l  -exp . . . . (23 a )  

I n  the next section it will be shown that for accurate work it is desirable that a 
should be of the order of 0.99. The aspiration rate required to give this value 
has been calculated as a function of I and d from (23 a )  and is shown in figure 3. 
When the wire diameter is fixed by considerations of strength and rigidity, etc., 
the conduction error can be reduced to zero by ensuring that the depression in a 
given air stream is independent both of the aspiration rate and of the wick 
length (see Pasquill 1949). 

When conduction effects are negligible compared with those of radiation 
T*= T ' + S / p  from (22a) .  In  the normal case the wet and dry bulbs are 
affected by the same extraneous radiation but the effect on the depression 
depends on the different emissivities of the two bulbs. Since appropriate values 
of these are difficult to determine, an expression for the combined radiation 
error, though readily derived, is of little practical value. 

0 6. THE ERROR OF HUMIDITY DETERMINATIONS 
It is important to relate psychrometer errors expressed in terms of the 

fractional error a to the corresponding error in a vapour pressure determination. 
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Considering first the case in which the error is due to spurious heat sources, 
the calculated vapour pressure will have an error Ae ( a )  where 

e,( T * )  - (e+  Ae(a)) =Ap( T- T*). 
If the ' true' wet-bulb temperature is defined by (l), then using (13) 

Ae(a) = ( 1 - a)( T - T') { A p  + ( &) T* } . . . . . . . (24)  

With a=0.99, T = 2 0 " c  and a relative humidity of 60%, Ae(a)=0*08 mm, 
i.e. about O*Syo of e. I t  is clear that 
in normal conditions of temperature and humidity (and still more at higher 
temperatures) a should be of the order of 0.99. 

If a drops to 0.90, the error rises to 8%. 

Figure 3. Aspiration rate required to give a=O 99 for wires of different 
diameter and length. 

When the error introduced by a is small, it may be of the same order of 
magnitude as that introduced by an inappropriate value of the psychrometer 
constant. If the constant be written A f A A ,  then the combined error may be 
written Ae(a, A)  = Ae(a) T 4Ap( T - T ' )  
if second order terms are ignored. In  the above conditions an error in A of 
only 0.3 yo is equivalent to a = 0.99. 

The  error in a determination of A when the vapour pressure is measured 
independently can now be found by putting Ae(a, A)  = 0 and combining (24)  
and ( 2 4 a )  to give 

. . . . . . ( 2 4 a )  

In  the special case when A is calculated from the classical equation ignoring 
inherent radiation, AA/A=h, jh .  For a bulb of 0.5 cm diameter (e.g. mercury- 
in-glass thermometer) aspirated at 3 m sec-l in the above conditions, a from (146)  
is roughly 0.98 and A is over-estimated by 6%. The accurate determination of 
the psychrometer constant therefore demands that the wet bulb should be as 
small as is practical if the aspiration is to be kept within reasonable limits. The 
fine-wire thermocouple is obviously well suited to such work and indeed to all 
accurate psychrometry. 
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