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Abstract-Instability of the drift-dissipative type, of a weakly ionized non-isothermal plasma in 
crossed electric and magnetic fields (Simon; Hoh) has been studied in the quasi-classical approxi- 
mation for two cases: (a) Q,T, >> 1, Q,T, 9 1, (b) Qa7, >> 1, R,T, < 1. The increment and frequency 
of the instability of such a plasma against potential disturbances have been deduced in the linear 
approximation. Equations of strong turbulence evolved with the aid of Mikhailovskii’s diagram 
method have been used in estimating the maximum value of the spectrum function of the electric 
field of oscillations and of the coefficient of turbulent diffusion. The concluding part of the paper 
presents a set of equations of strong turbulence in the dimensionless form suitable for computer 
analyses. 

1. I N T R O D U C T I O N  
AS THE papers by both Simon and Hoh suggest, an inhomogeneous weakly ionized 
plasma in crossed electric and magnetic fields is unstable against potential oscillations 
with a characteristic frequency much smaller than the cyclotron frequency of ions 
(w < a,), An instability of this sort belonging by virtue of its character among in- 
stabilities of the drift-dissipative type, is caused by the difference between the drift 
velocities of ions and electrons in a transversal electric field. It follows from an analysis 
made by SIMON (1963) and HOH (1963) that the oscillations are unstable for a magnetic 
field H larger than a certain critical value H,. It is indicated that the order of the 
increment of unstable oscillations can reach up to  that of the frequency. This in- 
stability occurs in discharges of the Penning type where anomalous diffusion is 
observedat H > H,(BoNNAL~~uI., 1962; REICHRUDEL etal., 1958; CHEN etal., 1962). 

The present paper concentrates on a study of the non-linear effects of the above 
instability, in particular on the spectrum of the electric field of oscillations and deter- 
mination of the coefficient of anomalous diffusion. 

2. F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  T H E  I N I T I A L  E Q U A T I O N S  
We shall consider a weakly ionized plasma with density no inhomogeneous along 

the y-axis, inserted in a homogeneous magnetic field H = H,. The electron tempera- 
ture Tis assumed to be constant, the ion temperature equal t o  zero. There is applied 
along the y-axis a n  external homogeneous electric field E,,. The following two distinct 
cases of the magnetic field magnitude will be considered: (a) 1, L2pi > 1, 
(b) Qe7, > 1, L 2 i ~ i  < 1. The two cases will be studied a t  the same time and formulae 
which might differ from one to  another, marked with the respective letters (a) or (b). 
In the discussion that follows, sZi, R, are the cyclotron frequencies of ions and electrons, 
respectively, and ~ ~ - 1 ,  ~ , -1  the collision frequencies of ions and electrons with a neutral 
gas considered a n  immobile background. 
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Since we are dealing with potential oscillations (E = -Vp) with a characteristic 
frequency w < ai, we may neglect the terms corresponding to the inertia across the 
magnetic field in the equations of motion of both electrons and ions. Moreover, we 
may also neglect the inertia along the magnetic field, which corresponds to  a diffusion 
regime. The problem is solved in the quasi-classical approximation, i.e. the space- 
time dependence of the oscillation is sought in the form exp (-iwt $- ikr); this is 
justified on the assumption that k, >> K where K = d In n,/dy. 

Equations describing the plasma oscillations under the above-stated assumptions 
are in the following form: 

(1) 
an,,, 
at 
- + div (n,,iv,,i) = 0 

0 = -TVn, - en, 

n,Mv, 
Ti  

0 = en,E - - , 

div E = 47re(n, - ne). (4) 

We express quantities neve and nzv, from (2) and (3) and introduce to (1). Following 
simple rearrangements we obtain with accuracy terms (Q,T,)-' and (Q,T,)-~ in equations 

an, eE,  1 - 

at ma,  mQ,2T, 
- [V,n,, hl + - (TA,n, + en, div E- 

, (5) 

e - an, - eE 
[V,n,, h] - (n, div E + E . TLn,) - -  

at MQ, MQI 7, 
- 

(6b) 

er, aE, 
- 4- 

(n, div E + E . T n J ,  e r ,  
at M 

-- - an, _ -  
where h = H / H .  These equations together with equation (4) represent the initial set 
of equations for  the given problem. 

3. LINEAR T H E O R Y  

In the linear approximation we obtain from equations (5) and (6) the following 
expressions for the disturbance in the densities of electrons and ions 
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using the notation 

We shall furthermore assume that the plasma is sufficiently dense (CA < c, CA- 
AlfvCn velocity); consequently, equation (4) changes into the condition of plasma 
quasi-neutrality, i.e. ni = n,. Introducing in this condition the above found dis- 
turbances of the densities of electrons and ions, (7), (8) weget the dispersion equation as 
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the numerator is negative and sufficiently large. In case (b) the latter can be negative 
only when quantity KE, is positive. From the condition that y = 0 on the boundary 
of instability, we obtain from (1 1) the following expressions for the critical magnetic 
fields : 

Hence the plasma considered in our study is unstable for magnetic fields fulfilling the 
inequality H,, < H < H,, with respect to disturbances whose transverse wave vector 
satisfies the condition of 

(eEo)2K2(1 + a)2 
4k,2T2(1 + U,) ' kL2 < 

The increment of instability has a maximum at minimum k, = k, ,nin = T/L ( L  is 
the length of the device), and at ki = k,, where 

and can attain values up to the order of the frequency. As formulae (13) imply, 
k,2/kL2 < l / Q e ~ ,  < 1 ; hence the unstable disturbances are intensely elongated along 
the magnetic field. 

4. NON-LINEAR THEORY 
We shall study the strongly turbulent state of the plasma that arises in consequence 

of the above-described instability, using the diagram method suggested by MIKHAILOV- 

To find equations which describe the strongly turbulent plasma state considered 
herein, we shall start from equations (5 ) ,  (6). We shall put n,,e = noi,e + E = 
E, - Vp, where no,,e = (n,,,), E, = (E) are quantities satisfying the quasi-equilibrium 
equation (see below), and p are the oscillating functions for which it holds that 
(Ci,,)  = (q) = 0; symbol (e ) denotes the averaging over the set of oscillations. 
In the zero approximations we shall consider no,,, and E, the equilibrium ones, i.e. 
quantities independent of time. 

SKI1 (1964). 
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On averaging equations (5) and (6) over the set of oscillations we obtain the 
quasi-equilibrium equations as follows 

an0i e7, 
at 
- = - (EoJ. . V,n,, - (&Ay) - ( V y  . Vn",)) 

Substracting these equations from the corresponding un-averaged equations (5) and (6) 
we obtain equations for the oscillating quantities 

az, e - = - (noiAJ.y - E,,, . VLCi + V,g, . VlnOi + L2p-,VLn", . [h, E,] 
at MQ:T~ 

- QiTiVJ.noi . [h, V,y] - ( Q i ~ i ) 2 ~ o i  - 
e + - (l,ALp + V,p. V,Z, - [h, V,p] MQtT,  

+ (QiTi)'; ( f i t  z)  - ( ' * * *)), (174 
a i i  eTi - = - - {-n.  a0 A e7 + E,, . V,& - V p  . Vn,, - n",Ay - V y  . Vn", 
at + (E&> + (Vy. Vfi,)}. (17b) 

In agreement with the assumption of the quasi-classical approximation, we can 
transform the above equations to Fourier representation, i.e. put 

+ m  

n",,, = n,,,(k) exp {- iwt  + ik r} dk, 

2 
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where k 
form of 

{k,  w }  and analogously for p. Equations (16) and (17) then change to the 

- dk‘(k, k,’ + QiTi[k, k‘] ,  + (Qiri)’ksk,‘} MR:ri 
x {n,(k - k’)V(k’) - (n,(k - k’)y(k’))}, (19a) 

n,(k)(w - GERi7J = -inoiep(k) dk’ k * k’{n,(k - k‘)p(k‘) M 
- (n,(lc - k’)p(k’))}. (19b) 

A solution of these equations is sought in the form of a power series with respect 
to amplitudes p: 

In the first (linear) approximation we obtain for n&)(k) expressions (7) ,  (8). For 
@(k) we can easily find a recurrent expression for 1 > 2 : 

dk’{k, k,’ - Q2,7,[k, k‘], + (QE~E)2k&z‘ }  

x (nb’-l)(k - k‘)p(k’) - (* - * * ) I ,  (21) 

dk‘ k * k‘(n‘i-”(k - k’)p(k’) - (. a ) } ,  s ier,@,-l(k) 
M (b) @(k) = - 

where 

O,(k) = 0 - 

(b) @,(k) = w - ( r ) f i & ~ ~ .  

Using formulae (7), (8) and (21) we obtain expression for the general term #)(k)  
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( I>  1) of series (2) with an accuracy to the terms of the order of (R,rj)-l and 
SZirjk,2/kL2 

nj')(k) = (-ie)l-l - - en, Jdkl . . . dk, A,(k,) 
mQ, Oj(k) 

[k ,  k112[k - k,, k21, . 9 [k - k1 - . - kz-2, ki-112 X 
Oj(k - k,)Oj(k - k,  - k2) . . . Oj(k - k1 - . . . - kz-l) 

x R(V(k1). . . v(kJ}S(k - k1 - . . . - k,), (234 

after having introduced the following notation therein: 

U* ikL2 ik,2re 
T mQ,2r, m 

A,(k) = - + - + - , 

FIG. I 

Quantities n:!)(k) can be represented graphically (refer to Fig. 1). The elements of 
Fig. 1 denote the respective quantities as follows: 

solid line = 1/0,(k) 

dashed line = q(k,) 

open circle = en, S(k - kl - . . . - k,)Aj(k2). 

Integration over k ,  is carried out around each circle. 
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Since the structure of expressions (23) is analogous to that of the expression giving 
the general term of the distribution function series in MIKHAILOVSKII'S paper, we can 
hereafter use the diagram technique evolved there. Some modifications must be made, 
however, 

By introducing Q-products of potentials (MIKHAILOVSKII), series (20) transform 
to series 

m 

the general term of which is given by expression 

nj*(')(k) = g,(k) y!'+')(k; k,, . . , kl)Q{p(kl) . , . ~ ( k , ) }  dk, . . . dk,, (26) 

yiZ+l) is the sum of topologically non-equivalent renormalized vortex parts of dia- 
grams of the same order, and g,(k) is the modified propagator linked to the elementary 
propagator go,@) = O,-l(k) and the self-energy part oj(k) of the modified propagator 
through Dayson's equation 

J 3  

g m  = go@) + go,(~b,(k>gj(k>* 
Equation (4) can then be rewritten with the aid of (25) and (26) in the form 

m r  

where 

The subsequent procedure of deriving the equations of strong turbulence, i.e. the 
equations for the spectrum function of potential Z(k) = {q(k)pl*(k)) is identical with 
that given in MIKHAILOVSKII'S paper. 

Next to the above-stated quantities characterizing of the turbulent state of plasma, 
there figures in the quasi-equilibrium equations (14), (15) transformed to Fourier 
representation 

also quantity (nj(k)y(-k))  for the expression of which we can obtain, with the aid of 
(25) ,  a relation analogous to that of mixed correlation, proceeding similarly as in 
MIKHAILOVSKII'S paper. 
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In the sections that follow we shall consider only those diagrams that give an 
approximate set of equations for strong turbulence corresponding to the set of equations 
for weak coupling (KADOMTSEV). A graphic representation of this set is indicated in 
Fig. 2. The meaning of the various symbols is the same as in MIKHAILOVSKII'S paper. 
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471.e 

1 

Go-’(k) = 1 - 7 [g,(k)#’(k) - g,(k)yp(k)], 

G(k) = 

Z k )  = 4 s dki Gs , ,  ( k ;  ki)G(k - W ~ ! s y m  ( k -  k,, k)I(kJ, 

Go-l(k) - Z k )  ’ 

%y,(k; k 3  = Hrso(k; kJ + r;(k; k - 4 1 ,  
4rre 

r:(k; kJ  = 

$’(k, k J  = - - [k kJ,gj(k - kl)#’(k - kl) ,  

?i3’(k, k1) = - 2 k * k igi(k - ki)#)(k - kih 

[gi(k>Yj3’(k; kJ - g,(k)yL3’(k; k J ] ,  

ie 

ier . 
M 

mQe 
(a) 

(b) 

= 2 lG(k>I2 1 dkl Irk&; kl)lZ W1)W - kl), 

i- 2gj(k)~dkl$)(k; kl)I(kl)I(k - kl)I‘~sym(-k; -k,)G(-k). 

It is clear that this set of integral equations is too intricate to yield to an analytic 
solution. Hence the only solution that might come into consideration, is that effected 
on an automatic computer. It would, therefore, serve a useful purpose to rewrite the 
set of equations in a dimensionless form which is moreover convenient for qualitative 
estimates. 

(nj(k)d-k)) = gj(k)ry’(k)I(k> 

5. DIMENSIONLESS F O R M  OF EQUATIONS A N D  QUALITATIVE 
ESTIMATES 

We shall introduce the following dimensionless variables 

where k,  is given by formula (13) and w0 = eEok0/mQZ, and the dimensionless functions 
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The system of equations (32) then assumes the following form (with the symbol denot- 
ing the dimensionless quantities left out): 

1 
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where we have neglected 1 in the expression for Go because of condition CA < c, and 
in expressions Go, l?? and ui, yi2), 9) in case (b) changed k2 to kL2 because of con- 
dition k,ZlkL2 << 1. 

Since it may be expected that in case (a) all the dimensionless quantities are of the 
order of unity, and in case (b) g, - Q z i ~ i ,  yiz) - (Q,T~) -~  and the remaining terms are 
also of the order of unity, we obtain from (34) the following estimate of the maximum 
value of the spectrum function 

and from equation (30) the estimate of the coefficient of turbulent diffusion 

eE0 

D L  wmn,k,‘ (37) 

On introducing k, from (13) in expression (37) and bearing in mind that in experi- 
ments it is usually eE,].T N 1. we arrive at the following estimates of the diffusion 
coefficient 
case (a) D ,  ,- DB/(Qi~i )1 /2 ,  

case (b) 

where D, = T/mQ,. It  is evident that in case (a) the diffusion coefficient is smaller 
and in case (b) much larger than Bohm’s coefficient. 

If a more accurate determination of the diffusion coefficient and of the form of the 
spectrum function is desired, the system of dimensionless equations (35) must be 
solved numerically for each concrete case because equations (35) contain four dimen- 
sionless independent parameters Qe7,, Q < T ~ ,  eE,/KT, (7i /L)2/k,~.  This problem will be 
dealt with in one of our forthcoming papers. 
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