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Abstract. Recent theory, relating the thermodynamics ofa  real liquid to that of a hard sphere 
reference system, suggests a correlation between the entropy and the structure factor. The 
extent to which this correlation exists in liquid metals is investigated by comparing. for 
each system and at  various temperatures, the packing fractions deduced respectively from 
entropy and structure factor measurements. The quality of agreement is. overall, 
comparable with that obtained from previous comparisons of measured and hard sphere 
structure factors as  functions of wave number. 

The standard ab initio method of calculating interatomic forces in simple metals uses 
pseudopotential theory. The results ofprevious authors, together with the further calculations 
of the present paper, suggest that near the melting points, entropies for all valencies, and 
specific heats for lower ( 5  3) valencies, are adequately describable by the usual 
pseudopotential techniques (provided, for example, that sufficiently good model potentials 
and screening methods are used). For higher ( 2  3) valencies, there is evidence that 
conventional calculations will lead to underestimated specific heats (typically by - 30%) 
perhaps because of the inadequacy of second order perturbation theory for such cases. 

1. Introduction 

Within the past few years a new technique has arisen which seems capable of 
describing quantitatively many aspects of the thermodynamics of liquid metals. This 
development has been possible because of advances in a number of fields. First of all, 
second order pseudopotential theory enables us to describe a metal in terms of volume 
and pairwise forces (Harrison 1966, Heine and Weaire 1970). Second, the classical 
problem of the thermodynamics of hard sphere systems has been, for many practical 
purposes, solved (Thiele 1963, Wertheim 1963, 1964, Frisch and Lebowitz 1964, 
Carnahan and Starling 1969). Third, the Gibbs-Bogoloubov inequality (Isihara 1968, 
Lukes and Jones 1968) provides us with a variational principle for choosing a best 
hard sphere reference system in terms of which the real system can be described. 

Jones (1971, 1973), Edwards and Jarzynski (1972) and Stroud and Ashcroft (19721, 
starting from specific pseudopotentials, have calculated various thermodynamic 
properties of liquid metals (including the entropy), while Umar and Young (1974) have 
investigated the structure factors. Practically no attention, however, has been given 
to the fundamental relationship between the entropy and the structure factor implicit 
in the above theory. 

t O n  leave of absence 1973-74 from Department of Physics, Tohoku University, Sendai, Japan. 
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This relationship does not depend on the details of the pseudopotentials and 
screening theory used and, indeed, as we will suggest, rests on such general foundations 
that it might persist even under conditions when the detailed formalism ($2) is no longer 
fully quantitative. In the first part of this work, therefore, we examine the experimental 
evidence relating to this matter. Our conclusion is that such a correlation does, in 
general, exist. 

The further question is whether pseudopotential theory, as presently used, is 
capable of describing these effects fully and quantitatively. This is investigated in the 
final part of the paper. 

2. Formalism 

Let us begin with the formalism as it might be used in first principles applications to 
metals. Many aspects of what follows may be found in the papers cited in the second 
paragraph above. We also refer to the work of Umar et a1 (1974b) (see also Stroud 1973, 
Umar et a1 1974a) which gives an explicit derivation for the binary alloy case. We will, 
therefore, not repeat the details but instead summarize the computational program 
which emerges. 

Consider, first, a reference system of hard spheres of packing fraction r j  and with 
the same density n and temperature T as the real ionic system. Then, for this system, 
the free energy per atom is 

(1) 

(2) 

Fhs = +kgT - T S h ,  

Shs = &as + S(rj) 

the entropy per atom being given by 

where 

and, for the moment, we leave S(q)  unspecified. 
Then, a variational expression for the real system is 

= Fhs  + Fps (4) 

( 5 )  

The latter arises fromperturbation theory carried to second order in the pseudopotential 
(assumed to be local) and second order in T (to allow for nondegeneracy of the electron 
gas). The individual terms are (in Hartrees) 

(6) 

where 

F,, = F,,, + F2 + F M .  

Fvoi = E,,, - f ~ y , ,  T 2  
" 7  

F 2  = (1/16n3) J u2(c-l - l)aq4dq - +zy,(a)T* 
0 

(7) 

F M  = (z2/n) J x  (a - 1 )  dq. 
0 
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In (6) Evol is given by terms which are independent of q and T and need not be 
explicitly defined for the purpose of this paper, while the second term is the leading 
T dependent correction allowing for nondegeneracy of the electron gas. F 2  and FM 
correspond respectively to the usual band structure and Madelung terms, though the 
former has been generalized (Appendix) to allow for nondegenerate electrons. The 
structure factor a(q) depends on n and q but not explicitly on T .  The dielectric screening 
function, the E of equation (7), need not be specified in detail for the present. 

The procedure next is to find (for a given metal, at  fixed n and T )  that packing 
fraction which minimizes F .  Assuming the perturbation theory is good enough, then 
the Gibbs-Bogoliubov inequality assures us that, for the exact S(q)  and a(q) for hard 
spheres, the F thus obtained should be an upper bound to the correct value. In practice, 
we use the Percus-Yevick approximation, for which relatively convenient exact closed 
form expressions are available (Thiele 1963, Wertheim 1963, 1964). Thereby, we arrive 
at  a packing fraction to which we attribute physical significance. 

Under the optimizing condition described above, we have 

s = s h s  + s p s  (9) 

S,, = zyT y = yeg + 7 2 .  (10) 
where 

Much has been written on the calculation of y e g ,  but the conclusion seems to be 
(Faber 1972, p 296) that we can do rather well by taking the independent particle result 
y e g  = (nkg/kF)*. The term yz is investigated in the Appendix and is shown to represent a 
small correction to y e n .  Since, as we will see, S,, is, itself, only a correction to S h ,  (and, 
indeed, to S(q), an object of more direct physical interest), the above choice of yeg is well 
justified, as is our decision to set y 2  = 0, in general, below. 

The procedure is now complete except for the specification of S(q), a problem which 
has recently been discussed by Jones (1973). It is well known that different thermo- 
dynamic routes lead to different equations of state for a given approximate theory of 
the radial distribution function. Accordingly, integration of these equations of state 
(Mansoori and Canfield 1969) give different forms for F,, and therefore S(q). Using the 
exact Percus-Yevick solutions for the pressure of the hard sphere reference system?, 
derived respectively from the compressibility (Ornstein-Zernike) and pressure (virial) 
equations, leads to 

-(q) = ln(1 - q )  + Scomp 

k B  

-(q) = -21n(l - q )  + 6 Spress 

k B  

But a better (though more empirical) equation for the pressure of a hard sphere 
system is known to result from averaging (in the ratio to 3)  the two Percus-Yevick 
pressures referred to above ; the result is the Carnahan-Starling equation. Integration of 
this expression leads to 

The functions (1 I), (12) and (13) are plotted in figure 1. 

t We stress that this gives only one contribution to the total pressure of the actual liquid metal (see Umar 
e t  al 1974b, equation (28) and Watabe and Young 1974). 
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Figure 1. S(q), in each of the approximations ( 1  I), (12) and (13), and the height of the first 
peak in the structure factor. all a s  functions of packing fraction, q ,  

Table 1. X ray and neutron data sources 

Display Reference 
points (Capitals, neutrons; 

Metal (figures 2, 3, 4) lower case, x rays) Comments 

Li 
Na 

K 

Rb 

cs 

cu 

Ag 
Au 
Zn 

Cd 

AI 

M P  5'1-0 

0 X ."I f, g 
+ 

No fine structure but some evidence of departures from 
hard sphere behaviour (Page e t  al 1969, Greenfield e t  al 
1972, Waseda and Suzuki 1973) 

No fine structure 

No fine structure 
No fine structure 

Low angle side of first peak somewhat less steep than 
high angle side 

Low angle side of first peak less steep than high angle 
side. Persists to highest experimental temperature 

No fine structure 
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Table 1.-Continued 

Display Reference 
points (Capitals, neutrons; 

Metal (figures, 2, 3, 4) lower case, x rays) Comments 

G a  0 
0 
+ 
X 

In X * 
+ 

TI 0 

+ 
Sn 0 

+ 
P b  0 

+ 

X 

X 

X 

Sb 0 

Bi 0 
0 
+ 

i h } Shoulder on  high angle side of principal peak around 
melting point: less pronounced at 423 K 

; }  f No fine structure 

No fine structure 

Low shoulder on  high angle side ofprincipal peak around 
melting point; absent a t  873 K 

No fine structure 

Low shoulder on  high angle side of principal peak at 
933 K. Somewhat less pronounced at  1073 K 

Low shoulder on  high angle side of principal peak at 
lower temperatures; practically absent at 1223 K 

Neutron referrnces. 
A, Gingrich N S and Heaton L 1961 J .  Chem. Phys.  34 873-8 
B. Wingfield B F and Enderby J E as  quoted by Howells W S 1973 T h e  Properties of 

C. Breuil M and Tourand G 1970 J .  Phys.  Chem. Solids 31 549-57 
D, North D M, Enderby J E and Egelstaff P A 1968 J .  Phys.  C: Solid S t .  Phys.  1 1075-87 
E, Wingfield B F and Enderby J E 1968 Phys.  Lett. 27A 704-5 
F, Dasannacharya B A, Navarro Q 0, Ibarra H,  Chatraphon S and Lee G B 1968 

G, Cagliotti C, Cerchia M and Rizzi G 1967 Nuovo Cim. 49B 222-6 
H, Larsson K E, Dahlborg U and Jovie D 1965 Inelastic Scattering of Neutrons (Vienna: 

IAEA) vol I1 p 117 
I, Ascarelli P 1966 Phys. Rev. 143 3 6 4 7  

J, Page D I, Saunderson D H and Windsor C G 1973 J .  Phys.  C: Solid St. Phys.  6 212-22 
K, Waseda Y and Suzuki K 1971 Phys. Stat. Solidi (b)  47 581- 
X ray references 
a, Greenfield A J, Wellendorf J and Wiser N 1971 Phys. Rev. A 4 1607-16 
b, Tsuji K, Endo H, Minomura S and Asaumi K 1973 T h e  Properties oJLiquid Metals ed 

c, Waseda Y and Ohtani M 1974 Phys.  Stat. Solidi ( b )  62 535-46 
d. North D M and Wagner C N J 1969 Phys.  Lett. 30A 440-1 
e, Fessler R R, Kaplow R and Averbach B L 1966 Phys.  Rev. 150 34-43 
f, Waseda Y and Suzuki K 1972 Phys.  Stat. Solidi (b)  49 339-47 
g. Waseda Y and Suzuki K 1973 Sci. Rep. R I T U  24A 139-84 
h, Narten A H 1972 J .  Chem. Phys. 56 1185-9 
i, Ocken H and Wagner C N J 1966 Phys.  Rev. 149 122-30 
j Ruppersberg H and Wintersberg K H 1971 Phys.  Lett. M A  11-12 

__ private communication 
k. Halder N C and Wagner C N J 1966 J .  Chem. Phys.  45 482-7 
I, North D M and Wagner C N J 1970 Phys.  Chem. Liquids 2 87-1 13 
m, Kaplow R, Strong S L and Averbach B L 1965 Phys. Rev. 138A 133645 

Liquid Metals ed S Takeuchi 43-9 

Phys.  Rev. 173 241-8 

S Takeuchi pp 31-6 
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3. Entropies and structure factors 

For given pseudopotential, v, and dielectric function, E, it is possible, by the method 
outlined above, to calculate F and, thence, a variety of properties. However one result 
at  least is practically independent of the specifics of v and E (and, indeed, is more 
generally valid than the formalism of 92 would immediately suggest; we will return to 
this matter in the final discussion). We have seen that y z  does, in principle, depend on 
t' and E but that it has a negligible effect on S. Thus, for an assumed form of S(q) 
(equations (1 l), (12) or (13)), the entropy specifies q and vice versa. 

Aswe have seen, the structure factor is also specified by q. So, ideally, an experimentally 
determined structure factor will correspond to a unique q.  In fact, this proves to be 
tolerably the case for many systems (Umar and Young 1974) as was first suggested by 
Ashcroft and Lekner (1966). In practice, therefore, we can obtain a definite q by 
fitting the first peak ofa measured structure factor to the Percus-Yevick hard sphere form. 
Numerical computation leads to the relationship shown in figure 1. 

We are now in the position to find, for a giveq system, q from two independent 
experimental sources. The entropies are relatively well known (Hultgren et al 1963), while 
x ray and neutron diffraction measurements of a(q) are available for a variety of liquid 
metals. 

Excepting mercury?, we have taken every simple metallic system of which we are 
aware, where diffractiondata are available over a significant range of temperature (table 1). 
and obtained the corresponding packing fractions by the method indicated above. For 
the same systems, we have used the experimentally determined entropies also to evaluate 
q(T). The density data employed were taken from Allen (1972) and S(q)  was specified 
via equation (13). The comparison between the results thus obtained are shown in 
figures 2, 3 and 4. 

Typically, entropies are quoted by Hultgren er a1 to an accuracy of kO.02 k g .  
As figure 1 shows, this has very little effect on the corresponding q's for any chosen 
form of S(q). A much more significant variation is obtained by using either of equations 
(1 1) and ( 12) instead of (1 3). As figure 1 shows, the entropy which corresponds to q = 0.46, 
via ( 13), implies values of q of 0.454 and 0.475 on using (1 1) and ( 12) respectively. However, 
as we remarked in 92, equation (13) is known to be the most accurate expression of the 
three. Much more uncertainty probably lies in the radiation based points, a glance at 
figures 2-4 revealing considerable variations in q according to the experimental data 
chosen. 

Bearing the above in mind, our conclusion (with certain exceptions to be discussed 
shortly) is that q(T)  data from the two types of sources do seem to agree quite well. The 
agreement between the absolute values at the melting points was inferred, in principle, by 
Faber (1972, pp 101-2), who demonstrated that the point (0*46,4*15) on the Carnahan- 
Starling curve shown in figure 1 is consistent with the general features of the entropy and 
structure factor data. The main new feature, which arises from this study, is the good 
agreement, in general, in the temperature dependence. 

For many of the systems studied in this paper, Umar and Young (1974) have 
compared as functions of wave number. measured structure factors with the 
corresponding Percus-Yevick hard sphere forms. Many details may be found in that 

t We avoided Hg because of experimental evidence (Orton and Street 1972, Umar and Young 1974) that 
a(q) for this metal was badly represented by hard spheres. Recently, however, further experimental data have 
appeared (Waseda e t  al 1974) which leads to the opposite conclusion. 
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0.181 Li 0481: K 

I x  

040 

400 600 400 600 300 500 
c s  

300-00j032 cu \ 
0441 : t 

Figure 2. q(T)  derived from thermodynamic data (lines) and diffraction experiments (points) 
for univalent metals. References to and comments on  the radiation data are given in table 1. 

0461 <, 0 4 1  yx 
700 900 600 800 

042 042 

0 4 6 0 0  800 400 800 

Figure 3. q( T )  derived from thermodynamic data (lines) and diffraction experiments (points) 
for divalent and trivalent metals. References to and comments on the radiation data are 
given in table 1. 
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04P 900 I 100 500 900 1300 
Figure 4. q(T)  derived from thermodynamic data (lines) and diffraction experiments (points) 
for metals of valencies four and five. References to and comments on the radiation data are 
given in table 1. 

work and tor an excellent compilation of much of the available experimental information 
we recommend the work of Waseda and Suzuki (1973). For immediate reference, however, 
some of the main qualitative featuresare noted in table 1. Do those cases which exhibit the 
better (poorer) hard sphere behaviour in the wave number dependence of the structure 
factors give the more (less) satisfactory agreement in figures 2-4? The reader may judge 
for himself on the basis of table 1 and the figures. Our own feeling is that the overall 
quality of the structure factor data prevents us from drawing a definite conclusion in 
general, though in certain cases a positive answer to the question is suggested. For 
example, both methods indicate hard sphere behaviour for P b  ; both indicate significant 
departures from this description for Bi. 

In the case of the monovalent metals (figure 2), there is a distinct tendency for the 
radiation based data (for x rays especially) to exceed the corresponding values derived 
from the entropies, though the slopes seem to agree quite well. Egelstaff and March 
(1974) have sought to explain the differences between the results of x ray and neutron 
diffraction experiments on the basis that while x rays scatter from the ions and the 
valence electrons, neutrons scatter only from the former (or, more precisely, the nuclei). 
Thus, if a liquid metal behaves like a two component system, only the neutron studies 
measure the ion-ion structure factor properly. Egelstaff and March go on to point out 
that the effect should be largest in the alkalis, where the valence electron densities are 
lowest and the corresponding correlation effects are therefore strongest. 

We have little directly to contribute to that problem, but it is of interest to note 
(figure 2) that the present theory calls for the identification of a(q) with the ion-ion 
structure factor and that the thermodynamically derived q(T)  is (for the alkalis at least) 
closer to the neutron than the x ray based points. 

There is, however, reason to believe that the present method might be at  its poorest 
for the alkalis (Waseda and Suzuki 1973). Certainly Wehling et  al(1972), for Na, and 
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Hasegawa and Watabe (1974), for Na and K, have obtained improved structure factors 
by taking account of departures from hard sphere behaviour. In the next section, we 
show that theexperimental specific heats suggest that these metals may be somewhat less 
amenable than others' to a hard sphere description. The method we use has some 
features similar to those of an analysis given by Hasegawa (1972). 

4. Specific heats and interatomic forces 

The formalism of32 provides us, of course, with a means of examining specific heats. The 
latter are immediately given by the slopes of the curves plotted in figures 2-4, but it is 
more accurate and instructive, for the purposes ofthis section, to proceed via equation (9) 
which gives 

where, as before, yzg  has its Sommerfeld value and y 2  is (with complete justification) 
neglected. Using this equation and the experimental data, we have prepared table 2 
(once again using equation (13) for S(q)),  which shows melting point data for the liquid 
metals already studied. 

The experimental data are displayed in the first four columns. The rather constant 
value for the excess entropies SE = S - Sgas is responsible (recall $3) for the fact that q 
is also quite constant at the melting points. We now wish to examine the implication of 
the even smaller variations in C, which are evident from table 2. 

Since the final term of (14) is small and S(q) is approximately independent of the 
metalconsidered, it follows immediately(tab1e 2) that T(dq/i?T), is also rather independent 
of system so that (2 In q/dT), is roughly inversely proportional to T .  

This quantity is still not quite what we want, however, since we are really more 
interested in the variation in the diameter 0. Writing the volume of a hard sphere as 
o = &7~0~, we have q = o n ,  so that 

Table 2. Thermodynamic data (experimentally based) a t  the melting point 

Li 453 361 3 65 
Na 371 3.45 1 8 3  
K 337 -145 3 87 
R h  312 363 3 78 

Cu 1356 3 59 3 7 8  
Zn 693 37X 3 78 
Cd 594 4OC 3 57 
AI 933 349 3.52 
Ga 303 4.62 3.35 
In 429 4 3 4  3 5 5  
TI 576 393 3 62  
Sn 505 408 3.57 
Ph 600 391 3 68 
Sh 904 3.04 3 77 
B I  544 3.16 3 83 

Cs 302 3 56 3 84 

I 64 
2 37 
2 68 
2 7 2  
2 83 
I .00 
1.77 
1.34 
I 14 
I 
I I5 
I I S  
0.88 
I 2 3  
0 85 
I 2 5  

0.118 
0,132 
0.132 
0. I 2 0  
0,125 
0,117 
0-1 14 
0-103 
0.105 
0.080 
0,093 
0.103 
0.101 
0.105 
0 1 1 8  
0-1 17 

6.00 
8.34 
9.1 7 
8.80 
9.57 
I 9 8  
3 71 
3.68 
2.62 
5.44 
4.56 
3.93 
4 3 1  
3.83 
3.25 
4 no 

4.36 
5 97 
6 4 9  
6 OR 
6 74 
0 9 8  
1.94 
2 34 
1.48 
4.44 
3 41 
2.78 
3 43 
2 60 
2.40 
3 55 

The melting temperatures and densities were taken from Allen (1972) and SE and C, from 
Hultgren et al(1963). Then the remaining columns were deduced from equations (13), (14) 
and ( 15). The final column is a measure of the softness of the repulsive part of the interatomic 
potential. 



Entropies and structure factors of liquid metals 1271 

Using this equation, we obtain the final column of table 2. The first term of (15) is (except 
marginally for Cu) bigger than the second, so o has, very roughly, the same temperature 
dependence as q ;  the lower the melting point, the higher is -(a In w/aT), and vice 
versa. 

The point, of course, is that c is a measure of the position of the repulsive edge of the 
interatomic potential (Ashcroft and Langreth 1967), so that - (a  In o/BT), measures the 
softness?. Indeed, if we were to ignore the volume variation with pressuret and follow 
a prescription used by Ashcroft and Langreth, we could draw sections of the repulsive 
parts of the interatomic forces using figures 2, 3 and 4, though we think that a better 
analysis might be forthcoming by using the formulation of 92. Be that as  it may, the 
final column of table 2 shows that, at  the respective melting points, the effective 
interatomic repulsions are softer for the metals with lower melting points and so a 
hard sphere description would appear to be least appropriate to these cases. (Note that, 
in reaching the latter conclusion, we are not saying that the repulsive parts of the 
potentials for high melting point metals are steeper overall-only that the parts of 
interest at  the respective melting points are steeper.) 

Having suggested that hard spheres are least applicable to alkalis, it should be 
remarked that, by way of contrast, second order pseudopotential perturbation theory 
(implicit in the above investigation; recall $2) becomes quantitatively less good at high 
valencies (Heine and Weaire 1970, Meyer et a1 1971, Singh and Young 1972). Indeed, 
Hasegawa (1971 and private communication) has calculated the corrections to the pair 
forces defined by third order perturbation theory and found them to be significant. This 
possible deficiency of second order perturbation theory is a point to which we will 
return later. 

5. Packing fractions from pseudopotentials 

Finally, we ask how well the data shown in figures 2, 3 and 4 can be reproduced by 
specifying pseudopotentials and dielectric screening functions and carrying out the first 
principles calculations indicated in $2. 

Partial answers are available from the various studies to date. In order to see a more 
complete picture, however, we felt it was necessary to investigate the absolute value and 
slope of q(T), at the melting point, for a large number of metals. This, of course, amounts 
to computing the entropies and specific heats and the results of our calculations, together 
with all others of which we are aware, are shown in figure 5. 

The results of Jones for Na and ourselves for Na, Mg, A1 and Pb  indicate the kind 
of spread obtainable, for a given pseudopotential and screening technique, when the 
hard sphere description is varied. The other theoretical results are obtained by a variety of 
pseudopotential and screening methods, the details of which are given in the figure 
caption. 

The lesson which seems to follow from the entropy calculations is that, while the 
finer detail of the variations from element to element is difficult to reproduce, a good 
average value of -SE - 4kB per ion is not. However, when we turn to the specific heats, 
we find that while for lower valency metals a correct average value of - 3.6 kB per ion is 

f Actually, the potential itself will vary at  constant pressure because of the small variation in volume. The 
difficulty would not arise a t  constant volume but, throughout this work, we have preferred to keep our analysis 
as close as  possible to the usual experimental conditions. We do not expect the effect to be very large, at 
least in so far as the repulsive edge is concerned, since C&C, is not too far from unity (being -1.15; 
see Webber and Stephens 1968). 
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Figure 5. Excess entropies and specific heats (C,) per atom at  the melting points. The 
experimental points are joined by continuous lines. The key to the theoretical calculations 
is provided by the following table. 

Hard sphere 
Authors Figure 5 symbol Pseudopotential Screening dynamics 

Present Broken lines 
* 
11* 

Edwards and 
Jarzynski 0 

0 

Jones I O  
I1 0 
111 0 

Empty core 

Shaw (1969) 

Modified 
point ion 

Geldart-Vosko equation (1  1) 
equation (13) 
equation (12) 

Shaw (1970) equation (13) 

Geldart-Vosko equation (13) 

equation ( 1  1) 
equation (12) 
equation (13) 
but using Verlet- 
Weis (1972) 
structure factor 

Actually, Edwards and Jarzynski calculate their specific heats a t  constant volume. For 
comparison purposes we have obtained values of C, from their results by using the 
experimental specific heat ratios of Webber and Stephens (1968). These ratios do not vary 
much from metal to metal so, in the cases of Li and Mg, where the data are not available, 
we felt justified in multiplying by the typical value of 1.15 to obtain the results indicated (0). 

The empty core pseudopotential radii used in the present calculations were as  in table 15 
of Cohen and Heine (though in the case of Zn we followed Umar and Young by taking 
the adjusted value of 1.1 1 which fits the first Heine-Abarenkov node). For Rb, Cs and Pb, 
for each of which Cohen and Heine quote more than one value, we chose the alternatives 
2.61. 2.93 and 1.47 respectively. For Cd, no radius is tabulated; we chose a value of 1.23 to 
fit the first Heine-Abarenkov node. 
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Figure 6. q(T)  calculated by the method of $2 (empty core's, Geldart-Vosko screening, 
equation (13)). Compare with the experimentally based results of figures 2, 3 and 4 and 
note that the ab initio curves are shallower than those obtained from the observed 
entropies in the higher valency cases (In and Sn). This behaviour is reflected in the 
underestimation of the specific heats for these metals (figure 5) .  

found, there is a distinct tendency to underestimate the experimental results at high 
valencies. 

In relation to figures 2,3 and 4, this means that calculated packing fractions start off 
with about the right magnitudes at the melting points, but for high valency cases the 
variation with temperature is too small, at least for obtaining agreement with the 
thermodynamic data. (For Sn, as it happens, the agreement with the radiation based points 
of figure 4 is good.) A selection of such theoretical q(T) curves are shown in figure 6 .  
The data for Na lead to a specific heat curve (Umar 1974) which is in good agreement 
with experiment, falling initially and rising as the temperature increases above - 600°C. 
Similar behaviour, with about the same quality of fit to experiment, has been calculated 
by Jones (1973) and, for this reason, we do not quote our result here. 

At first sight, it might seem paradoxical that, in some higher valency systems, the 
first principles specific heat calculations lead to underestimates, whereas the entropy- 
structure factor correlations continue to be maintained. Such a situation occurs in the 
case of Pb, for example, as figures 4 and 5 demonstrate. The resolution of this apparent 
contradiction presumably is that the entropy-structure factor relationship is more 
general than $2 indicates. It is obvious that the volume and pairwise terms implicit in 
equations (5H8) need not be precisely as defined there in order that the correlation be 
established. In this connection, our remarks at the end of 94 are relevant. Pseudopotential 
perturbation theory beyond second order will lead to redefined volume and pairwise 
energies as well as many-ion contributions. As long as the latter are (in some sense) 
negligible or effectively subsumable into lower order terms and the pairwisk interactions 
themselves are well approximated by those of hard spheres the entropy-structure factor 
correlation will emerge. 

6. Discussion 

In the above work, we have pointed to a relationship between entropies and structure 
factors of liquid metals which, as the remarks immediately above indicate, is rather 
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generally based. It does, however, presume that real liquid metals 'resemble' hard sphere 
systems (with temperature dependent diameters) in the Gibbs-Bogoliubov sense. 

Figures 2-4 may be used to judge the degree to which this correlation holds in 
practice. Our conclusion is that the connection is established to about the same extent 
that structure factors against wave number are known to be describable by hard spheres. 
In some systems (eg Pb) a good description, in terms of hard spheres, of the structure 
factor against wave number is accompanied by a good correlation of structure factor 
and entropy. In other cases (eg Bi) both these pieces of evidence point to departures from 
hard sphere behaviour. In general, however, a rule is difficult to establish because of 
the variable overall quality of the radiation data. 

In $5 we investigated the extent to which ab initio calculations, using the formalism 
of $2, are capable of describing, quantitatively, the experimentally based hard sphere 
diameters. Such calculations involve, of course, specific choices of pseudopotentials, 
dielectric screening functions and entropy expressions (equations (1 l), (12) and (1 3) in 
particular). The results of the present work, as well as those of previous authors, are 
summarized in figure 5, from which it would seem that near the melting points, entropies, 
for all valences, and specific heats, for lower ( 5  3) valencies, are adequately describable by 
techniques of the kind outlined in $2. As the spread of results obtained by various 
authors for Na, say, indicates, such discrepancies as exist between theory and experiment 
for these lower valency cases can probably all be explained in terms of the quality of 
the input data. 

For higher (2 3) valencies, there is evidence that such calculations are likely to 
underestimate specific heats somewhat (perhaps by - 30%). Such underestimations are 
not necessarily a t  variance with the existence of a good experimentally based entropy- 
structure factor correlation, for, as we have seen, this correlation can be more general 
than the formalism of $2 would suggest. 
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Appendix. In this appendix we describe briefly the derivation of the expression for the 
correction term in the band structure energy F 2  due to the departure of the electron 
system from complete degeneracy. 

The second order or band structure energy for a nonzero temperature Fermi 
distribution of conduction electrons is given by 

Here E T ( q )  is the dielectric function of the electron gas at  
conveniently expressed as 

( A l l  

temperature T and is 
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in terms of the free electron polarization function (at temperature T )  

f k  being the Fermi distribution function. G(q) describes the correction to the random 
phase approximation dielectric function due to exchange and correlation. Here we 
neglect the temperature dependence of q q ) ,  which is very hard to estimate. Then the 
temperature dependence of F 2  arises simply from the temperature dependence of nP)(q), 
which can be calculated easily (up to T2) as 

where 

kF is the Fermi wave number and cF = ik: is the Fermi energy. On substituting (A4) into 
(Al), F, can be calculated up to T 2  as 

F, = (l/16n3)/0z u2(q)a  (q)[(l/E(q)) - l]q4 dq - j z y 2 T 2 .  645) 

Here ~ ( q )  z e T E O ( q )  is the usual zero temperature dielectric function and 

where 

Detailed calculations, using (A6) for a variety of metals, revealed that in every case 
;j2 was of order yrg and therefore, in the context of this paper, negligible ($2). 
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